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Abstract 

Humans can guide their actions toward the realization of their intentions. Flexible, rapid 

and precise realization of intentions and goals relies on the brain learning to control its 

actions on external objects and to predict the consequences of this control. Neural 

mechanisms that mimic the input-output properties of our own body and other objects can 

be used to support prediction and control, and such mechanisms are called internal models. 

We first summarize functional neuroimaging, behavioral and computational studies of the 

brain mechanisms related to acquisition, modular organization, and the predictive switching 

of internal models mainly for tool use. These mechanisms support predictive control and 

flexible switching of intentional actions. We then review recent studies demonstrating that 

internal models are crucial for the execution of not only immediate actions but also 

higher-order cognitive functions, including optimization of behaviors toward long-term 

goals, social interactions based on prediction of others’ actions and mental states, and 

language processing. These studies suggest that a concept of internal models can 

consistently explain the neural mechanisms and computational principles needed for 

fundamental sensorimotor functions as well as higher-order cognitive functions.  
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Introduction 

Two opposing approaches have been proposed to understanding higher-order cognitive 

functions, such as tool use, social interaction, and language, that are generally specific to 

humans. One approach hypothesizes that these functions are unique faculties of humans, 

which should be investigated independently of studies on the cognitive functions of related 

faculties in other species, such as non-human primates. This approach is often taken in 

studies on language (e.g. Hauser, Chomsky, & Fitch, 2002). In contrast, the other approach 

hypothesizes continuity between the cognitive functions of humans and those of other 

species from an evolutionary point of view, where the "human" faculties are based on 

computational principles in common with those of other species. For example, humans and 

non-human primates share common computational principles in fundamental sensorimotor 

control (e.g. reaching and grasping). The latter approach attempts to explore how these 

principles can also form the basis for higher-order cognitive functions.  

The current special issue of Psychological Research focuses on goal-directedness, 

mirror systems and internal models, each of which are closely related to common 

computational principles between basic sensorimotor functions and higher-order cognitive 

functions, as well as between humans and non-human primates. In particular, mirror 

systems and internal models have been considered key concepts for elucidating enigmas in 

neural mechanisms that support the human abilities of social interactions and long-term 

planning of behaviors based on predictions. This article reviews our studies on internal 

models while explaining the relationships between internal models and goal-directedness, 

or mirror systems, and discusses how our studies on internal models could be extended to 

understanding higher-order cognitive functions.  



 -4- 

Internal models are promising concepts for explaining neural mechanisms and 

computational principles supporting the flexible abilities of prediction and learning in 

cognitive functions. Abilities to learn relationships between actions and resultant changes in 

states of external objects are particularly important for planning of goal-directed behaviors. 

Such abilities are largely dependent on neural mechanisms that can model or simulate the 

relationships between an action and its consequences before the action’s execution. For 

example, skilled manipulation of a computer mouse requires the ability to predict how the 

mouse should be moved in order to move a cursor to a particular position on the screen 

(predictive control: Fig. 1A) and how the cursor will move on the screen if the mouse is 

moved in a particular direction (prediction of feedback: Fig. 1B). Neural mechanisms that 

mimic the input-output properties of controlled objects can support the predictive control 

and prediction of sensorimotor feedback, and these mechanisms are called internal models 

(Kawato, 1999; Kawato, Furukawa, & Suzuki, 1987; Wolpert, Ghahramani, & Jordan, 

1995). Although the concept of internal models was developed in motor neuroscience, 

many studies have suggested that it can be extended to explain the fundamental 

computational principles of higher-order cognitive functions, such as goal-directed 

behaviors, mirror systems, social interactions, communication, and languages.  

In the first part of this article, we review studies on internal models in the context of 

sensorimotor learning and use of tools. These studies revealed brain mechanisms related to 

acquisition, modular organization, and switching of internal models. Next, we summarize 

studies suggesting that internal models contribute to the cognitive functions discussed 

above. We believe that it is important to understand how the acquisition, modularity and 

switching of internal models contribute to the cognitive functions and that such an 

understanding can lead to the construction of a computational framework, which can 
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consistently explain the neural basis for fundamental as well as higher-order cognitive 

functions such as sensorimotor control, tool use, social interaction, and language.  

 

Cerebellar activity related to an internal model 

To investigate the acquisition process of internal models in the human brain, we 

measured brain activity using functional magnetic resonance imaging (fMRI) when human 

subjects learned to use a novel tool (Imamizu, et al., 2000). Based on previous 

neurophysiological and computational studies (e.g. Ito, 1984; Kawato, et al., 1987; 

Kitazawa, Kimura, & Yin, 1998; Shidara, Kawano, Gomi, & Kawato, 1993), we focused on 

the cerebellum and conducted detailed analysis of changes in cerebellar activity during 

learning. Subjects manipulated a computer mouse in a magnetic resonance (MR) scanner so 

that the corresponding cursor followed a randomly moving target on a screen (tracking 

task). In test periods, the cursor appeared in a position rotated 120˚ around the center of the 

screen to necessitate subject learning (novel mouse; Fig. 2), while in baseline periods it was 

not rotated (normal mouse). Each subject’s performance was measured by tracking errors, 

i.e., the distance between the cursor and the target.  

The errors in the test periods significantly decreased as the number of sessions 

increased (Fig. 3A), suggesting that learning progressed. When we investigated cerebellar 

activity that significantly and positively correlated with tracking error, we identified a 

strong correlation (r
2
 = 0.82) between activity and error in the large part of the lateral 

cerebellum (white regions in Fig. 3C), suggesting that most of the activity in the cerebellum 

reflects the error. However, in a further experiment, we found that activity in some parts of 
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the cerebellum was not explained by the error. In this experiment, we increased target 

velocity in baseline periods so that the errors there were equalized to the error in the test 

period (Fig. 3B). Then, we subtracted the activity in the baseline period from that in the test 

period. We could still find significant activity in the hatched regions in Fig. 3C, suggesting 

that the activity in theses regions cannot be explained solely by error.  

We investigated how activity in the white regions and that in the hatched regions in Fig. 

3C changed during training sessions. Activity in the white regions drastically decreased, as 

shown in the middle panel of Fig. 3D, while activity in the hatched regions did not 

markedly decrease as shown in the left panel of Fig. 3D. This suggests that activity in the 

hatched region includes activity that cannot be explained by the error. By subtracting the 

middle curve from the left curve, we found that the activity unrelated to the error increased 

at the beginning and remained high during the training sessions. This activity was thought 

to reflect the acquired internal model representing the input-output property of the novel 

mouse.  

Although change in activity with learning was not investigated, an fMRI study 

indicated that the lateral cerebellum contributes to an internal model of a complex 

dynamics (Milner, Franklin, Imamizu, & Kawato, 2007). Subjects manipulated an object 

with a complex dynamics (balancing an inverted pendulum created by attaching weights to 

a flexible ruler) in a complex condition, and they manipulated an object with a simple 

dynamics (squeezing a soft foam ball) in a simple condition. Muscle activation was 

precisely matched between these conditions. Consequently, a significant difference in 

activity between the complex and simple conditions was found only in the lateral 
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cerebellum among regions where a significant increase in activity was found by comparing 

the complex (or the simple) condition with a rest condition. 

In the above studies, we focused on changes in cerebellar activity based on previous 

neurophysiological and computational studies. Many studies have reported changes in 

whole-brain activity with sensorimotor learning when a force field alters limb dynamics 

(Shadmehr & Holcomb, 1997) or when a screen controlled by a computer program 

kinematically alters visual feedback of hand position (Krakauer, et al., 2004) or joystick 

position (Graydon, Friston, Thomas, Brooks, & Menon, 2005). These studies identified 

different cerebral regions related to learning as a consequence of the differences in 

experimental methods (e.g. adaptation to a force field or altered visual feedback; different 

effectors such as the arm, a computer mouse and a joystick; tracking a continuously moving 

target or aiming at a static target). However, their results are consistent with ours in that 

significant activity is found in the lateral cerebellum after learning. These results suggest 

that the cerebellum is one of the regions where internal models representing input-output 

properties of controlled objects are most likely acquired.  

 

Forward and inverse internal models 

It is thought that the central nervous system (CNS) uses two forms of internal models. 

Inverse models transform intended actions or goals into the motor commands to reach those 

goals (Kawato, et al., 1987; Fig. 1A). Forward models transform efference copies of motor 

command into the resultant trajectory or sensorimotor feedback (Kawato, et al., 1987; Miall, 

Weir, Wolpert, & Stein, 1993; Wolpert, et al., 1995; Fig. 1B).  The above imaging studies 
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investigating neural correlates of internal models do not take these two forms into account. 

Because both forward and inverse models are thought to be necessary for rapid and smooth 

movements, the above brain activity probably reflected activities of both models. 

Neurophysiological studies have shown data indicating that Purkinje cells in the cerebellar 

cortex contribute to inverse models of motor systems (Gomi, et al., 1998; Shidara, et al., 

1993). Many functional neuroimaging studies have shown data circumstantially indicating 

that the cerebellum contributes to forward models as described below.  

Miall and colleagues investigated brain activity related to eye-hand coodrdination 

using a tracking task (Miall, Reckess, & Imamizu, 2001). Subjects followed a moving 

target with their eyes while simultaneously moving a joystick to control the cursor. The 

temporal offset between targets for eye and hand motions caused parametric variation of 

the degree of eye-hand coordination. The behavioral data indicated that manual tracking 

performance was optimal when the target for eye motion anticipated the target for hand 

motion by 38 ms. Synchronous movements of two effectors with such a small offset cannot 

be achieved simply by reaction to reafferents or visual input. This suggests that a forward 

model predicts the movement outcome based on a motor command and that the predicted 

outcome is sent to the oculomotor system for programming or modifying the manual 

movements. The fMRI data found a parametric increase in activity of the lateral cerebellum 

and the oculomotor vermis as eye-hand coordination increased, suggesting a contribution of 

the cerebellum to prediction of the movement outcome.  

Behavioral studies on grip force–load force coupling have found convincing evidence 

that the CNS makes use of forward models in sensory motor control. When an object is 

held in a precision grip (e.g. a grasp between the tips of the thumb and forefinger) and 
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moved by voluntary movements (e.g. arm movements), the grip force perpendicular to the 

contact surface changes in phase with the load force induced by the movements (Johansson 

& Westling, 1988). The coupling between the two forces prevents the object from slipping 

while using minimal grip force. This grip force modulation is anticipatory in the sense that 

changes in the grip force occur at the same time as, or even prior to, changes in the load 

force. Based on theoretical analysis of behavioral data (Flanagan & Wing, 1997) suggesting 

that output signals from a forward model of arm movements are used for control of grip 

force, an fMRI experiment examined brain activity related to coordination of grip force and 

load force (Kawato, et al., 2003). The results indicated that parts of the anterior lobule in 

the cerebellum contribute to the coordination.  

Other studies have indicated that the cerebellar forward models contribute to 

prediction of sensorimotor feedback in various situations, such as cancellation of tactile 

sensation during self-tickling (Blakemore, Frith, & Wolpert, 2001; Blakemore, Wolpert, & 

Frith, 1998) and state-dependent control of arm and finger movements (Diedrichsen, 

Criscimagna-Hemminger, & Shadmehr, 2007). It has been suggested that the cerebellum 

contributes to a prediction of change in the state of external objects that is not caused by its 

own motor commands (O'Reilly, Mesulam, & Nobre, 2008). Regarding neurophysiological 

studies, Miall and colleagues proposed that simple spike activity of Purkinje cells 

represents prediction of sensory feedback and is corrected by complex spike activity 

representing a discrepancy between the prediction and actual feedback (Miall, et al., 1993). 

They found, as supporting evidence, that the interval between an increase in simple spike 

activity and the resulting complex spike activity is about 150 ms, which is equivalent to 

visuomotor feedback delay and necessary for synchronizing the prediction and feedback 

(Miall, Keating, Malkmus, & Thach, 1998). Recently, it has been suggested that simple 
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spike discharge of Purkinje cells has several characteristics of a forward internal model of 

the arm (Ebner & Pasalar, 2008).  

These functional imaging and neurophysiological studies suggest that the cerebellum 

is related to both forward and inverse internal models, but it is unknown how these two 

forms of internal models are organized in the cerebellum.  

 

Modular organization of internal models 

Humans interact with myriad objects and environments that often change in a discrete 

manner. If the CNS maintains only a small number of global internal models, relearning is 

needed whenever manipulated objects and environments change. However, if the CNS 

maintains a large number of internal models or modules for different objects and 

environments, less relearning is needed and thus learning interference is avoided. Moreover, 

initial learning of objects and environments may be facilitated by a combination of stored 

modules.  

Many lines of behavioral studies have shown the multiplicity and modularity of 

internal models. For example, it has been demonstrated that humans can independently 

learn dynamic properties of their own arms altered by weights and kinematic properties 

altered by the rotation of visual feedback of their hand position (Krakauer, Ghilardi, & 

Ghez, 1999). This result suggests that some types of internal models are independently 

acquired and do not interfere with each other. Ghahramani and colleagues indicated that the 

CNS can appropriately combine output signals from stored internal models for different 
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sensorimotor mappings (Ghahramani & Wolpert, 1997).  Flanagan and colleagues made 

subjects learn a kinematic transformation (visuomotor rotation), a dynamic transformation 

(force field), and a combination of these transformations (Flanagan, et al., 1999). When the 

subjects learned the combined transformation, reaching errors were smaller if the subject 

first learned the separate kinematic and dynamic transformations. These results suggest the 

ability of subjects to combine internal models as needed, depending on the situation.  

In functional imaging studies, we investigated cerebellar activity after subjects 

learned to use a velocity-control mouse in which cursor velocity was proportional to the 

mouse position. Here, we examined the difference in activated regions between when 

subjects used the velocity-control mouse and when they used the rotated mouse (see above). 

By subtraction of activity when subjects manipulated the normal mouse (baseline 

condition) from activity when subjects used the rotated or velocity-control mouse (test 

conditions), we derived a map specific to each type of mouse. Figure 4 shows 

three-dimensional displays of the maps. Similar regions in the lateral cerebellum were 

activated, but the rotated-mouse activations (yellow) tend to be located more anteriorly and 

laterally than the velocity-control mouse activations (blue). The different tools evoked 

activities in distinct locations with small overlap (2.1% of the total activated volume), 

demonstrating the modularity and multiplicity of internal models for tools.  

Higuchi and colleagues measured cerebellar activity when subjects used sixteen 

common tools (scissors, a hammer, chopsticks and so on) and when they mentally imagined 

using the tools without actual hand movements (Higuchi, Imamizu, & Kawato, 2007). 

Figure 5 shows t-value-weighted centroids of activation when subjects actually used 

individual tools (Fig. 5A) or when they imagined the tools’ use (Fig. 5B) in comparison to 
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rest condition. Activities during the actual use tend to be located in the anterior lobule of 

the cerebellum. In contrast, activities during the imaginary use tend to be located more 

laterally, in the posterior lobule, than those during the actual use. We measured the distance 

of the centroids from the fourth ventricle. Because the fourth ventricle is the most anterior 

and medial part of the cerebellum, the longer the distance is, the more posteriorly and 

laterally the centroid is located (Fig. 5C). As shown in Figure 5E, the mean distance across 

the tools during the imaginary use was significantly longer than that during actual use (t(28) 

= 2.66, P < 0.05), suggesting that activities during the imaginary use were located 

posteriorly and laterally. Figure 5E shows lines connecting the centroids during the actual 

use (rectangles) with those during the imaginary use (circles). Regarding the tools that 

evoked activities in the posterior lobule during the imaginary use (thick circles in Fig 5B), 

the lines are often orthogonal to the primary fissure between the anterior and the posterior 

lobules (thick lines in Fig. 5E). This suggests that the order of the centroids along the 

primary fissure for the tools is almost identical between the anterior and posterior lobules. 

Activities in the anterior lobule are probably evoked by activities of limb muscles and 

sensory feedbacks (Grodd, Hulsmann, Lotze, Wildgruber, & Erb, 2001), while activities in 

the posterior lobule may reflect internal models for use of the tools. This result suggests 

that internal models contributing to skillful use of common tools are modularly organized, 

that is, different parts of the lateral cerebellum contribute to the use of different tools.  

Our functional imaging study suggests the ability of the CNS to combine output 

signals from internal models (Imamizu, Higuchi, Toda, & Kawato, 2007). Subjects 

sufficiently learned to use 60º and 160º rotated mice, in each of which the cursor appeared 

in a position rotated 60º or 160º around the center of the screen. Then we investigated brain 

activity when subjects learned to use a 110º rotated mouse (an intermediate angle between 
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60º and 160º). In the early and late stages of learning the 110º mouse, we measured 

cerebellar activity specific to the 60º, 110º or 160º mouse according to the same method we 

used when measuring activity specific to the rotated mouse or the velocity-control mouse 

(see above). In the early stage of learning, activated volumes for 60º, 110º and 160º were 

7.5 cm
3
, 5.2 cm

3
 and 11.3 cm

3
, respectively (across-subjects mean based on individual 

activity maps at P < 0.001 uncorrected for multiple comparisons), suggesting that the 

volume was the smallest for 110º. In contrast, in the late stage, the volumes were 3.3 cm
3
, 

10.7 cm
3
 and 9.3 cm

3
. Although these differences in volumes among conditions did not 

reach statistically significant levels, we observed that the volume for 110º became the 

largest while the volumes for 60º and 160º decreased. Possible explanations of these 

changes in activity are as follows. In the early stage, an internal model for 110º was not 

acquired yet, and the CNS combined output signals from internal models for 60º and 160º 

to cope with the novel 110° mouse. However, in the late stage, an internal model for 110º 

had been acquired, and the necessity of internal models for 60º and 160º decreased. The 

CNS may be able to combine acquired internal models according to the degree of 

acquisition of a new internal model.  

Studies reviewed in this section suggest that the CNS maintains multiple internal 

models for different objects and environments in a modular fashion and that it can combine 

output signals from the stored internal models depending on the situation.  

 

Neural mechanism for selection and switching of internal models 
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In this section, we review behavioral and imaging studies investigating neural mechanisms 

that select or switch internal models according to changes in the environment and 

controlled objects.  

Behavioral studies have shown that humans can switch internal models based on 

contextual information. For example, an auditory tone cue can induce context-dependent 

adaptation to prismatic displacement in the opposite directions (Kravitz & Yaffe, 1972). It 

had long been thought that simultaneous adaptations to opposing force fields are impossible 

(Brashers-Krug, Shadmehr, & Bizzi, 1996; Gandolfo, Mussa-Ivaldi, & Bizzi, 1996; Karniel 

& Mussa-Ivaldi, 2002). However, it was recently demonstrated that cognitive cues such as 

color and shape, and random and frequent presentation of the force fields, contribute to 

simultaneous learning and predictive switching of internal models for the opposing fields 

(Osu, Hirai, Yoshioka, & Kawato, 2004).  

Using a continuous tracking task in which subjects used a computer mouse, we 

investigated brain activity related to switching of internal models (Imamizu, Kuroda, 

Yoshioka, & Kawato, 2004). Subjects sufficiently learned to use three types of computer 

mouse with different input-output properties (rotated, velocity-control and normal mice) 

before their brain activities were scanned. During the tracking task in the MR scanner, the 

input-output property changed at random timing (from rotated to velocity-control, from 

normal to rotated, and so on). We investigated activity that increased immediately after the 

change and found that activities in the dorsolateral prefrontal cortex (DLPF; area 46), the 

insula, the anterior parts of the intra-parietal regions, and the lateral cerebellum are related 

to switching of internal models.  
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Our close examination of activation time courses revealed that there exist two types 

of temporal profiles in activity change depending on the brain region. One type of profile 

transiently increased immediately after the switch, but the levels of sustained background 

activity 20 sec after switching were almost the same as those before switching, suggesting 

that the dominant component of this profile is transient response (Fig. 6A). This transient 

response is probably related to the switching of internal models corresponding to the 

change of mouse type. This type of profile was found in area 46 and the insula. In the 

second type of profile, we could observe not only a transient increase of activity but also a 

change in the sustained activity level. In Figure 6B, the level of activation was low before 

the switch when the subjects used the normal mouse (open circles). It transiently increased 

immediately after switching and then remained high as long as the subjects used the rotated 

mouse (filled circles). Thus, this type of profile consisted of both transient response and 

sustained response.  

Our further analysis found that the rotated and the velocity-control mice evoked 

sustained activity in distinct regions of the lateral cerebellum, suggesting that the activity is 

related to internal models. This type of profile was mainly observed in the cerebellum and 

the anterior part of the intra-parietal regions. We quantitatively investigated magnitudes of 

the transient and sustained responses in time courses of individual regions using a linear 

regression analysis and then calculated the ratio of the magnitude of the sustained response 

to that of the transient response (Fig. 6C). The results confirmed that transient response is 

dominant in the frontal regions (area 46 and the insula), while both responses are contained 

in activity in the parietal regions and the cerebellum. We also investigated the spatial 

overlap between the transient response related to the switching and the sustained response 

related to the internal models and found a significant overlap in the cerebellum, suggesting 
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that internal models contribute to the switching. As we discuss below in relation to 

computational models, this result suggests that internal models play an important role in 

switching mechanisms in the parietal and cerebellar regions.  

 

Predictive switching of internal models  

Empirically, two types of information are crucial for the switching of internal models: 

contextual information, such as color or shape of the objects that can be perceived before 

movement execution, and information on the difference between actual and predicted 

sensorimotor feedbacks calculated during or after execution. For example, when we lift a 

transparent bottle, the CNS can switch between internal models for light and heavy objects 

in a predictive fashion, since we know whether the bottle is empty or full beforehand. 

However, when lifting up a milk carton, we cannot estimate the weight, and the CNS relies 

on the error between actual and predicted sensorimotor feedbacks (prediction error). It is 

probably important for anticipatory adjustment of behavior that a mechanism for predictive 

switching of internal models can work before movement execution independently from a 

postdictive mechanism based on prediction error.  

We conducted a behavioral experiment to investigate whether the predictive 

mechanism is functionally independent from the postdictive mechanism (Imamizu, 

Sugimoto, et al., 2007). Subjects learned to move their index fingers to targets while visual 

feedback of the finger movements was rotated clockwise (CW) or counterclockwise (CCW) 

by 40º around the initial position. When subjects adapted to alternating blocks of opposing 

rotations, we investigated the effects on the subjects’ performances due to contextual 
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information (a verbal instruction) on the forthcoming direction of rotation. We measured 

the effect of such contextual information on the predictive mechanism by measuring the 

performance error at the beginning of each block and that on the postdictive mechanism by 

measuring the speed of gradual decrease of the error within blocks. Consequently, the 

contextual information selectively improved predictive switching performance but did not 

affect postdictive switching performance based on prediction errors, suggesting the 

existence of functionally independent mechanisms. Based on the results of our behavioral 

study, we planned an fMRI experiment to examine whether these two mechanisms are 

based on separate neural substrates. 

The experimental design of our previous fMRI study (Imamizu, et al., 2004) did not 

allow us to distinguish the activity related to predictive switching from that related to 

postdictive switching for the following reasons. While subjects tracked a target 

continuously moving at high speed on a screen, the mouse type was changed and, 

simultaneously, cognitive cues (change of cursor color and letters indicating the mouse 

type) were presented. In this way subjects simultaneously obtained cognitive cues for 

predictive switching and sensorimotor feedback for postdictive switching; consequently, 

cue-related activity temporally overlapped feedback-related activity.  

In our new experiment, discrete pointing movements and event-related fMRI were 

used to separate activity related to the presentation of the cognitive cue from that related to 

sensorimotor feedback (Imamizu & Kawato, 2008). The task for subjects followed that in 

our behavioral study, and subjects sufficiently learned the 40º CW and 40º CCW 

visuomotor rotations before scanning of brain activity. During the fMRI experiment, the 

direction of rotation changed in a block-random fashion. A cue was presented at the 
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beginning of each trial and before movement initiation. The color of the cue corresponded 

to the direction of rotation of the feedback in an instructed condition, and thus predictive 

switching was possible. However, the color did not correspond to the direction in the 

non-instructed condition, and thus subjects relied on prediction errors calculated from 

sensorimotor feedback for switching in a non-instructed condition. Switching-related 

activity was identified as activity that transiently increased after the direction of rotation 

was changed. The switching-related activity in cue periods in the instructed condition, 

when a predictive switch is possible, was observed in the superior parietal lobule (SPL). 

However, the switching-related activity in feedback periods in the non-instructed condition, 

when prediction error is crucial for the postdictive switch, was observed in the inferior 

parietal lobule (IPL) and prefrontal cortex (PFC). These results clearly demonstrate 

regional differences in neural substrates between the predictive and postdictive 

mechanisms.  

The above study suggests that the SPL contributes to predictive switching when the 

CNS has to select internal models. By contrast, Bursztyn and colleagues investigated brain 

activity related to predictive loading of an internal model when only one type of skill or an 

internal model was required throughout their experiment (Bursztyn, Ganesh, Imamizu, 

Kawato, & Flanagan, 2006). In their experiment, subjects learned to compensate a novel 

dynamics applied to their wrist movement. After learning, brain activity was measured 

during the interval between the cue and the initiation of movement. Their analysis revealed 

activity in supplementary motor areas (SMA), the primary motor (M1) regions, the dorsal 

premotor (PMd) regions, and the cerebellum. These results suggest that regions directly 

related to motor control are involved in internal-model recruitment in preparation for 

movement execution when selection of internal models is not needed.  
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Computational models for task switching 

A mixture-of-experts architecture (Fig. 7A) was previously proposed for a computational 

model for task switching, including switching of internal models (Ghahramani & Wolpert, 

1997; Jacobs, Jordan, Nowlan, & Hinton, 1991). In this architecture, expert modules (i.e., 

internal models) are trained so as to split the input data into subparts in which particular 

experts are specialized. For example, an expert module is specialized for the input-output 

property of each tool. Depending on the context, a gating module weights the contribution 

of the output of each expert module to the final output. A computational model for 

simultaneous learning and switching of internal models (MOSAIC model: Modular 

Selection and Identification for Control model) has recently been proposed (Haruno, 

Wolpert, & Kawato, 2001; Wolpert & Kawato, 1998). This model can explain the above 

results of behavioral and imaging studies in a consistent manner. The MOSAIC model (Fig. 

7B) has two features that are largely different from the mixture-of-experts architecture.  

First, in a mixture-of-experts architecture, the switching function is centralized in the 

gating module and segregated from the internal models. By contrast, in the MOSAIC model, 

internal models themselves play crucial roles in switching as follows. Multiple pairs of 

forward internal models (predictors: “F” in Fig. 7B) and inverse internal models 

(controllers: “I” in the figure) are tightly coupled as functional units in the MOSAIC model. 

For example, when we use a new tool, forward models of various types of similar tools 

simultaneously predict sensory feedback from an efference copy of motor commands. The 

prediction of each forward model is then compared with actual feedback. The smaller the 

error, the more likely it is that the forward model was an appropriate predictor in the 
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current context. The inverse model paired with the appropriate predictor is considered an 

appropriate controller. Accordingly, the selection mechanism depends on the internal 

models, and forward models must be active when switching internal models. Therefore, the 

MOSAIC predicts that the switching activity spatially and temporally overlaps the internal 

model activity. Our fMRI study (Imamizu, et al., 2004) indicated that activity in the 

anterior parts of the intra-parietal regions and the lateral cerebellum contains both transient 

response related to switching and sustained response related to internal models. This result 

suggests that the MOSAIC model can well explain the switching mechanisms in these 

regions. Especially in the cerebellum, the transient response was observed in regions related 

to an internal model for the rotated mouse and one for the velocity-control mouse. This 

suggests that the transient response reflects activity of forward internal models for both 

types of mice, simultaneously predicting sensory feedback, and that the sustained response 

reflects activity of the selected internal models.  

Second, the MOSAIC model has two architectures, each of which is specialized for 

predictive switching based on contextual information or postdictive switching based on 

error of prediction derived from sensorimotor feedback. This is consistent with our 

behavioral (Imamizu, Sugimoto, et al., 2007) and fMRI (Imamizu & Kawato, 2008) studies 

indicating the two independent switching mechanisms.  

 

Cerebellar activity in reinforcement-learning tasks: contributions of 

internal models to goal-directed behaviors 
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In the above sections, we reviewed behavioral and neuroimaging studies investigating 

internal models for control of peripheral objects (e.g. tools or objects in the hand) toward 

immediate goals in time (e.g. moving a cursor to a target). However, humans often have to 

guide their behaviors toward distal goals in time such as maximizing a reward that will be 

obtained in a long-term future under complicated stochastic environments. Learning based 

on reward has been investigated in a framework of reinforcement learning models (Sutton 

& Barto, 1998). Neurophysiological (W. Schultz, Apicella, & Ljungberg, 1993) and 

neuroimaging studies have shown that the basal ganglia and prefrontal regions play a key 

role in such types of learning. However, some studies have shown involvement of the 

lateral cerebellum as well as the basal ganglia in tasks designed for investigation of 

reinforcement learning (Doya, Okada, Ueda, Okamoto, & Yamawaki, 2001; Haruno, et al., 

2004). Figure 8 shows examples of cerebellar regions activated in reinforcement-learning 

tasks (see also a supplemental movie: 

http://www.cns.atr.jp/~imamizu/multi_functions.mpg). Red regions were activated when 

subjects conducted a stochastic decision task maximizing monetary rewards, in which 

subjects had to learn behaviors involving different task difficulties that were controlled by 

probability (Haruno, et al., 2004). Blue regions were activated when subjects planned their 

behaviors predicting a log-term reward in a Markov decision problem (Doya, et al., 2001).  

The above activations of the lateral cerebellum suggest that internal models are 

needed for goal-directed behaviors in complex environments. Reinforcement-learning 

algorithms can be effective for optimizing a chain of actions in small-scale stochastic 

environments. However, many studies indicated limitations of the model-free approach 

adopted by plain reinforcement-learning algorithms and suggested the necessity of 

complementary use of model-based approaches. Doya has suggested that the cerebellum is 



 -22- 

specialized for supervised learning (model-based approach), which is guided by the error 

signal, while the basal ganglia are specialized for reinforcement learning (model-free 

approach), which is guided by the reward signal, and that each neural mechanism plays 

complementary roles in motor control and cognitive functions (Doya, 1999, 2000). 

Anatomical connectivity between the basal ganglia and the cerebellum (Hoshi, Tremblay, 

Feger, Carras, & Strick, 2005) may support interplay between the cerebellar internal model 

and reinforcement-learning mechanisms in the basal ganglia. In the same line of thought, 

Daw and colleagues proposed a computational model consisting of two parallel 

reinforcement-learning modules in the brain: a model-free module associated with the 

dorsolateral striatum in the basal ganglia and a model-based module associated with the 

prefrontal cortex (Daw, Niv, & Dayan, 2005).  

Kawato and Samejima theoretically pointed out the inefficiency of a plain 

reinforcement-learning algorithm when applied to practical problems including multiple 

degrees of freedoms, nonlinearity, and large delays (Kawato & Samejima, 2007). Such 

problems are often encountered in optimization of most goal-directed behaviors based on 

learning associations between motor commands and resultant trajectory (or sensorimotor 

feedback) and the associations between actions and resultant rewards in practical 

environments. They suggested that internal models contribute to dividing a complex task 

into simple subtasks, each of which is learned by separate reinforcement-learning modules. 

In extending reinforcement-learning tasks, it is fair to state that humans need good ‘models’ 

that can predict long-term changes in environments when they efficiently plan and select 

behaviors toward distal goals in complex environments. Thus, internal models are thought 

to be important for goal-directed behaviors in general. 
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The above results indicate that cerebellar internal models contribute to 

reinforcement-learning tasks based on long-term reward. To illustrate regional differences 

between activities related to the reinforcement-learning tasks and those related to 

sensorimotor control, several types of activities reviewed in the earlier part of this article 

were superimposed onto Figure 8. Green regions were activated when subjects manipulated 

an object with a complex dynamics (Milner, et al., 2007). Cyan regions are related to 

coordination of grip-force and load-force (Kawato, et al., 2003). Yellow regions indicate 

activity related to use of various common tools (Higuchi, et al., 2007; Fig. 5). Here, we 

averaged activities when subjects imagined use of the different tools. As the figure shows, 

activities related to the sensorimotor control tend to be located in superior and medial parts, 

while those related to the reinforcement-learning tasks tend to be located in inferior and 

lateral parts. We found activity reflecting an internal model of a novel tool (a 120º rotated 

mouse; Imamizu et al., 2000) in magenta regions. These results suggest that activity related 

to relatively higher cognitive functions (i.e., maximizing a long-term reward and use of a 

novel tool) exist in inferior and lateral parts.  

 

Contributions of internal models to mirror system, social interactions, 

communication, and language 

Many neurons in the PMv (F5) of macaque monkeys show activity in correlation with the 

grasp type being executed. A subpopulation of these neurons, the mirror neurons, responds 

to observation of goal-directed movements performed by another monkey or an 

experimenter (Gallese, Fadiga, Fogassi, & Rizzolatti, 1996). The mirror neurons and mirror 
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systems (not individual neurons) have been thought to support the abilities of 

communication and social interaction.  

Experimental and theoretical studies suggest that internal models support information 

processing in mirror systems. Anatomical connectivity has been found between the ventral 

premotor (PMv) regions and the cerebellar output nucleus (the dentate nucleus) (Middleton 

& Strick, 1997). Corresponding to this connection, our fMRI study suggests that functional 

connectivity between the lateral cerebellum and the PMv regions increased after acquisition 

of internal models (Tamada, Miyauchi, Imamizu, Yoshioka, & Kawato, 1999). This study 

used the novel mouse and confirmed similar change in activity to our previous study in the 

lateral cerebellum (Imamizu, et al., 2000). Moreover, the study investigated change in 

activity in cerebral regions and found a significant effect of learning on the activated 

volume (decrease or increase of volume) in frontal and occipital regions. The authors found 

that activity in the left lateral cerebellum increased after learning in comparison to the right 

cerebellum. In their analysis, they adopted a hypothesis that increase in activity in the right 

cerebral region should be observed in comparison to the left homologous region if the 

region has functional connectivity with the lateral cerebellum. They found that the activity 

in the right PMv regions increased in comparison to the left homologous regions after 

learning. Miall suggested that inverse models in the cerebellum and projections from 

parietal regions to the PMv via the cerebellum contribute to converting observation of 

another’s action into one’s own motor control signals (Miall, 2003). Oztop and colleagues 

conducted computer simulations of tasks that are closely related to mirror systems (Oztop, 

Kawato, & Arbib, 2006; Oztop, Wolpert, & Kawato, 2005). In their simulations, an 

observer estimated the goal of the reaching movements or the intention of the agent 
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performing grasping movements. The results theoretically indicated that internal models for 

sensorimotor control are effective in inferring the goals or mental states of others.  

Estimation of mental states of others is essential for communication and social 

interactions. “Theory of mind,” the ability to conceive the intentions and beliefs of others, 

has become another important key concept for understanding the mechanisms involved in 

the estimation (Baron-Cohen, 1997; Frith & Frith, 1999). Many functional imaging studies 

have suggested involvement of regions near the superior temporal sulcus (STS) and other 

prefrontal regions in theory of mind (e.g. Decety, Jackson, Sommerville, Chaminade, & 

Meltzoff, 2004; Tankersley, Stowe, & Huettel, 2007). Our study found that the STS regions 

are activated during observation of geometrical shapes whose movements appear 

intentional or goal-directed (J. Schultz, Imamizu, Kawato, & Frith, 2004). Recently, 

Haruno and Kawato indicated that the strength of activation in the STS regions reflects 

individuals’ competence to construct internal models of others’ mental states (Haruno & 

Kawato, 2005). In their experiment, subjects were categorized into two groups according to 

strategies adopted by subjects for maximizing monetary rewards in a social interaction 

game (the “prisoner's dilemma” game). Subjects in a group tried to learn the association 

between one’s own action and reward independently from the strategy of the other agent. 

Their strategies were well explained by a plain (model-free) reinforcement algorithm. By 

contrast, the strategies of the other group could not be explained by such an algorithm, and 

behavioral data suggested that the subjects exploited the agent’s strategies to predict the 

agent’s behavior in response to the subjects’ own action (forward internal model). Their 

imaging data indicated that activity in STS regions in the latter group was significantly 

stronger than that in the former group.  
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In our study investigating switching mechanisms for internal models (Imamizu & 

Kawato, 2008), activity in the STS regions increased as accuracy of subjects' performances 

increased after alteration of environments, and thus we concluded that the STS is one of the 

regions that receive output signals from the acquired internal models. Although the above 

experiment using the social interaction game did not investigate the learning process, we 

speculate that the STS region plays an important role in predicting the agent's behavior at 

the initial stage of learning but that the cerebellum acquires internal models of the agent 

after repeated games with the same agent. However, to fully understand the roles of the 

STS and the cerebellum in social interactions, it would be necessary to reconstruct or 

decode what information is presented in these regions and how the reconstructed 

information changes with learning. 

How do internal models contribute to imitations and theory of minds? An essential 

problem in imitations is to infer covert information in others' brains (such as motor 

commands and intentions) from observation of their action. An effective way for this 

inference is to utilize one's own internal inverse models that translate action to motor 

commands or forward models (Oztop, et al., 2006; Oztop et al., 2005). Similarly, one's own 

internal models that translate actions and communication signals to intention and belief can 

be utilized for inference of others' intentions and beliefs that we cannot directly observe. 

Learning internal models of other people using one's own internal models may largely rely 

on the similarity of musculoskeletal systems and brains across people. Therefore, it 

becomes more difficult to learn internal models of people with different social and cultural 

backgrounds compared to those of people with a common background. Wolpert, Doya and 

Kawato pointed out similar computational difficulties, such as the large amount of noise, 

nonlinear properties, high dimensionality, and delayed feedback encountered in 
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sensorimotor control and social communication, including imitations and theory of minds, 

although these difficulties are more severe in social communication than in sensorimotor 

control (Wolpert, Doya, & Kawato, 2003). It has been suggested that "mental simulations" 

using forward and inverse models (Oztop, et al., 2005) and hierarchical organization of 

internal models (Wolpert, Doya, & Kawato, 2003) can increase the inference accuracy of 

intentions and beliefs despite these difficulties.  

The contribution of the cerebellum to language has been suggested by activation in 

the lateral cerebellar cortex during a verbal response selection task (saying an appropriate 

verb for a visually presented noun) (Raichle, et al., 1994). Our fMRI study (see above) 

revealed functional connectivity between the lateral cerebellum and PMv regions, parts of 

which are known as Broca’s area (Tamada, et al., 1999). Recently, Higuchi and colleagues 

found an overlap of brain activity for language and tool use in Broca’s area (Higuchi, 

Imamizu, Chaminade, & Kawato, 2004). Their tool-use task required subjects to perform 

hierarchical manipulation of objects and tools, e.g. moving an object while holding it with 

chopsticks. The overlap was found in the dorsal parts of area 44 (a part of Broca's area). It 

has been suggested that area 44 is involved in the syntactic aspects of language (Sakai, 

2005) and specifically complex hierarchical processing (e.g. understanding of embedded 

sentences) (Friederici, Bahlmann, Heim, Schubotz, & Anwander, 2006). The location of 

this overlap suggests that language and tool use may share computational principles for 

processing hierarchical structures common to these two distinct abilities. In combination 

with a study indicating involvement of the PMv regions in monkeys during tool use 

(Obayashi, et al., 2001), this study suggests that neural processes for computation of 

hierarchical structures exist in primates and evolved secondarily to support human 

grammatical ability.  
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Beyond syntactic aspects, internal models are thought to contribute to the semantic 

aspects of words related to actions and manipulation. It is known that semantic memory is 

represented by distributed brain networks of sensory and motor regions. Recent functional 

brain imaging studies have intensively investigated semantic memory of tools (for review, 

see Martin & Chao, 2001) and found that the medial fusiform gyrus stores the form of tools, 

the left posterior middle gyrus represents the visual motion related to tool use, and the PMv 

regions represent the tool-use-associated action. Input-output properties are important 

semantic aspects of tools, and thus internal models representing these properties are key 

parts of the distributed network used for the semantic memory of tools. Our studies on the 

existence of internal models in the cerebellum (e.g. Higuchi, et al., 2007; Imamizu, Kuroda, 

Miyauchi, Yoshioka, & Kawato, 2003; Imamizu et al., 2000) suggest that the cerebellum 

also contributes to the semantic representation of words related to actions and manipulation, 

such as words for tools.  

Hurley proposed a "Shared Circuit Model" in which cognitive functions such as 

mirror systems, imitation, mental simulation of social interactions, and mind reading 

(theory of minds) use internal simulation loops for sensorimotor control and additional 

systems that inhibit motor outputs and generate virtual sensory inputs during the simulation 

(Hurley, 2008). In our understanding, the internal simulation loops correspond to 

combinations of forward and inverse internal models. Therefore, the studies reviewed in 

this section are consistent with the Shared Circuit Model in that internal models contribute 

to mirror system, social interactions, communication, and language processing using the 

same computational principles involved in sensorimotor control.  
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Discussion 

Humans acquire internal models of the environment and external objects for effective 

realization of goal-directed behaviors. Neural substrates of internal models had been 

investigated by neurophysiological studies on other animals. However, recent advances in 

non-invasive functional neuroimaging methods such as PET and fMRI have enabled us to 

investigate how internal models are acquired and organized in the human brain. This review 

article first presented neuroimaging studies indicating how internal models are acquired in 

the brain network, including the cerebellum. Environments and objects with which humans 

interact often change in a discrete manner. Behavioral and imaging studies have indicated 

that the CNS acquires multiple internal models in a modular fashion and flexibly copes 

with such discrete changes by reducing interference and combining acquired internal 

models. A switching mechanism of internal models is also important for flexible adaptation 

under rapid and frequent environmental changes. Our studies suggested that neural 

mechanisms in the parietal regions (the SPL and IPL) and prefrontal regions contribute to 

the selection of appropriate internal models.  

We then presented studies indicating the contribution of internal models to 

higher-order cognitive functions. Many studies have suggested that internal models are 

involved in optimization of goal-directed behaviors such as maximizing long-term rewards 

in collaboration with neural mechanisms for reinforcement learning. Our analysis of 

functional connectivity between the lateral cerebellum and the PMv suggests the 

contribution of internal models to mirror systems and faculties of language. Theoretical and 

simulation studies supported such a contribution to the mirror systems. Our recent imaging 

study demonstrated that regions probably receiving output signals from internal models for 
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tool use are closely related to neural mechanisms for language processing and speech 

production (Broca’s area). Finally, theoretical and empirical studies have suggested that 

internal models are involved in the theory of mind during social interactions by predicting 

others’ behaviors in response to one’s own behaviors.  

Figure 9 shows schematic diagrams of functional pathways between the cerebral 

regions and the cerebellum based on the principal studies in this review article. In our study 

investigating predictive and postdictive mechanisms for switching of internal models 

(Imamizu & Kawato, 2008), we conducted analysis of functional connectivity using a 

method called dynamical causal modeling (Friston, Harrison, & Penny, 2003). 

Consequently, we identified a significant increase in the influence of the SPL on the lateral 

cerebellum during predictive switching based on contextual information and an increased 

influence of the IPL on the lateral cerebellum during postdictive switching based on error in 

the prediction of sensorimotor feedback (Fig. 9A). We hypothesized that the increased 

influence of the cerebellum on the IPL corresponded to the prediction of sensorimotor 

feedback, which is computed by forward models and necessary for calculation of prediction 

error. Although our connectivity analysis could not find a statistically significant increase, 

an anatomical study on monkeys indicated that a region in the IPL (area 7b in monkeys) is 

the target of output from the cerebellum (Clower, West, Lynch, & Strick, 2001). These 

diagrams can be mapped onto the MOSAIC model (Fig. 7B), as indicated by circled 

numbers in the figures.  

Furthermore, regarding postdictive switching, we found increased influence of the IPL 

on the SPL. This increase in influence suggests that the error of prediction for sensorimotor 

feedback was used as contextual information in the next trial because it is important 
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information on changes in the environment. This information flow may be analogous to 

those underlying behavioral adjustment after conflict or error in cognitive control tasks 

such as the Stroop color-naming task. Kerns and colleagues (Kerns, et al., 2004) found that 

an increase in activity in the anterior cingulate cortex (ACC) in an error trial leads to an 

increase in activity in the PFC (areas 8 and 9) in the subsequent trial, and they suggested 

that the ACC monitors the conflict and that the PFC produces behavioral adjustments based 

on detection of the conflict. It can be postulated that the IPL is involved in the monitoring 

of error and that the SPL contributes to subsequent behavioral adjustment by predictive 

switching of internal models. We also found an increase in bidirectional influences between 

the IPL and the DLPFC around area 46, suggesting that the DLPFC contributes to 

behavioral adjustment through interaction with the IPL in the switching of internal models.  

In addition to the above analysis of functional connectivity, we found that activity 

increased in the lateral occipito-temporal cortices (LOTC), the supplementary motor area 

(SMA), the dorsal premotor (PMd) region, and the primary motor cortex (M1) as subjects’ 

performances improved after alteration of the environment (direction of visuomotor 

rotation). According to previous studies described below, these cerebral regions are closely 

related to internal models, and they are assumed to receive output signals from internal 

models (Fig. 9B). The LOTC is related to biological-motion perception (Bonda, Petrides, 

Ostry, & Evans, 1996), imitation (Iacoboni, et al., 2001), trajectory learning (Maquet, 

Schwartz, Passingham, & Frith, 2003) and smooth pursuit eye movements (Schmid, Rees, 

Frith, & Barnes, 2001). Using fMRI and computational modeling, Kawawaki et al. 

(Kawawaki, Shibata, Goda, Doya, & Kawato, 2006) indicated the contribution of the 

LOTC to prediction of target motion during visual pursuit. Output signals from forward 

internal models have been suggested to play an important role in prediction and observation 
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of movements of objects and other persons (Blakemore & Decety, 2001; Frith, Blakemore, 

& Wolpert, 2000). Consistent with these studies, Haruno and Kawato found that the STS 

region, which is adjacent to the LOTC, is related to internal forward models of others’ 

behaviors during human-human interaction (Haruno & Kawato, 2005).  

The SMA, PMd and M1 are involved in motor control and likely receive output signals 

from internal inverse models. This is consistent with a study finding activity in these 

regions related to preparatory loading of information stored in internal models for 

compensation of a novel dynamics (Bursztyn, et al., 2006). In addition to these regions, 

output signals from inverse models are probably sent to the PMv regions (and Broca’s area). 

This was suggested by our study finding an increase in functional connectivity after 

acquisition of internal models (Tamada, et al., 1999).  

The studies we reviewed in the earlier sections mainly investigated internal models 

for rapid and smooth control of our bodies and tools to realize relatively immediate goals. 

However, some characteristics of internal models revealed by these studies are postulated 

to play key roles in supporting higher-order cognitive functions.  

Modular organization of internal models is essential for effective organization of 

behavior in complex environments. If internal models were modularly organized, many 

novel situations that we encounter could be dealt with as combinations of previously 

experienced contexts. By modulating the contribution of the output signals from individual 

internal models to the final output signal, an enormous repertoire of behaviors could be 

generated (MOSAIC; Wolpert & Kawato, 1998). Our fMRI study has demonstrated 

fundamental neural mechanisms supporting such an ability in a relatively simple task, that 

is, use of three types of computer mouse with different input-output properties (Imamizu, 
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Higuchi, et al., 2007). A modular decomposition strategy is effective for tackling a complex 

task by dividing it into simple subtasks. It has been suggested that internal models can 

contribute not only to learning subtasks but also to dividing a complex task into simple 

subtasks, each of which can be learned by model-free or model-based 

reinforcement-learning modules (Kawato & Samejima, 2007). Furthermore, realization of 

distal goals in time under complex environments often needs multiple steps of actions that 

should be organized in a hierarchical fashion. Increasing the accuracy of hierarchical plans 

of actions requires precise internal models for individual actions and hierarchical 

organization of these internal models. Modularity of internal models is essential for such 

organization of action plans. Because realization of distal goals in time often needs 

step-by-step actions and a long time to accomplish them, environments often change during 

this process. For flexible reorganization of action plans depending on changes in the 

environment, it is important that internal models be modularly and hierarchically organized 

and that they can be flexibly switched depending on available contextual information. 

Modularity and hierarchy are also thought to be essential for language processing.  

Bidirectional and recursive information processing is also important for higher-order 

cognitive functions. As we reviewed, many studies have suggested the existence of forward 

and inverse internal models in the CNS. Using these two forms of internal models, 

closed-loop circuits can be constructed in the CNS without relying on feedback loops in the 

external world (Hurley, 2008). These internal circuits support “mental simulations” of 

interactions between one’s own actions and the resultant changes in the environment, and 

they can increase accuracy based on recursive computation in planning and selection of 

behaviors toward distal goals. It has been suggested that internal circuits including forward 
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and inverse models are essential for the inference of others’ mental states in computer 

simulations related to mirror systems (Oztop, et al., 2005).  

Functional connectivity between the cerebellum and various cerebral regions, as 

illustrated in Figure 9, indicates that the cerebellar internal models contribute to not only 

motor control but also various cognitive functions. In particular, STS, LOTC and PMv have 

been suggested to be involved in prediction of movements of external objects and actions 

of others, making inferences about intentions and goals of others, and language processing. 

Neurophysiological and anatomical studies have shown functional connections between the 

lateral cerebellum and both prefrontal and parietal regions (e.g. Clower, et al., 2001; 

Middleton & Strick, 2001; Sasaki, Oka, Kawaguchi, Jinnai, & Yasuda, 1977). However, 

previous studies, including ours, are mainly based on temporal correlations in activities 

between the regions or anatomical connectivity revealed by virus-based tracers, and thus 

little is known about the exact information exchanged between the cerebellum and the 

cerebral cortices. We can make inferences about types of information based on our 

knowledge of the functions of particular cerebral regions; however, it would be necessary 

to reconstruct or decode what information is presented in these cerebellar and the cerebral 

regions in the human brain to exactly understand the roles of the cerebellum and internal 

models in higher-order cognitive functions.  

As opposed to the theoretical studies and computer simulations reviewed above, a 

small number of experimental studies have directly investigated the contributions of 

internal models to cognitive functions. Here, we propose several possible experimental and 

robotic studies. First, sensorimotor tasks could be used to investigate the hierarchical 

organization of internal models, where subjects would learn to hierarchically combine 
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several types of tools or sensorimotor transformations. This work would extend a study by 

Higuchi and colleagues (Higuchi, et al., 2007), and the results could be compared to those 

for activity related the hierarchical aspects of language, such as understanding of embedded 

sentences. To study social interactions, two fMRI-compatible manipulandums and fMRI 

scanners could be used to scan the brain activities of two subjects while they play 

interactive force-exerting games. Here, it would be possible to investigate how activity 

changes when the subject must learn different properties of the opponent, i.e., these 

properties change from motor dynamics such as force levels to higher-order cognitive 

properties such as strategies and personalities. Such a study would help us to understand the 

continuity or discontinuity of internal models between sensorimotor control and cognitive 

functions. Regarding robotic experiments, some robots have already been made for 

interacting with people (e.g. our institute's Robovie: 

http://www.irc.atr.jp/productRobovie/robovie-r2-e.html). Using these robots as a starting 

point, we could build new robots that possess the internal models of several types of people 

and as well as the ability to autonomously refine these internal models based on the 

feedback obtained from people who have actually interacted with the robots in experiments. 

This would allow us to examine how their abilities, flexibility, and impressions they give of 

their intelligence improve in comparison to previous robots that react to people simply 

based on a database such as a lookup table of questions and answers.  

A series of our fMRI studies was motivated by the need to investigate sensorimotor 

learning mechanisms under novel environments. However, our results revealed some 

essential characteristics of internal models that can be generalized to understanding 

higher-order cognitive functions such as optimization of behaviors toward long-term goals, 

social interactions based on prediction of others’ actions and mental states, and language 
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processing. 
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Figure legends 

 

Figure 1 

Predictive control of a computer mouse (A) and prediction of consequence of control (B).  

Figure 2 

Relationship between direction of mouse movement (black arrows) and cursor movement 

(white arrows) when a cursor position is rotated 120º around the center of a screen (120º 

rotated mouse).  

Figure 3 

(A) Tracking error (mean ± SD) averaged across subjects as a function of number of 

training sessions. (B) Tracking error (mean + SD) in an experiment where a target velocity 

in baseline periods was increased to equalize the errors in baseline period to the errors in 

test period. (C) Cerebellar regions where activity is related to error signals (white regions 

enclosed by solid line) and regions where activity contains components unrelated to error 

(hatched regions). (D) Left panel shows activity change in hatched regions of Fig. 3C. 

Middle panel shows activity change in white regions of Fig. 3C. Right panel shows 

subtraction of the activity change in the middle panel from that in the left panel. Each curve 

indicates the exponential function fitted to the circles.  
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Figure 4 

Cerebellar regions related to manipulation of the novel mice shown in various views. 

Yellow and blue colors indicate regions where activation was more highly correlated with 

the manipulation of a rotated and velocity mouse, respectively, than manipulation of a 

normal mouse. L: left, R: right 

Figure 5 

Distribution of t-value-weighted centroid of activation coordinates when subjects actually 

used common tools (A) or when they imagined use of the tools (B). Thick circles in Fig. 5B 

indicate centroids in the posterior lobule. Subjects used sixteen tools but one of the tools 

(saw) could not evoke significant activation (P < 0.001, uncorrected for multiple 

comparisons in random effect analysis). Thus, the number of centroids is fifteen. (C) 

Transverse anatomical image of the human brain at the cerebellum. Thick outlines in Figs. 

5A, 5B and 5E indicate the region of the right lateral cerebellar hemisphere as shown in Fig. 

5C. (D) Mean distance of the centroid from the fourth ventricle across tools (+SD) for 

actual use or imaginary use. (E) Lines connecting the centroids during actual use 

(rectangles) with those during the imagery (circles) for tools that evoked activities in the 

posterior lobule during the imagery. Thick black lines indicate tools that evoked activities 

in the posterior lobule during imaginary use, while thin gray lines indicate tools that did not 

evoke activities in the posterior lobule.  

Figure 6 
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(A) Activation time course in area 46 when mouse-type changed from the normal to the 

rotated mouse. (B) Activation time course in the cerebellum. (C) Schematic representation 

of a ratio of sustained component to that of transient component in various brain regions.  

Figure 7 

Computational models for switching of internal models. (A) Mixture-of-experts model 

having a single switching mechanism (a gating module). (B) MOSAIC model having 

separate switching mechanisms for predictive switching based on contextual information 

and postdictive switching based on the prediction error of sensorimotor feedback. Circled 

numbers indicate correspondence between information flows in the model and neural 

pathways in Figure 9.  

Figure 8 

Cerebellar regions activated in various kinds of tasks. (A) Activated regions shown in 

superior–posterior–lateral view. (B) Activated regions projected onto the sagittal (left), the 

coronal (right), and the transverse (bottom) planes. A gray object indicates outline of the 

cerebellum from the same view as Fig. 8A.  Red regions were activated when subjects 

conducted a stochastic decision task maximizing monetary rewards. Blue regions were 

activated when subjects predicted a log-term reward. Green regions were activated when 

subjects manipulated an object with complex dynamics. Cyan regions were related to 

coordination of grip-force and load-force. Yellow regions indicate activity related to use of 

various common tools. Magenta regions were related to an internal model of a novel tool. 

Figure 9 
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Schematic diagrams of functional pathways between the cerebral regions and the 

cerebellum based on representative studies in this review article. (A) Pathways related to 

predictive or postdictive switching of internal models based on our functional connectivity 

analysis (Imamizu & Kawato, 2008). DLPFC: dorsolateral prefrontal cortex, IPL: inferior 

parietal lobule, SPL: superior parietal lobule. (B) Output pathways from cerebellar forward 

and inverse internal models. SMA: supplementary motor area, PMd: dorsal premotor region, 

PMv: ventral premotor region, BA: Broca's area, M1: primary motor cortex, STS: superior 

temporal sulcus, LOTC: lateral occipito-temporal cortices.  Circled numbers indicate 

correspondences of the pathways to information flows in the MOSAIC model (Fig. 7B). 
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