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Reconstruction of movements from non-invasively recorded brain activity is a key
technology for brain-machine interfaces (BMIs). However, electroencephalography
(EEG) or magnetoencephalography (MEG) inevitably records a mixture of signals
originating from many cortical regions, and thus it is not only less effective than
invasive methods but also poses more difficulty for incorporating neuroscience
knowledge. We combined two sparse Bayesian methods to overcome this difficulty.
First, thousands of cortical currents were estimated on the order of millimeters and
milliseconds by a hierarchical Bayesian MEG inverse method, and then a
sparse-regression method automatically selected only relevant cortical currents in
accurate reconstruction of movements by a linear weighted sum of their time-series.
Using the combined methods, we reconstructed two-dimensional trajectories of the
index fingertip during pointing movements to various directions by moving the wrist
joint. A good generalization (reconstruction) performance was observed for test
datasets: mean error between the predicted and actual positions was 15 mm, which was
7% of the path length of the required movement. The reconstruction accuracy of the
proposed method was significantly higher than directly using MEG sensor signals.
Moreover, spatial distribution and temporal characteristics of weight values revealed
that the primary sensorimotor, higher motor, and parietal regions mainly contributed to
the reconstruction with expected time-courses. These results suggest that the combined
sparse Bayesian methods provide effective means to predict movement trajectory from

noninvasive brain activity directly related to sensorimotor control.
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Invasive recording techniques using implanted electrodes in the brain have succeeded in
reconstructing hand motions from neuronal activity in the primary motor cortex
(Hochberg et al., 2006; Nicolelis, 2001; Taylor et al., 2002) and in predicting intended
goals from activity in parietal regions (Musallam et al., 2004). However, non-invasive
recordings are desirable for broad use in BMIs due to their longevity, cost, and safety
with regard to surgery. Moreover, non-invasive recording methods having fine temporal
resolution, such as EEG and MEG, are needed for reconstruction of rapid and smooth
movements. Previous studies using EEG or MEG sensor signals have succeeded in
controlling a computer cursor. For example, it has been demonstrated that subjects can
learn to modulate sensorimotor (mu and beta) rhythms in EEG signals and control a
cursor (Wolpaw and McFarland, 2004). A classification of patterns of EEG sensor
signals has been used for controlling a cursor in video games (Krepki et al., 2006).
Hand-movement direction (left, right, up or down) can be decoded during a reach by a
classification of MEG and EEG sensor signals above the motor area (Waldert et al.,
2008). Reaching targets can be predicted during the planning period from a combination
of many features, such as the power levels of several frequency bands extracted from
EEG sensor signals (Hammon et al., 2007). The trajectories of a joystick position
(Georgopoulos et al., 2005) and hand velocity (Bradberry et al., 2010; Bradberry et al.,

2009) were reconstructed from the weighted sum of MEG or EEG sensor signals.

However, reconstruction of movements using EEG or MEG sensor signals is

generally thought to be inferior to reconstruction using invasive recordings for the



following reasons. First, the spatial resolution and quality of data obtained by tens or
hundreds of sensors are contaminated by noise and poor in comparison to the data from
a multiple-microelectrode array that records neuronal activity more directly than
non-invasive sensors. Second, sensors inevitably record a mixture of signals originating
from many cortical regions, layers and neurons. Therefore, neural signals of interest for
decoding not only make up a small portion of sensor signals but are also contaminated
by those from other regions, layers, and neurons of no interest. Third, a successful BMI,
regardless of whether it’s invasive or non-invasive, utilizes signals from restricted
cortical regions that are known to contribute to the functions to be reconstructed
according to previous studies in neuroscience. That is, information related to visual
functions has been decoded from visual areas (Kamitani and Tong, 2005; Miyawaki et
al., 2008), and signals related to motor control have been measured in the primary motor
cortex (Hochberg et al., 2006; Nicolelis, 2001; Taylor et al., 2002). Therefore, it is
reasonable to expect increased reconstruction accuracy by using neuronal signals
precisely extracted from target cortical regions. In functional imaging studies, MEG or
EEG source currents have been estimated from sensor data to extract neuronal signals
originating from specific cortical regions. For example, a study (Jerbi et al., 2007)
estimated MEG source currents related to hand movements and found significant phase
locking between the tangential velocity of the hand during a tracking task and
oscillatory activity of the source currents in a specific region of the primary motor

cortex.



To make the effectiveness of non-invasive BMI closer to that of invasive BMI, we
propose a method for reconstruction of rapid two-dimensional movements (duration
about 0.4 s) from source currents estimated on cortical surfaces. Thousands of cortical
currents were estimated on the order of millimeters and milliseconds by a hierarchical
Bayesian method that solves an inverse problem (projection from sensors to current
sources) by incorporating functional magnetic resonance imaging (fMRI) activity as a
hierarchical prior (Sato et al., 2004; Yoshioka et al., 2008). The merits of the
reconstruction using cortical source currents are as follows. First, improvement of
spatial resolution from the number of MEG sensors (several hundred) to that of current
sources (several thousand) is expected to yield rich information on the patterns of
cortical activity. Furthermore, data quality can be improved because it has been
demonstrated that simultaneous estimation of cortical and artifact currents is effective
for removing the artifacts whose source locations can be easily identified, such as eye
and cardiac movements and muscle activity (Fujiwara et al., 2009; Morishige et al.,
2009). Second, isolation of cortical currents in a particular region from a mixture of
signals originating from many regions would help in the extraction of crucial
information for reconstruction. Because different cortical regions are specialized in
different functions, especially for primary sensory and motor functions, we assume that
it’s possible to achieve a better BMI for a particular brain function by using signals that
are not contaminated by signals from other cortical regions. Third, we can utilize
previous neuroscience knowledge if currents are mapped onto a cortical surface:

Currents relevant to a particular function can be selected based on knowledge about the



relationships between brain functions and regions.

Selection of input signals relevant to useful features/parameters is important for
reconstruction using decoding methods or machine-learning techniques. This is because
having too many parameters (e.g., weights for input signals in a multiple linear
regression model) in relation to the number of training datasets is known to lead to poor
generalization performance (over-fitting problem) (Akaike, 1974; Geman et al., 1992).
Recent advanced MEG systems have several hundreds of sensors, and each sensor has
high temporal resolution. Consequently, if we use signal time courses as input signals to
a reconstruction model, the number of parameters becomes huge. By contrast, the
number of training datasets is limited by relatively short time periods (up to several
hours), during which stable signals can be obtained in a comfortable situation for
subjects. Therefore, selection of useful input signals or parameters is essential for
ensuring high generalization performance of the model. We can obtain little benefit
from increasing the resolution of signals if we apply simple maximum likelihood
algorithms due to the over-fitting problem, but it has been suggested that Bayesian
algorithms such as a sparse regression can effectively and automatically select
appropriate feature sets from thousands of parameters (Nambu et al., 2009; Sato, 2001;
Sato et al., 2004; Ting et al., 2005; Ting et al., 2008). This automatic selection should
not be applied to already mixed sensor signals but to cortical currents that are not
contaminated by signals from other cortical regions. Furthermore, we can apply

knowledge from neuroscience, which could be regarded as a qualitative prior, to the



selection of input signals if they are mapped onto the cortical surface.

In this paper, to reconstruct movements from non-invasively measured brain
activity, we combined two sparse algorithms: 1) a hierarchical Bayesian method that
calculates thousands of cortical currents based on sparse estimation of hyperparameters
in an inverse filter from MEG signals to cortical currents, and 2) a sparse linear
regression that automatically selects effective cortical currents for the reconstruction.
Our results indicate not only that this combination improves reconstruction accuracy
compared to direct reconstruction from MEG sensor signals but also that we can gain
great advantages in using cortical currents, i.e., automatic selection of effective input
signals and incorporation of neuroscience knowledge in the selection on demand.
Furthermore, we could confirm which region and which time point were important for
the reconstruction by investigating the automatically selected currents on the cortical

surface.

Materials and methods

Subjects

Five male right-handed subjects (2145 years of age) participated in this study. A
signed informed consent form, approved by the institutional ethics committee, was

obtained from each participant.

Task for subjects



Subjects moved the right index fingertip from a start position in eight directions
separated by 45° (gray arrows in Fig. 1A) while lying in the supine position in MEG and
MR scanners (Fig. 1B). The subjects' forearms were fixed to a platform, and their finger
joints were immobilized by a brace (Fig. 1C) so that only wrist-joint movements were
allowed.

During the MEG experiment (Fig. 1D), eight light-gray lines arrayed radially
around the center of a screen were always visible as a reference of the movement
directions. A small square was displayed at the center as a fixation point at which
subjects were instructed to fix their eyes. Subjects immobilized the hand while the
square was black. This fixation point changed to white 1.6 s after the beginning of the
trial, and subjects moved their index fingers along one of the reference lines, which
subjects freely chose, and back to the start position until the color became black 0.4 s
later. Because these intervals were fixed, subjects could predict when they should start
and end their movements. A motion-tracking system (see Data acquisition) recorded the
fingertip position. The position was projected to the plane orthogonal to the body axis
(x-y plane, see Fig. 1B). No visual feedback was given to subjects during the movement,
but their fingertip paths were displayed for 0.5 s as black lines on the screen after the
movement to inform subjects of their movement accuracy. We analyzed MEG data from
1.0 s before to 1.0 s after the movement onset, during which the movement path was not
displayed. At the end of each trial, a white peripheral square marked the direction in
which subjects had moved. It remained in the subsequent trials, and subjects were

instructed to move the finger in an unmarked direction. The squares disappeared after
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the eight directions were marked. This marking equalized the number of movements for
each direction. Trails were repeated in a session of 10 minutes, and subjects performed
six sessions. Eye blinks and movements were allowed only during an inter-trial interval

of 0.4 s. Electro-oculogram (EOG) was recorded to detect blinks and eye movements.

fMRI sessions were comprised of alternating blocks of execution and observation
periods (17.5 s each; Fig. 1E). During an execution period, subjects conducted pointing
movements in the direction indicated by a white peripheral square. They were asked to
move their fingers in the same fashion as in the MEG experiment. The path of the
fingertip was displayed for 0.5 s on a screen 1.0 s after the end of each movement.
Subjects began the next movement as soon as the path disappeared from the screen.
During an observation period, screen images recorded in the preceding execution period
were replayed, and subjects observed them while immobilizing their hands. Each
subject underwent four sessions. The order of movement direction was
pseudo-randomized within each session. There were eight execution and observation
periods for each direction (2 periods in a session x 4 sessions) across the fMRI

experiment.

Data acquisition

A motion-tracking system (QuickMag4 type 2; OKK Inc., Japan) was used to measure
finger movements. A marker of the system was attached to the right index fingertip, and
its position was recorded at 60 Hz. A starting position was registered in computer

memory at the beginning of MEG and fMRI experiments when the subject was asked to
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keep his index finger parallel to his body axis as shown in Figure 1B.

A whole-head 208-channel system (MEG vision- PQ1400RM; Yokogawa Electric
Co., Japan) was used for MEG recording. The sampling frequency was 2 kHz. EOG and
electrocardiogram (ECG) were simultaneously recorded. Before the MEG experiment,
the subject's face and head shape were scanned using a hand held laser scanner and a
stylus marker (FastSCAN Cobra; Polhemus, U.S.A) for later co-registration of MEG
and MRI results. To measure the head position in the MEG sensor system, four
calibration coils were bilaterally mounted on the subject’s temporal skin (two each for
the superior superciliary and anterior subauricular regions). Electromagnetic calibration
of the coil positions was conducted before and after each MEG recording session by
passing alternating currents to the coils.

A 1.5 Tesla MR scanner (MAGNEX ECLIPSE; Shimadzu-Marconi, Japan) was
used to obtain blood oxygen level-dependent contrast functional images. Images
weighted with the apparent transverse relaxation time were obtained with an echo
planer imaging sequence (repetition time, 3.5 s; echo time, 65 ms; flip angle, 90°). The
entire brain was covered in 44 axial slices (3.4-mm thickness; 1-mm gap), each of
which was acquired as a 64 x 64 matrix (field of view, 217.6 mm) with a voxel size of
3.4 x 3.4 x 4.4 mm. In total, 164 volumes were acquired in each session. T1-weighted

structural images were acquired with 1 x 1 x 1 mm resolution with a gradient echo

sequence.

Behavioral data analysis
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The time series of the fingertip position was low-pass filtered with a cutoff frequency of
15 Hz. Data were recorded at 60 Hz, which was the highest sampling rate of the
tracking system, during the experiment. We increased the rate to 200 Hz using spline
interpolation to equalize the rate to that of the re-sampled MEG data (see below).
Movement initiation was defined as the first time the tangential velocity of the fingertip
crossed 5% of the maximum velocity of each trial, and movement termination was the
last time the velocity fell below 5% of the maximum. Mean movement time (interval
between movement initiation and termination) across trials was 406 ms (SD: 61), 486
ms (69), 540 ms (78), 559 ms (62) and 505 ms (47) for each subject. To investigate the
effect of movement direction on movement time, we applied a one-way (target
direction) analysis of variance (ANOVA) to movement time separately for each subject.
The effect was significant in every subject (#(7, 481) = 15.8, P <0.0001 for the most
significant subject). However, according to Tukey’s HSD post-hoc test for multiple
comparisons, movement time for each target is significantly different from that for only
one or two other targets (1.7 targets averaged across targets and subjects, SD: 0.3) at P
< 0.05 level. This suggests relatively uniform distribution of movement time among
target directions. The mean movement time for each target across subjects was 497 ms
(SD: 88) for the top, 495 ms (96) for the upper-right, 515 ms (109) for the right, 545 ms
(130) for the lower-right, 496 ms (113) for the bottom, 459 ms (100) for the lower-left,

488 ms (131) for the left, and 496 ms (110) for the upper-left target.

MEG data preprocessing

We confirmed that head positions did not move more than 4 mm during any session by
checking the position data of calibration coils. Trials were excluded from analysis if the

signal value was larger than 1000 {T or if the EOG-signal value was larger than 20 pA.
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If the MEG sensor's signal value exceeded 1000 fT in more than 10% of total trials, the
sensor was considered impaired, and all of the data obtained by that sensor were also
excluded from analysis in each subject. Consequently, when averaged across subjects,
the total number of trials was 561 (SD: 68.3), the number of trials for each movement
direction was 70.2 (SD 3.31), and the number of effective sensors was 186 (SD: 15.5).
MEG-signals were passed through a low-pass filter with a cut-off frequency of 100 Hz
and sampled at 200 Hz. For each trial, the signal value was adjusted so that the mean
value from 1.0 to 0.5 s before the movement onset became zero. A linear trend was
removed by the least-squares fit of a straight line to the signal time course and

subtraction of the resulting function from the time course.

fMRI data analysis

Functional imaging data were analyzed using SPM2 (Wellcome Department of
Cognitive Neurology, London, UK; http://www.fil.ion.ucl.ac.uk/spm). We discarded the
first four volumes of images in each session to allow for T1 equilibration and then
spatially aligned the data to the first remaining volume. The data were spatially
normalized to the Montreal Neurological Institute (MNI; Montreal, Quebec, Canada)
reference brain and resliced to a 2-mm isotropic voxel size. Data were smoothed
spatially with a Gaussian kernel of 6 mm full-width at half-maximum (FWHM). Voxel
time series were high-pass filtered with a cutoff frequency of 0.002 Hz and low-pass

filtered with a cutoff frequency of 0.25 Hz.

Statistical analyses were performed for each subject. Boxcar functions modeled
execution periods and observation periods. They were convolved with the canonical

hemodynamic response function in SPM2 to yield regressors in a general linear model.
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A parameter was estimated for each regressor by the least-squares method. 7-statistics

were used for comparison between the estimated parameters (execution - observation)

to yield a z-value for each voxel. Although subjects moved in a fixed direction in each

execution period (Fig. 1E), we did not distinguish movement directions in the analysis.
We used a threshold of P <0.001 (uncorrected for multiple comparisons) according to
the previous study (Yoshioka et al., 2008) using hierarchical Bayesian estimation. The
yielded statistical parametric map was used as prior information in the estimation of

MEG source currents.

Cortical current estimation by the hierarchical Bayesian method

A polygon model of the cortical surface was constructed based on MR structural images
using Brain Voyager software (Brain Innovation, Maastricht, the Netherlands). For each
subject, by using the hierarchical Bayesian method, we estimated about 2,500 (Mean:
2,579, SD: 210) single-current dipoles that were equidistantly distributed on and
perpendicular to the cortical surface. The method calculated an inverse filter to estimate
the cortical current for each dipole from MEG sensor signals (see Supplementary
Information 1 for details of estimation). fMRI information was imposed on the prior
information for the estimation through two types of parameters: a variance
magnification parameter (7% ) controlling the relative amplitude of the prior current
variance and a confidence parameter (Yo ) controlling the width of the prior distribution.
The values of My and Yo were set at 100 and 10, respectively, in the current study.
The inverse filter was estimated by using the data of all trials, and the filter was applied

to sensor signals in each trial to calculate cortical currents.

A spatial smoothness constraint on the current distribution, along with the cortical
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surface, was incorporated in the estimation (6 mm full-width at half-maximum, see
Supplementary Information 1). We also incorporated artifact dipoles in the estimation
according to previous studies (Fujiwara et al., 2009; Morishige et al., 2009). Artifact
dipoles were located at the center of the heart, the right shoulder and wrist joints, the

left and right eyeballs, and the carotid arteries.

We assumed that the pattern of cortical activity changes according to various
phases of movements (e.g., planning, execution and feedback). Therefore, we divided
the MEG-signal time series into 39 time windows (100 ms length with 50 ms overlap)
from 1 s before to 1 s after the movement initiation and calculated an inverse filter
separately for each time window. Cortical currents were estimated every 5 ms (200 Hz)
from MEG data using the filter. In the overlap periods, they are averaged between two
time windows. Because the time series from 1.0 s to 0.5 s before the movement
initiation was used to estimate a baseline of the current variance (see Supplementary
Information 1), source currents during this period were not estimated. Therefore, the
time series of the estimated source currents ranged from 0.5 s before to 1.0 s after the

initiation.

Examination of time courses of estimated cortical currents

To validate the cortical currents estimated by the hierarchical Bayesian methods, we
compared time courses of the currents with those of MEG source current estimated by
previous methods (Cheyne et al., 2006; Huang et al., 2004) or electrocorticogram
(ECoG) measurements (Kunieda et al., 2000) related to finger movements. These

studies have examined time courses mainly in the primary motor region (M1), the



-16-

primary somatosensory region (S1), the supplementary motor area (SMA), and the
premotor region (PM) of the hemisphere contralateral to the moving hand; therefore, we
set our regions of interest (ROIs) in these regions using the Automated Anatomical
Labeling (AAL) map (Tzourio-Mazoyer et al., 2002) in the WFU PickAtlas (Maldjian
et al., 2003) (http://fmri.wfubmc.edu/cms/software) as shown in Figure 3B. We
investigated the peak latencies of the time courses averaged within the individual ROIs

and compared them to those reported in the previous studies.

Estimation of reconstruction model of fingertip position from cortical source currents

We conducted a multivariate linear regression in which the time course of the above
estimated source currents were independent variables and the corresponding time
courses of the x (horizontal) and y (vertical) coordinates of the fingertip position were

dependent variables:
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where X(#) and Y(¢) are fingertip positions at time ¢ (from 0.3 s before to 1.0 s after
the movement initiation at regular intervals of 20 ms). J; is the value of current
estimated at the i-th current source on the cortical surface. Npurce is the number of
current sources used for reconstruction. We used the currents of the 1,500 sources with
the highest current amplitudes among the 2,500 sources mentioned above. The time

series of the currents ranging from 0.5 s before to 1.0 s after the movement initiation
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were divided into 20-ms time windows and averaged within each window. They were
sampled at 11 time points within 200 ms preceding the currently predicted fingertip
position at ¢ (see Fig. 3C). The estimation was done separately for the x and y positions.
Each of the regression models (Egs. 1 and 2) has numerous weights (1,500 current
sources x 11 time points) to be estimated, and thus was expected to encounter an
over-fitting problem. We examined the effectiveness of the following three methods in

controlling this problem.

A regularized least-squares regression is a technique often used to control the
over-fitting problem. We added a regularization (penalty) term to an error function in
order to prevent the weights from reaching large values. This is done to find a set of

weights that minimizes an evaluation function for the x position, for example:

N source 10
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The first term is the error function, in which x,(f) and X, (¢) are the actual and the
reconstructed positions, respectively, at a sampling time ¢ in the u-th trial. U is the
number of trials in training datasets (see below). T is the number of sampling points in
each trial. The coefficient A governs the relative importance of the second
regularization term compared with the error term. We estimated reconstruction models

by varying A at five values (1, 10, 100, 1000 and 10000).

The second method is a sparse regression that has been proposed and adopted in
previous studies (Nambu et al., 2009; Sato, 2001; Sato et al., 2004; Ting et al., 2005;
Ting et al., 2008). This method estimates the weight and the automatic relevance
determination (ARD) parameters, which represent how the weight contributes to the

reconstruction. Based on values of the ARD parameters, a weight value with a small
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degree of contribution is set to nearly zero, and thus ineffective parameters are pruned
(see Supplementary Information 2). In our post-hoc analysis, we investigated the
number of ineffective sources that were pruned by the sparse regression: We calculated
the summation of weight values over time points for each source and counted the
number of sources whose summation value was lower than 0.1% of the maximum value.
As a result, the number of ineffective sources was 1292.34 (SD: 5.25) averaged across
datasets and subjects, suggesting that a small set of weights ((1,500 — 1,292) /1,500 =

13.9%) plays a crucial role in the reconstruction.

The above two methods automatically decrease weight values using the present
data and reduce input dimensions. However, prior knowledge can often be used to select
an important set of dimensions in practical problems. Because current sources were
estimated on the cortical surface in our study, we could anatomically select sources in
regions that have been known to contribute to motor control according to knowledge in
neuroscience. That is, we determined an ROI consisting of SMA, PM, M1, S1 and
parietal regions including Brodmann areas 5, 7, 39 and 40 based on the WFU PickAtlas
and then estimated reconstruction models (Eqs. 1 and 2) using only currents from
sources in the ROL The number of sources (N source ) in the ROI was 287.4 (SD: 35.0)

averaged across subjects.

Evaluation of generalization ability of estimated models

We estimated reconstruction models combining (or not combining) the anatomical
selection of input currents with the regularized least-squares regression or the sparse
regression and evaluated their generalization ability to test datasets. We randomly

assigned sets of source currents and fingertip position data obtained in individual trials
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to training and test datasets. The ratio of the number of trials in the training dataset to
that in the test dataset was 5:95, 20:80 or 70:30. That is, the percentage of the number of
trials in the training dataset to the total data was 5%, 20% or 70%. We made 50 pairs of
test and training datasets for each ratio and carried out the following procedure for each
pair. First, we estimated weights and constants by applying the above regression
analysis to the training dataset. Then we reconstructed the time course of a fingertip
position from source currents in the test dataset and calculated a positional error (E)

between the reconstructed and actual positions in the u-th trial according to

4 \/ (x, )= 2, 0) + (3. - 5,@)
E, = Z -

= )
Here, (xu (t),3. (2 )) is the actual position measured by the motion-tracking system at a
sampling time ¢, and (’Acu (t).3. (¢ )) is the predicted position of the fingertip by the

model. We compared errors averaged across trials and datasets between different

reconstruction models to evaluate their generalization abilities.

Estimation of reconstruction model of fingertip position from MEG sensor signals

We also made a model that reconstructs the position directly from MEG sensor signals.
After removing cardiac artifacts by principal component analysis, we conducted a
sparse linear regression analysis in the same fashion as described above (Egs. 1 and 2),
except that Ny corresponded to the number of sensors. We compared their
performance with that of reconstruction models using cortical source currents in terms
of a positional error (Eq. 4) and a coefficient of determination. The coefficient was

2 2
separately calculated for the horizontal (R,h ) and vertical (R,'V) directions:
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Here, ()?i ’)_]i) is mean position during the i-th trial. However, when the subjects moved
their fingertips toward the top or the bottom target (Fig. 1A), there was little positional
change in the horizontal direction. Therefore, the denominator in the right side of
Equation 5 becomes nearly zero, and thus we cannot calculate a reliable coefficient
value. Consequently, we excluded from this analysis the coefficients in the horizontal
direction for a trial in which the subject aimed at the top or the bottom target. Similarly,
we excluded the coefficients in the vertical direction (Eq. 6) for a trial in which the

subject aimed at the rightmost or the leftmost target.

Anatomical localization of source currents contributing to reconstruction

We examined which anatomical region contributed to the reconstruction of the fingertip
position by investigating the weight values in the reconstruction model. Weight values
were averaged across time points and datasets and projected on an inflated model of the
cortical surface (Fig. 7A). Inward currents on the cortical surface corresponded to
positive values of the estimated source currents, and signed values of weights for

current sources were represented by a pseudo-color.

For quantitative examination, we calculated the summation of absolute weight
values separately for the following anatomical regions: 1) the frontal region including
areas anterior to the precentral sulcus (not including SMA), 2) the central region

including areas posterior to the precentral sulcus and anterior to the postcentral sulcus
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and SMA, 3) the parietal region including Brodmann areas 5, 7, 39 and 40, 4) the
occipital region (areas 17, 18 and 19), and 5) the temporal region including the polar
gyrus, the superior temporal gyrus, the middle temporal gyrus and the inferior temporal

gyrus (see bottom panels of Fig. 7C).

We also investigated the weight values estimated in a regression analysis of the
fingertip position and MEG sensor signal. We averaged the values across time points
and datasets. Using a pseudo-color, we represented a topographic pattern of the

averaged weight values in the sensor space (Fig. 7B).

Investigation of temporal change of weight values in reconstruction model

We investigated temporal change of weight values for individual current sources in
representative ROIs (SMA, PM, M1, S1 and parietal regions; see above) as a function
of advanced time from the time point when a fingertip position is reconstructed. Since
we used source currents sampled at 11 time points from -200 to 0 ms for reconstruction
(Fig. 3C), there are 11 weights in the temporal dimension for each current source. Time
courses of weight values were averaged across sources within an ROI, and then we

fitted an exponential curve to the time course:

w=a+b-exp(t/T). (7)
Here, w and ¢ correspond to weight value and time, respectively. Parameters a, b and
7 were estimated by a least-squares method: a corresponds to the asymptotic level
(weight value at infinitely advanced time), b corresponds to an increase in value at 0 ms
from the asymptotic level, T is known as a time constant, and -7 corresponds to time
when an increase in the weight value reaches 37% of b-value. Thus, the larger 7 -value

indicates an earlier increase in the weight value as illustrated by the bottom right panel
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in Figure 8A. We examined 7 -values to investigate the temporal difference in each

ROTI’s contribution to reconstruction.

Examination of contribution of movement-evoked magnetic fields to reconstruction

We examined whether signals contributing to the reconstruction of fingertip position
originated from a movement-evoked magnetic field (MEF). We averaged the MEG
signal separately for each sensor at 50 ms after the movement initiation across trials and
subjects, and then we created a template of the MEF’s topographic pattern by rendering
the averaged signal values in sensor space (color-coded contour plot in Fig. 9A). Based
on this template, we divided MEG sensors into two groups: central group, including
sensors near the MEF (dark-gray region in Fig. 9A), and peripheral group, including the
other sensors (light-gray region). We created data by shuffling the order of trials in
MEG signals of test datasets in the central group (central-shuffling condition) or in the
peripheral group (peripheral-shuffling condition). Because we did not shuffle the order
of trials in the behavioral data, this shuffling removes any correspondence between
MEG signals and fingertip positions. We estimated source currents and reconstructed
the fingertip positions from the currents of test datasets. The inverse-filter and
regression weights were the same as those in the previous analyses, i.e., they were
estimated by using the intact training datasets. The above procedure was done for the 50
test datasets. We compared positional error averaged across trials, datasets and subjects
between the conditions. To investigate “baseline” positional error when there was no
correspondence between the MEG signal in any sensor and the finger position, we also
created data by shuffling the order of trials in signals of test datasets in all sensors

(all-shuffling condition) and then conducted the same analysis.
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Our hypothesis is as follows. If signals from the MEF contribute to the
reconstruction, the accuracy would degrade in the central-shuffling condition. However,
it would not significantly degrade in the peripheral-shuffling condition because the
reconstruction does not depend on information obtained by the peripheral sensors. By
contrast, if signals from peripheral sensors rather than the central sensors contribute to
the reconstruction, we would observe the opposite results. The degree of degradation
caused by the partial (central or peripheral) shuffling can be investigated by comparing

the observed error to the baseline error in the all-shuffling condition.

Results

MEG sensor signals and fMRI activity

Figure 2A shows the vertical and horizontal position of the fingertip when a subject
moved the fingertip toward the top target and back to the initial position. Figure 2B
shows corresponding MEG sensor signals as a function of time. They were aligned to
the movement initiation (0 ms) and averaged across trials and sessions. We confirmed a
highly dipolar pattern of MEF over the contralateral hemisphere to the moving hand at
50 ms after the initiation (a red rectangle in Fig. 2C) in topographic field patterns

sampled at intervals of 50 ms.

We subtracted fMRI activity when subjects observed the screen without finger
movements (observation periods) from activity when subjects moved their fingers
(execution periods). Figure 2D shows the subtracted fMRI activity in the above subject

at the same threshold as that applied to prior information for MEG source localization
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(P <0.001 uncorrected). The activations were mainly observed in sensory-motor
regions, and the highest three activation peaks were observed in the left precentral
lobule. Their peak coordinates (x, y, z) in the MNI reference brain (see Materials and

methods) were (-20, -12, 78), (-36, -24, 72) and (-40, -10, 68), respectively.

Cortical current estimated by the hierarchical Bayesian method

For each subject, by using the hierarchical Bayesian method, we estimated about 2,500
single-current dipoles that were equidistantly distributed on and perpendicular to the
cortical surface. Figure 3A shows estimated source currents of the above subject in units
of current density on the cortical surface (p)Am/mm?). Time courses of current density at
each current source (dipole) were aligned to the movement initiation and averaged
across trials. Absolute values of the time course were then averaged across sources in

each ROI in the left hemisphere (Fig. 3B).

Current density in the SMA, PM and M1 gradually increased toward the initiation,
which is consistent with knowledge that those regions are related to planning or
execution of movements. The marked increase of current density in the S1 after the
initiation is consistent with knowledge that the region is related to somatosensory
information processing. Peak latencies observed in these time courses are consistent
with findings in the previous studies. The latencies in PM and M1 around 50 ms before
the movement initiation were consistent with those observed in the previous study of
MEG source current (Cheyne et al., 2006; Huang et al., 2004). Peak latencies in M1 and

S1 around 100 - 200 ms after the initiation were also found in studies using MEG
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source currents (Cheyne et al., 2006) and ECoG (Kunieda et al., 2000). Amplitudes of
the estimated current density were comparable to those in previous studies investigating
MEG source currents in sensorimotor (Huang et al., 2004) and visual (Yoshioka et al.,

2008) regions.

Performance of reconstruction models of fingertip position from cortical source

currents

We estimated reconstruction models based on a multivariate liner regression while
controlling the over-fitting problem by using different methods, and then we compared
the positional errors in test datasets between the methods (see Materials and methods).
Figure 4 shows positional errors averaged across trials, datasets and subjects for the
regularized least-squares regression method and the sparse regression method, with or
without anatomical constraint. These results indicate that performance improves as the
number of training datasets increases, regardless of the regression type, since the error
level decreased as the ratio of the number of trials in the training dataset to that in the
total data increased from 5% (Fig. 4A) and 20% (Fig. 4B) to 70% (Fig. 4C). Regarding
the regularized least-squares regression, its performance improved by increasing the
value of a regularization parameter (A : relative importance of penalty for large weight
values, see Eq. 3) from 1 to 10" when the size of the training dataset is small (Fig. 4A).
Anatomical selection of source currents (an anatomical constraint, see Materials and
methods) is also effective (solid line) for reconstruction accuracy when the size of the
training dataset is small. That is, for 5% training data, the anatomical constraint reduced
the error not only in the regularized least-squares regression but also slightly in the
sparse regression (22.68 + 1.21 mm with and 22.70 + 1.50 mm without the constraint,

black arrow). These results indicate the importance of a priori anatomical knowledge in
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selecting lattice points when the size of the training dataset is small. Independently of
the size of the training dataset, the sparse regression was always more accurate than the
regularized least-squares regression (Figs. 4A - 4C). The best performance was obtained
by the sparse regression without the anatomical constraint when the ratio of training
datasets was 70% (white arrow). We then closely examined the performance of the

reconstruction model in this most accurate case, as described below.

Reconstruction model estimated by the sparse regression method

Figure 5 shows examples of the fingertip trajectory reconstructed by the model from
test data (red line) in comparison with the actual trajectory recorded by the motion
tracking system (blue line) when a subject moved the fingertip toward the eight
directions indicated by black arrows (see also Supplementary Video). Figure 6A shows
positional error (Eq. 4) averaged across trials, datasets and subjects. The error was 12.7
mm (SD: 1.66) for training dataset and 14.6 mm (SD: 2.55) (same as that indicated by
white arrows in Fig. 4C) for test dataset when the movement’s path length was longer

than 200 mm.

For comparison, we also made a model that reconstructs the position directly from
MEG sensor signals (see Materials and methods). Open bars in Figure 6A indicate
errors when the position was reconstructed from sensor signals. These errors were
significantly higher than those when positions were reconstructed from cortical currents
(filled bars) for both training (cyan: F(1,4) =72.1, P <0.002) and test (red: F(1,4) =
45.0, P < 0.005) datasets according to a two-way (datasets x type of signal used for
reconstruction: cortical source current or MEG sensor signal) repeated-measures

ANOVA.
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Figure 6B shows coefficients of determination averaged across trials, datasets and
subjects for the horizontal (upper panel) and vertical (bottom panel) directions. The
coefficients for the horizontal direction were significantly higher when the position was
reconstructed from source currents (filled bars) than when it was reconstructed from
sensor signals (open bars) for both training (cyan: F(1,4) = 150.70, P < 0.0005) and test
datasets (red: F(1,4) =73.1, P <0.001). A significant difference was also identified in
the coefficients for the vertical direction (£(1,4) = 121.14, P <0.0005 for training
datasets; F(1,4) = 74.5, P <0.001 for test datasets) between the source currents and the
sensor signals. The coefficients were significantly higher in the vertical direction than
the horizontal direction for both training datasets (F(1,4) =9.72, P <0.05) and test
datasets (F(1,4) = 9.34, P < 0.05) when the position was reconstructed from source
currents. A higher coefficient for the vertical direction was also observed when the
position was reconstructed from sensor signals (F#(1,4) = 14.5, P < 0.03 for training

datasets; F(1,4) = 15.1, P <0.03 for test datasets).

Anatomical localization of source currents contributing to reconstruction

We investigated weight values for current sources in the reconstruction model for the
vertical component (Eq. 2), in which the coefficient of determination was higher than
the other component (Fig. 6B). Figure 7A shows values averaged across time points and
datasets and projected on an inflated model of the cortical surface. Highly positive and
negative weights were concentrated in the pre- and postcentral regions and the parietal
regions. Among the parietal regions, high weight values were found in the superior
parietal lobule (SPL). Figure 7C shows absolute weight values summed within each
anatomical region and averaged across subjects. The highest values were found in the

parietal and central regions of the contralateral hemisphere. Figure 7B shows weight
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values for MEG sensors when the position was reconstructed from sensor signals. High
and low values were scattered around all sensors, and it was difficult to determine

which region is important for the reconstruction.

Temporal change of weight values in reconstruction model

Figure 8A shows weight values for individual current sources in representative ROIs as
a function of advanced time from the time point when a fingertip position is
reconstructed (0 ms). Thin black lines indicate time courses of weight values averaged
across datasets and sources within an ROI. Each line corresponds to a subject. We fitted
an exponential curve (Eq. 7 and bottom right panel in Fig. 8A) to the time course before
averaging across datasets and estimated parameters (a, b and 7)) using a least-squares
method (see Materials and methods). Thick red curves show exponential functions
yielded by parameter values averaged across datasets and subjects (note that the red
curves were not directly fitted to the thin black lines). Weight values gradually
increased at an early stage in regions anterior to the central sulcus (SMA, PM and M1;
upper panels in Fig. 8A), while values abruptly increased at a late stage near 0 ms in
regions posterior to the sulcus (S1 and parietal regions; lower panels). Figure 8B shows
time constants ( 7 -values) averaged across datasets and subjects, indicating that the

T -values in the anterior regions (black bars) were larger than those in the posterior
regions (white bars). This quantitatively confirms the above observation that weight

values increased at an early stage in the anterior regions.

Examination of contribution of MEF to reconstruction

We examined whether the signals contributing to the reconstruction originated from the
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MEF by shuffling the order of trials in MEG signals from sensors in the central region,
including the MEF, or in the peripheral region. For comparison, we also shuffled the
order of trials in signals of all sensors (see Materials and methods, and Fig. 9A). We
reconstructed the positions from the shuffled and intact test data and calculated
positional errors averaged across trials, datasets and subjects (Fig. 9B). We applied
two-way repeated-measures ANOVA to the error in individual trials (sets x conditions:
all-, central- and peripheral-shuffling conditions and intact condition). Consequently,
the effect of the condition was significant (F(3, 12) =41.9, P <0.0001). Tukey’s HSD
post hoc test identified a significant difference in any comparison between the
conditions, except the comparison between the central- and all-shuffling conditions (P <
0.05 level). The error in the central-shuffling condition (black bar) was significantly
higher than that the peripheral-shuffling condition (gray bar), suggesting that more
crucial information for the reconstruction came from the central region including the
MEF than from the peripheral region. Moreover, the error in the central-shuftling
condition was not significantly different from that in the all-shuffling condition (left
white bar). This indicates the importance of information originating from sensors in the
central region: If the information were unavailable (central-shuffling condition), errors
of reconstruction models would not be different from the “baseline” error when no

useful information can be obtained from any sensor (all-shuffling condition).

Discussion

We reconstructed the trajectory of the fingertip from the time courses of source currents
estimated on the cortical surfaces. We found that a reconstruction model estimated by a

sparse regression has better generalization ability than models estimated by a
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regularized least-squares regression, and thus we closely examined the performance of
the former. Consequently, the error between the predicted and actual positions for the
test dataset was 14.6 mm averaged across subjects, which was 7% of the path length of
the required movement (200 mm), and the averaged coefficient of determination was
0.68. These performances were significantly superior to that of a comparable model
using MEG sensor signals. We believe the better performance was due to the selective
use of information directly related to sensory processing and motor control for
reconstruction based on the following reasons. First, important (highly positive and
negative) weights were mainly found in the pre- and post-central regions and the
parietal regions in the contra-lateral hemisphere to the moving hand when the positions
were reconstructed from cortical currents (Figs. 7A and 7C). Significant weight values
were found in not only the primary sensorimotor regions but also in the parietal region
(SPL). Many studies have indicated a contribution of the SPL to the planning of action
(Culham et al., 2006; Field et al., 2007; Medendorp et al., 2005), suggesting that
reconstruction was partly based on activity related to the planning of movement. By
contrast, when they were predicted from MEG sensor signals, high and low values were
scattered over many sensors (Fig. 7B), and thus it was difficult to infer which sensors
were important for the reconstruction. Second, we shuffled the order of trials in MEG
signals from sensors in the central region, including the MEF, and found a significant
decrease in reconstruction performance (Fig. 9), suggesting that reconstruction depends

on signals originating from the MEF.

Georgopoulos and colleagues (Georgopoulos et al., 2005) reconstructed a cursor
position from a linear weighted summation of MEG sensor signals when subjects

continuously moved a joystick while drawing a pentagon at a constant velocity. By
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contrast, our study reconstructed a fingertip position from cortical currents. While
fingertip velocity ranged from 0 up to 700 mm/s, we succeeded in reconstructing its
position at various velocities using a single set of weights. Bradberry and colleagues
(Bradberry et al., 2009) reconstructed hand velocity from MEG sensor signals during
center-out reaching tasks, and the mean correlation coefficients (CCs) between
reconstructed and actual velocity were 0.48 and 0.32 for horizontal and vertical
components, respectively. For comparison, CCs calculated from our results of
reconstructing the position using source currents were 0.74 and 0.81, and those from

reconstructing the velocity were 0.49 and 0.56.

The advantage of the hierarchical Bayesian method is to estimate a large number
of current sources densely distributed on the cortical surface. The effectiveness of this
method has already been confirmed by the successful reconstruction of retinotopic
activities in primary visual areas (Yoshioka et al., 2008). We used this method for the
first time to estimate cortical currents evoked by a sensorimotor task and confirmed the
validity of the estimation by comparing time courses of the estimated currents in
sensorimotor regions to time courses of activity reported by previous studies that used
other methods for MEG source localization (Cheyne et al., 2006; Huang et al., 2004)

and ECoG (Kunieda et al., 2000).

Our proposed method for reconstruction of movements from cortical currents
after solving the inverse problem can contribute to BMI using non-invasive techniques
with high temporal resolution as follows. First, the accuracy of reconstruction increases
in comparison to reconstruction from sensor signals as the current study demonstrated.
A study of cursor control using a combination of amplitudes of EEG rhythms also

suggested that the reliability of control increases when the amplitude is calculated from
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cortical currents in comparison to EEG sensor signals (Cincotti et al., 2008). Second,
simultaneous estimation of cortical and artifact currents can remove artifacts originating
from outside of the brain, such as eye and cardiac movements and muscle activity
(Fujiwara et al., 2009; Morishige et al., 2009). Third, knowledge in neuroscience about
brain regions and their functions could be applied to the selection of feature signals. Our
results indicate that anatomical selection of lattice points for cortical currents based on
knowledge in neuroscience is an effective way to improve the ability of reconstruction
when the size of the training dataset is small (Fig. 4A). The regularized least-squares
regression with anatomical constraint could maintain a relatively constant performance
(solid line in Fig. 4A) regardless of the value of the regularization parameter, whereas
the reconstruction error of the regression without the constraint increased as the value
became small (broken line). This result systematically shows that the effect of
anatomical selection is more prominent if the selected machine-learning algorithm is
less efficient in the selection of feature signals, which corresponds to smaller values of
the regularization parameter. When considering practical clinical applications of BMIs,
it might be difficult to obtain many training data from patients or to use a sophisticated
learning algorithm such as a sparse regression for selecting feature signals due to the
insufficient time and power for computation. Results of our analysis suggest that

anatomical selection would be effective in such cases.

Several possibilities remain regarding the exact neural information that was
decoded to reconstruct movement trajectories in our experiment. Because we fixed
finger joints (Fig. 1C), the fingertip positions projected to the x-y plane (the extrinsic
coordinates) uniquely correspond to the wrist joint angles (the intrinsic coordinates) in a

one-to-one manner. Thus, these two representations cannot be behaviorally dissociated.
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We speculate that information in both representations contributed to the reconstruction
because the weights in sparse linear regression were widely distributed across the
primary motor and parietal regions (Figs. 7A and 7C). Reconstruction accuracy was
higher in the vertical direction than in the horizontal direction (Fig. 6B), which is
consistent with a previous study reconstructing three-dimensional arm movements of
monkeys from ECoG activity (Chao et al., 2010). A possible reason is that the activity
level of muscles markedly changes during vertical movement due to gravity. If so,
neuronal activity directly related to the control of muscle tensions also contributes to the
reconstruction. Our analysis of behavioral data revealed a significant effect of
movement direction on movement time (see Materials and methods). However,
movement times for only one or two targets are significantly different from that for each
target. Thus, information related to movement time has coarse spatial information,
which is unlikely to be crucial for our reconstruction of movements with positional

error of 14.6 mm.

Although our current study reconstructs movement in offline processing,
online/real-time reconstruction is necessary for application to BMIs and brain-computer
interfaces (BCIs). Our method has the following potential advantages for online
processing. First, we do not need to solve the inverse problem for every trial but can
apply an inverse filter already estimated from previous datasets to sensor signals in each
trial. Since the filter is a linear transformation, the time needed for calculation of the
cortical currents is almost negligible. Second, reconstruction models of finger positions
from cortical currents are also simple linear transformations (Egs. 1 and 2). However,
calculation of the inverse filter and reconstruction models from the training data

requires almost a full day. Consequently, for online reconstruction, the filter and models
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have to be generalized to test data on a different day. Because it is impossible to place
the subjects’ heads in the MEG sc