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Prediction of sensorimotor feedback from efference copy of motor 

commands: A review of behavioral and functional neuroimaging studies 

 

Abstract 

Humans can rapidly and smoothly control their own bodies and external objects such as 5 

tools. Because sensorimotor feedback of movements is inevitably delayed by many 

factors, including delay for transmission of motor commands from the brain to muscles 

and time for processing of sensory information, many studies have suggested the 

existence of mechanisms in the brain that can predict the precise motor commands 

necessary for realizing intended motions and sensorimotor feedback from the motor 10 

commands before movement. This article focuses on mechanisms for prediction of 

feedback and summarizes how the predicted feedback can contribute to rapid, efficient 

and flexible control of movements and processing of sensory information. Possible 

neural correlates for the prediction mechanisms and their contribution to higher-order 

cognitive functions are discussed.  15 
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Introduction 

Skilled manipulation of objects, including our own bodies, relies on the brain learning 

to control the object and predict the consequences of this control. The ability to learn 

the relationships between actions and the resultant changes in states of external objects 

is particularly important for rapid and smooth control of movements. It has been 5 

suggested that such abilities are largely dependent on neural mechanisms that can model 

or simulate the relationships between an action and its consequences before the action's 

execution. Neural mechanisms that can mimic the input-output properties of controlled 

objects are called internal models (Kawato, 1999; Kawato, Furukawa, & Suzuki, 1987; 

Wolpert, Ghahramani, & Jordan, 1995).  10 

The central nervous system (CNS) is thought to use two forms of internal models: 

an inverse internal model and a forward internal model. In the context of arm reaching 

movements (Fig. 1a), forward models transform efference copies of motor commands 

into the resultant trajectory or sensorimotor feedback (Kawato, et al., 1987; Miall, Weir, 

Wolpert, & Stein, 1993; Wolpert, et al., 1995). Here, an efference copy is an internal 15 

copy created with a motor command and sent to other brain regions. Inverse models 

transform an intended motion of the arm into the motor commands used to realize the 

motion (Kawato, et al., 1987). Inverse and forward models can also contribute to 

predictive control of external objects such as tools. For example, skilled manipulation of 

a computer mouse requires the ability to predict how the cursor will move on the screen 20 

if the mouse is moved in a particular direction (forward model: Fig. 1b) and how the 
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mouse should be moved in order to move the cursor to a particular position on the 

screen (inverse model).  

In this article, I will focus on forward models for prediction of feedback and 

review behavioral and functional imaging studies that clarify the contribution of 

forward models to human behaviors. These studies demonstrate how predicted 5 

sensorimotor feedback helps flexible, rapid and precise control of movements as well as 

processing of sensory information.  

 

Grip force - load force coupling using forward models 

When an object is held with the tips of the thumb and index finger at the sides, grip 10 

force allows the development of frictional force to counteract the load force (Fig. 2a). In 

a series of studies, Johansson and colleagues (Johansson & Cole, 1992; Johansson & 

Westling, 1984) have shown that when lifting objects or pulling on fixed loads grip 

force is adjusted in parallel with changes in load force, in such a way that it is always 

slightly greater than the minimum required to prevent slip. If grip force is measured 15 

during rapid arm movements with hand-held objects, it is modulated in parallel with, or 

even prior to, fluctuations in the acceleration-dependent inertial load (grip force - load 

force coupling: Fig. 2b). This finding indicates that the CNS is able to precisely predict 

the movement-induced load, and it has been suggested that this prediction is based on 

an internal model of the motor apparatus and external load (Flanagan & Wing, 1997). 20 
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This grip force - load force coupling is explained by a framework that contains a 

forward model of the arm (Kawato, 1999) (Fig. 2c). Take, for example, a point-to-point 

arm-reaching movement that takes place while the hand is grasping an object. A 

controller for the arm calculates the motor commands needed to realize the desired 

motion of the arm. These commands are sent to the arm muscles as well as to the 5 

forward dynamics model as the efference copy. Then, the forward model can predict an 

arm trajectory that is slightly in the future. Given the predicted arm trajectory, the load 

force is calculated; then, by multiplying a friction coefficient and a safety factor, the 

necessary minimum level of grip force can be calculated in a grip force controller. To 

realize this grip force modulation, motor commands are sent to hand muscles.  10 

This framework has already been supported by theoretical and empirical studies 

as follows. Many studies have indicated that forward models can be acquired more 

quickly than the appropriate controllers (Chen-Harris, Joiner, Ethier, Zee, & Shadmehr, 

2008; Flanagan & Wing, 1997). Because grip force modulation utilizes output signals 

from the forward model, this framework predicts that the learning rate of the grip force - 15 

load force coupling is quicker than that of arm control. This prediction has been 

supported by behavioral studies (Flanagan & Wing, 1997; Ugata, Kuroda, Imamizu, 

Yoshioka, Wada, & Kawato, 2003), indicating quicker learning of grip force - load 

force coupling than that of the appropriate control of arm movement in a novel 

environment. These studies suggest that forward models are used in grip force - load 20 

force coupling.  
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Based on the above framework, we have explored the possible sites of forward 

models through an experiment using a functional magnetic resonance imaging (fMRI) 

(Kawato, Kuroda, Imamizu, Nakano, Miyauchi, & Yoshioka, 2003). In this experiment, 

subjects held an object in a precision grip and made cyclic up-and-down movements of 

their right arm according to sounds generated by a computer (Fig. 3a; test condition). 5 

Brain activity during the test condition is expected to include not only activity related to 

grip force - load force coupling but also activity related to arm movement and activity 

related to modulation of grip force. Theoretically, if we remove the last two types of 

activity from activity in the test condition, we can extract the brain activity exclusively 

related to grip force - load force coupling or to the coordination of arm movement and 10 

grip force modulation. Therefore, we added two baseline conditions to the experiment. 

One was an "arm-movement" condition (Fig. 3c) where subjects moved their arms in 

the same fashion as the test periods but the object was attached at the tips of the fingers 

by tape. In this condition, the arm movement was the same as that in the test condition 

but the grip force - load force coupling was not needed because the object would never 15 

slip from the subjects' hands. By measuring the grip force during the experiment, we 

confirmed that a change in the grip force in the arm-movement condition (thick curve in 

Fig. 3d) was very small compared to that in the test condition (Fig. 3b). The other was a 

"grip-force-modulation" condition (Fig. 3e) where subjects held the object in the same 

grip as in the other conditions and periodically changed the grip force without arm 20 

movements. Corresponding to the above framework, the test condition activates all 

components, the arm-movement condition mainly activates the arm controller, and the 
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grip-force-modulation condition activates the grip force controller. Therefore, 

subtraction of activity in the latter two conditions from activity in the test condition 

would extract activity related to the forward model from the other activity.  

Brain activity related to the arm-movement condition was mainly found in the 

large portion of the sensorimotor region (Fig. 4a), while activity related to the 5 

grip-force-modulation condition was found in a smaller portion in nearly the same 

region (Fig. 4b). These results are consistent with the notion that the sensorimotor 

region contributes to control of arms and fingers. Importantly, when activities in the two 

baseline conditions were subtracted from the activity in the test condition, we could find 

the residual activity only in the cerebellum (Fig. 4c). This means that parts of the 10 

cerebellum acquire forward internal models and contribute to the grip force - load force 

coupling. This activity was found in the contra-lateral (left) part to the moving hand and 

arm (right), although it is known that the hand and arm movements on one side activate 

the ipsi-lateral parts of the cerebellum (e.g., Grodd, Hulsmann, Lotze, Wildgruber, & 

Erb, 2001). However, activity in the left or bi-lateral cerebellum is often reported when 15 

subjects manipulate an external object using the right hand (e.g., Imamizu, Miyauchi, 

Tamada, Sasaki, Takino, Putz, Yoshioka, & Kawato, 2000; Schmitz, Jenmalm, Ehrsson, 

& Forssberg, 2005; Tamada, Miyauchi, Imamizu, Yoshioka, & Kawato, 1999). This 

suggests that the activity found in the above experiment reflects forward models for not 

only arm movement but also object manipulation.  20 
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Coordination between effectors based on prediction of forward models 

The above studies show that a forward model contributes to coordination between 

movements of different effectors, i.e., the arm and fingers, to accomplish grip force - 

load force coupling. There are several studies indicating that forward models play 

important roles in coordination between effectors in the other context.  5 

Miall and colleagues investigated brain activity related to eye-hand coordination 

using a tracking task (Miall, Reckess, & Imamizu, 2001). In their experiment, subjects 

followed a moving target with their eyes while simultaneously moving a joystick to 

control the cursor. The temporal offset between targets for eye and hand motions caused 

parametric variation in the degree of eye-hand coordination (∆t in Fig. 5). The 10 

behavioral data indicated that manual tracking performance was optimal when the target 

for eye motion was anticipated before the target for hand motion by 38 ms. 

Synchronous movements of two effectors with such a small offset cannot be achieved 

simply by reaction to proprioceptive or visual feedbacks. This suggests that a forward 

model predicts the movement outcome based on motor commands for the eye muscles 15 

and that the predicted outcome is sent to the hand-control system for programming or 

modifying the manual movement. They conducted fMRI experiments and found that 

activity in the lateral cerebellum and the oculomotor vermis (medial part of the 

cerebellum) parametrically increased as performance of the eye-hand coordination 

improved. This result suggests a contribution of the cerebellum to eye - hand 20 

coordination by predicting the movement outcome.  
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Another fMRI study investigated mechanisms for coordination between a finger 

(thumb) and arm movements (Diedrichsen, Criscimagna-Hemminger, & Shadmehr, 

2007) in a different context from grip force - load force coupling. Using thumbs, 

subjects pressed a button attached to the handle of a device that they grasped during arm 

reaching movements. Subjects were trained to press the button depending on the state of 5 

the arm movements without relying on sensorimotor feedback. Theoretically, it was 

necessary for the CNS to predict the future state of the arm from motor commands to 

accomplish this task. Brain activity during the state-dependent motor control was 

compared to activity in a baseline condition where the subject pressed the button at a 

particular timing independent of the arm state (timing control). Activity related to the 10 

state-dependent control was found in the arm regions of the anterior cerebellum, 

suggesting that a forward model of the arm is acquired in the CNS and predicts the 

future state of the arm.  

 

Cancellation of sensory inputs using prediction of sensory feedback 15 

It has been suggested that another important function of a forward model is to predict 

sensory inputs caused by our own movements to cancel the inputs. A behavioral study 

was conducted to investigate why we cannot tickle ourselves (Blakemore, Wolpert, & 

Frith, 2000). They examined two hypotheses on the reasons for this. One is that there is 

a general gating of all incoming sensory stimulation when we tickle ourselves. The 20 

other is that the CNS precisely predicts, probably using forward models, the sensory 
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consequences of motor commands for tickling behavior and then cancels these sensory 

inputs using the predicted sensory consequences.  

In their experiments, they asked subjects to rate the sensation of a tactile stimulus 

on the palm of the hand and then examined the perceptual effects of altering the 

correspondence between self-generated movement and its sensory (tactile) 5 

consequences. The alteration was achieved by a mechanical device, which was designed 

to introduce parametrically varied degrees of delay or angular discrepancy between the 

subject's movement and the resultant tactile stimulation. If the CNS simply shuts down 

sensory input, then the tickled sensation would remain at the same level under all delays 

and angular discrepancies, since movement occurs regardless of delays and 10 

discrepancies. By contrast, if the CNS utilizes an accurate prediction of the sensation to 

cancel sensory inputs, the tickled sensation increases as the delay or angular 

discrepancy increases because the difference between the predicted and actual sensory 

inputs would increase. Results of their experiments showed that subjects rated the 

sensation increasingly tickly as the delay or discrepancy increased, thus supporting the 15 

hypothesis that the CNS precisely predicts the sensory consequences of motor 

commands for tickling behavior.  

Furthermore, these researchers conducted functional neuroimaging studies using 

positron emission tomography and fMRI to investigate corresponding neural 

mechanisms (Blakemore, Frith, & Wolpert, 2001; Blakemore, Wolpert, & Frith, 1998). 20 

They subtracted brain activity in a condition where subjects tickled themselves from 
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activity in the other condition, where subjects were tickled by another person. They 

found residual activity mainly in the secondary somatosensory cortex (SII) and the 

cerebellum. Because the SII receives sensory inputs, activity in the SII probably reflects 

tickled sensation itself. Furthermore, they also found a negative correlation between 

activity in the SII and activity in the cerebellum, suggesting that the more the 5 

cerebellum was activated the less the SII was activated. This can be interpreted as the 

output signals from the cerebellum being used to cancel input signals to the SII.  

 

Switching of internal models based on prediction of sensorimotor feedback 

 10 

Humans interact with myriad objects and environments that often change in a discrete 

manner. If the CNS maintains only a small number of global internal models, relearning 

is needed whenever objects and environments change. However, if the CNS maintains a 

large number of internal models or modules for different objects and environments, less 

relearning is needed, and thus learning interference is avoided. Moreover, initial 15 

learning of objects and environments may be facilitated by a combination of stored 

modules. Many lines of behavioral studies have shown the multiplicity and modularity 

of internal models: dual adaptation to prismatic displacements of visual feedback in 

opposite directions (Welch, Bridgeman, Anand, & Browman, 1993), independent 

learning of internal models for kinematic and dynamic control of reaching (Krakauer, 20 

Ghilardi, & Ghez, 1999), and composition of output signals from stored modules 

(Flanagan, Nakano, Imamizu, Osu, Yoshioka, & Kawato, 1999; Ghahramani & Wolpert, 
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1997). Our previous imaging studies first found cerebellar activity related to an internal 

model of a novel tool (Imamizu, et al., 2000) and, second, indicated the modularity of 

internal models by showing activation in different sets of cerebellar regions, reflecting 

different input-output properties of tools (Imamizu, Kuroda, Miyauchi, Yoshioka, & 

Kawato, 2003).  5 

If multiple internal models exist in the CNS, a question arises about how models 

are selected or switched appropriately from the current context, i.e., how the CNS 

solves the problem of modular selection. Behavioral studies have reported that humans 

can flexibly switch internal models based on contextual information. For example, an 

auditory-tone cue can induce context-dependent adaptation to prismatic displacement 10 

(Kravitz & Yaffe, 1972). Cognitive contextual cues can help simultaneous learning and 

switching of internal models for different dynamic environments (Osu, Hirai, Yoshioka, 

& Kawato, 2004; Wada, Kawabata, Kotosaka, Yamamoto, Kitazawa, & Kawato, 2003; 

Yamamoto, Kawato, Kotosaka, & Kitazawa, 2007). However, little is known about 

neural mechanisms for internal-model switching.  15 

Empirically, two types of information are crucial for the switching of internal 

models: contextual information, such as color or shape of the objects that can be 

perceived before movement execution, and information on the difference between 

actual and predicted sensorimotor feedbacks calculated during or after execution. For 

example, when we lift a transparent bottle, the CNS can switch between internal models 20 

for light and heavy objects in a predictive fashion, since we know whether the bottle is 
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empty or full beforehand (upper panel of Fig. 6a). However, when lifting up a paper 

milk carton (upper panel of Fig. 6b), we cannot estimate the weight, and the CNS relies 

on the error between actual and predicted sensorimotor feedbacks (prediction error) as 

shown in the diagram in Fig. 6c. In the latter case, switching during or after the 

movement is needed. We call this a "postdictive" switch in contrast to the predictive 5 

switch. The above example illustrates switching during control of forces (dynamics), 

but we often encounter similar situations during kinematic control in which forces do 

not play an important role. That is, for example, when you want to reduce or increase 

the brightness of a room light by adjusting a slide volume control (lower panel of Fig. 

6a), you can decide the direction and amount of movement of the controller in a 10 

predictive fashion if you often use the same controller (e.g., if the room is yours) or if a 

label illustrating the relationship between brightness and lever position is attached to the 

controller. However, we generally have to rely on the difference (error) between 

predicted sensory feedback (expected brightness of the light) and actual feedback, i.e., 

we typically use a controller for the first time without the benefit of such a label (lower 15 

panel of Fig. 6b). As we have already mentioned, forward models play crucial roles in 

prediction of sensorimotor feedback and thus contribute to the postdictive switch of 

internal models based on prediction error.  

We conducted a behavioral experiment to investigate whether the predictive 

mechanism is functionally independent from the postdictive mechanism (Imamizu, 20 

Sugimoto, Osu, Tsutsui, Sugiyama, Wada, & Kawato, 2007). Subjects learned to move 
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their index fingers to targets while visual feedback of the finger movements was rotated 

clockwise (CW) or counterclockwise (CCW) by 40º around the initial position (i.e., 

kinematic alteration of the relationship between the finger movement and the cursor 

movements). When subjects adapted to alternating blocks of opposing rotations, we 

investigated the effects on the subjects' performances due to contextual information (a 5 

verbal instruction) on the forthcoming direction of rotation. We measured the effect of 

such contextual information on the predictive mechanism by measuring the 

performance error at the beginning of each block and that on the postdictive mechanism 

by measuring the speed of gradual decrease of the error within blocks. Consequently, 

the contextual information selectively improved predictive switching performance but 10 

did not affect postdictive switching performance based on prediction errors, suggesting 

the existence of functionally independent mechanisms.  

Based on the results of our behavioral study, we planned an fMRI experiment to 

examine whether these two mechanisms are based on separate neural substrates. In the 

fMRI experiment, discrete pointing movements and event-related fMRI were used to 15 

separate activity related to the presentation of the cognitive cue from that related to 

sensorimotor feedback (Imamizu & Kawato, 2008). The task for subjects followed that 

in our behavioral study, and subjects sufficiently learned the 40º CW and 40º CCW 

visuomotor rotations before scanning of brain activity. During the fMRI experiment, the 

direction of rotation changed in a block-random fashion. A cue was presented at the 20 

beginning of each trial and before movement initiation. The color of the cue 
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corresponded to the direction of rotation of the feedback in an instructed condition, and 

thus predictive switching was possible. However, the color did not correspond to the 

direction in the non-instructed condition, and thus subjects relied on prediction errors 

calculated from sensorimotor feedback for switching in a non-instructed condition. 

Switching-related activity was identified as activity that transiently increased after the 5 

direction of rotation was changed. The switching-related activity in cue periods in the 

instructed condition, when a predictive switch is possible, was observed in the superior 

parietal lobule (SPL) (Fig. 6d). However, the switching-related activity in feedback 

periods in the non-instructed condition, when prediction error is crucial for the 

postdictive switch, was observed in the inferior parietal lobule (IPL) and prefrontal 10 

cortex (PFC) (Fig. 6e). These results clearly demonstrate regional differences in neural 

substrates between the predictive and postdictive mechanisms.  

Our results are consistent with previous studies indicating that the SPL is involved 

in modulation of behaviors based on visual information as follows. For example, fMRI 

studies of the SPL identified activity related to discrimination of visual surface 15 

orientation (Shikata, Hamzei, Glauche, Knab, Dettmers, Weiller, & Buchel, 2001) and 

control of steering according to visual future path information (Field, Wilkie, & Wann, 

2007). Many studies indicated a contribution of the SPL to planning of action based on 

visual information (Culham, Cavina-Pratesi, & Singhal, 2006; Medendorp, Goltz, 

Crawford, & Vilis, 2005). Kimberg et al. (Kimberg, Aguirre, & D'Esposito, 2000) 20 

investigated activity when subjects switched between different stimulus-response 
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mappings during a task in which subjects pressed a key according to a letter presented 

on a screen, and they reported that the SPL is related to switching based on contextual 

information. Our study suggests that the SPL associates contextual information with the 

degree of contribution of each individual internal model.  

In contrast to the SPL, our study suggested that the IPL contributes to the 5 

postdictive switch by integrating sensorimotor feedbacks obtained by vision and 

proprioception and then comparing this with predictions by forward models to calculate 

prediction error. Many studies have suggested the IPL contributes to integration of 

multisensory information. It is known that the lateral bank of the intraparietal sulcus in 

the IPL is related to control of grasping movements guided by vision (Castiello, 2005). 10 

Grefkes et al. (Grefkes, Weiss, Zilles, & Fink, 2002) reported the contribution of the 

IPL to cross-modal integration between visual and somatosensory information. 

Furthermore, a study on anatomical pathways in the monkey brain indicated that a 

region in the IPL (area 7b in monkeys) is the target of output from the cerebellum 

(Clower, West, Lynch, & Strick, 2001). This suggests that prediction of sensorimotor 15 

feedback made by cerebellar forward models is sent to the IPL and compared with the 

actual sensory feedback and that the results of the comparison (prediction error) 

contribute to switching of internal models.  

 

 20 

Discussion 

In this article, I reviewed behavioral and imaging studies related to neural mechanisms 
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for prediction of sensorimotor feedback from the efference copy of motor commands. 

These mechanisms are called (internal) forward models. Actual sensorimotor feedbacks 

that can be obtained during or after movement are inevitably delayed by many factors: 

transmission of motor commands from the brain to muscles, mechanical delay of 

muscles and external objects, and processing of visual and proprioceptive feedback 5 

information. Therefore, internal prediction of sensorimotor feedback without relying on 

an external feedback loop is useful for rapid, efficient, flexible, and precise control of 

our own bodies and objects. Studies reviewed in this article have shown examples of 

such control: a grip force - load force coupling, coordination of effectors, cancelation of 

sensory inputs caused by one’s own movement, and switching of sensorimotor tasks.  10 

So far, I have mainly reviewed functional neuroimaging studies indicating that 

forward models are acquired in the cerebellum. In the following, I refer to studies that 

directly measured electrophysiological activity of neurons. These studies found neural 

activity reflecting forward models not only in the cerebellum but also in the other 

cortical regions. Miall and colleagues proposed that simple spike activity of Purkinje 15 

cells (neurons in the cerebellar cortex) represent prediction of sensory feedback and is 

corrected by complex spike activity representing a discrepancy between the prediction 

and actual feedback (Miall, et al., 1993). They found, as supporting evidence, that the 

interval between an increase in simple spike activity and the resulting complex spike 

activity is about 150 ms, which is equivalent to visuomotor feedback delay and 20 

necessary for synchronizing the prediction and feedback (Miall, Keating, Malkmus, & 
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Thach, 1998). Recently, it has been suggested that simple spike discharge of Purkinje 

cells has several characteristics of a forward internal model of the arm (Ebner & Pasalar, 

2008).  

Another stream of studies has suggested that neural activity in parietal or frontal 

regions reflects forward-model computation or signals related to forward models. A 5 

study recorded activity in the posterior parietal cortex when monkeys moved a cursor 

toward a target by controlling a joystick, and it found neurons encoding a forward 

estimate of the state of the cursor, that is, the direction of cursor movements caused by 

joystick movement (Mulliken, Musallam, & Andersen, 2008). Their encoding 

properties were available from neither sensory feedback nor outgoing motor commands 10 

but from sensory signals predicted by a forward model. Studies on neuronal activity 

during eye-movement tasks have also found data related to forward models. For 

example, eye movement causes a shift in the visual image on the retina, but a study has 

shown that the location of receptive fields of neurons in the lateral intra-parietal area 

shifts before the initiation of the eye-movement based on prediction of a shift of a target 15 

on the retinal image (Duhamel, Colby, & Goldberg, 1992). This suggests that parietal 

neurons use information about intended eye movements and update the representation 

of visual space. Such update cannot be done without prediction of the movement 

outcome from an efference copy of motor commands sent to the eye muscles. Another 

study investigated a pathway that conveys an efference copy of motor commands for 20 

saccadic eye movements, and it identified an ascending pathway from the superior 
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colliculus to the frontal eye field via the mediodorsal thalamus (Sommer & Wurtz, 

2002). According to this result, the frontal eye field is a target location of the efference 

copy and a possible neural correlate of a forward model.  

Many studies have indicated that the cerebellum is an important locus of 

forward-model computation, but parietal and frontal regions have also been suggested 5 

as contributing to the computation or having relationships with the input signals to and 

output signals from forward models. Probably, the locus of forward models is not 

unique, and several regions contribute to the computation according to different 

contexts and requirements of tasks. Future studies that can extract neural information 

simultaneously from multiple regions in the brain will enables us to elucidate the 10 

outlines of the brain network used for the forward-model computation as well as the 

functional differences among the regions.  

Although I mainly focused on the contribution of forward models to control of 

movements, many researchers are now interested in the contribution of forward models 

to higher-order cognitive functions. By using forward models, the CNS can construct 15 

internal simulation loops without relying on external feedback. Hurley proposed a 

"Shared Circuit Model" in which cognitive functions such as mirror systems, imitation, 

mental simulation of social interactions, and mind reading (theory of minds) use such 

internal simulation loops for sensorimotor control and additional systems that inhibit 

motor outputs and generate virtual sensory inputs during the simulation (Hurley, 2008). 20 

More specifically, Oztop and colleagues conducted computer simulations of tasks that 
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are closely related to mirror systems (Oztop, Kawato, & Arbib, 2006; Oztop, Wolpert, 

& Kawato, 2005). In their simulations, an observer estimated the goal of reaching 

movements or the intention of an agent performing grasping movements. The results 

indicated that, in theory, forward models for sensorimotor control contribute to effective 

inferring the goals or mental states of others, suggesting that the models contribute to 5 

mirror systems and theory of minds. These internal circuits support "mental 

simulations" of interactions between one's own actions and the resultant changes in the 

environment, and they can increase accuracy based on recursive computation in 

sophisticated planning and selection of behaviors necessary for social interactions and 

achievement of long-term goals. It is well known that immediate feedback of error is 10 

important for motor learning that depends on the cerebellum (Ito, 1984; Kitazawa, 

Kohno, & Uka, 1995). However, feedback in social interaction is often delayed, and this 

delay can be on the order of hours or days. Therefore, the internal circuits include not 

only the cerebellum but also other brain regions, such as prefrontal regions that can 

compensate for these variable and unpredictable delays.  15 

Because neural mechanisms for such cognitive functions are more complex than 

those for simple reaching and grasping movements, future theoretical and empirical 

studies are needed to fully understand how internal simulation loops support 

higher-order functions. However, the current studies will give us important clues to 

understanding how human intelligence has emerged from fundamental brain functions, 20 

such as control of movements, which are common with other species including 
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non-human primates.  
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Figure Legends 

 

Figure 1 

Examples of internal forward models and inverse models. (a) Internal models for arm 

reaching movement. (b) Internal models for an external object and a tool (e.g., a 5 

computer mouse).  

 

Figure 2 

Illustrations of grip force - load force coupling. (a) An object held with the tips of the 

index finger and thumb. When lifting the object, the normal grip force on the contact 10 

surface allows for the development of a frictional force, which prevents the object from 

slipping. The figure illustrates the load force in the deceleration phase of the upward 

movement. (b) Examples of time courses of grip force (solid curve) and load force 

(broken line) when lifting up and down an object. A dash-dotted line indicates a peak 

latency of the grip force. (c) A framework explaining mechanisms for grip force - load 15 

force coupling based on inverse and forward models of the arm. Reproduced with 

permission from reference (Kawato, 1999) © Elsevier.  

 

Figure 3 

Three conditions in an fMRI experiment investigating brain activity related to grip force 20 

- load force coupling (a, c and e) and typical change in grip force and load force 

measured during each condition (b, d and f). 
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Figure 4 

Brain activity related to arm movements (a), grip force modulation (b) and coordination 

between arm movement and grip force modulation (c). White regions enclosed by thick 

curves indicate activated regions. In panels a and b, activated regions are indicated on 5 

the brain surface. In the top image of panel c, activity is rendered on the coronal slice as 

indicated by the bottom panel.  

 

Figure 5 

Examples of target trajectories used in an experiment investigating eye - hand 10 

coordination (Miall, et al., 2001). Solid curves indicate target trajectory for hand 

(joystick) tracking as time courses of the horizontal (x) position (a) and the vertical (y) 

position (b). Dashed curves indicate target trajectory for eye tracking, which is 

advanced or delayed from the target for the hand tracking by a parameter ∆t. (c) A 

target trajectory for the hand tracking is represented in x - y coordinates. Each position 15 

is represented in pixel coordinates of a computer screen. 

 

Figure 6 

Illustrations of two types (a), (b) of switching in sensorimotor tasks. (a) Examples of 

predictive switch. When we lift a transparent bottle, the CNS can switch between 20 

internal models for light and heavy objects in a predictive fashion, since we know 

whether the bottle is empty or full beforehand (an example for control of dynamics: 
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upper panel). When we control the brightness of a room light, we can decide the 

direction and amount of movement of the control lever before moving the controller if a 

label is attached to the controller indicating the relationship between the brightness and 

position of the lever or, otherwise, if we are familiar with the controller (an example for 

control of kinematic control: lower panel). (b) Examples of postdictive switch. When 5 

lifting up a milk carton, we cannot estimate the weight, and the CNS relies on the error 

between actual and predicted sensorimotor feedbacks. In such a case, switching during 

or after the movement is needed (upper panel). In the case of light control, we have to 

rely on sensory feedback (brightness of the light) if no label is attached to the controller 

(lower panel). (c) A schema for calculation of prediction error of sensorimotor feedback. 10 

Brain activity related to predictive switch (d) or postdictive switch (e) as found by an 

fMRI study (Imamizu & Kawato, 2008). Activated regions (white regions enclosed by 

thick curves) are indicated on the brain surface viewed from the top. SPL: Superior 

parietal lobe, IPL: Inferior parietal lobe, PFC: prefrontal cortex. 
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