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Abstract 

Artificial intelligence algorithms are capable of fantastic exploits, yet they are still grossly             

inefficient compared with the brain’s ability to learn from few exemplars or solve problems              

that have not been explicitly defined. What is the secret that the evolution of human               

intelligence has unlocked? Generalization is one answer, but there is more to it. The brain               

does not directly solve difficult problems, it is able to recast them into new and more                

tractable problems. Here we propose a model whereby higher cognitive functions profoundly            

interact with reinforcement learning to drastically reduce the degrees of freedom of the             

search space, simplifying complex problems and fostering more efficient learning.  
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Introduction 

Artificial Intelligence (AI) has come a long way since the summer of 1956, when it was first                 

envisaged at the Dartmouth Summer Research Project on Artificial Intelligence. In the last             

ten years we have witnessed how the principles of supervised and reinforcement learning,             

when embedded in neural networks composed of many hidden layers (‘deep neural            

networks’, or ‘DNN’), can reach - and often surpass - human-level performances in visual              

object recognition, and in playing video-games and GO [1–3]. Despite DNN’s massive            

computational capabilities, there are two aspects that temper these accomplishments: first,           

the number of training samples required to reach acceptable performances is huge - tens or               

hundreds of millions; second, these architectures show a limited ability to generalize to new              

tasks/settings that were not encountered during training. These limitations become largely           

evident in motor control as shown by the clumsy behaviour of humanoid robots in the               

DARPA robotic challenge [4]. 

A second avenue of exciting progress in AI has come from probabilistic machine learning              

(a.k.a. Bayesian machine learning) [5], where agents can achieve impressive performance           

on one-shot learning or using a limited amount of examples [6,7]. This probabilistic approach              

resonates well with intuitive theories of human cognitive development and inductive           

reasoning [8]. The learning algorithm tries to find among all possible models the one that               

best explains the data (or, by extension, infer what causes the reality perceived through the               

sensorium). This approach, while conceptually appealing, is unlikely to provide a realistic            

model of how the brain operates. The main issue is that fully probabilistic inference might               

work well in simple and well constrained conditions, but becomes quickly computationally            

intractable for more complex and unconstrained scenarios. To exacerbate the problem, in            

order to function efficiently, probabilistic programs have to be endowed with ad-hoc            

definitions of the necessary representations [5]. Strictly speaking, in Bayesian inference we            
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usually do not have a principled way to select initial priors. Generalization is thus limited to                

the class of problems for which the program was designed for [6,7].  

A considerable hurdle for artificial agents concerns generalization; how can machine           

learning algorithms deal with new and never-experienced scenarios? Humans and animals           

can easily and appropriately respond to new scenarios, mostly transferring knowledge           

acquired in loosely related contexts. What are the brain mechanisms that enable the human              

brain with its remarkable generalization capacity? Plain reinforcement learning is too slow,            

and hierarchical architectures [9], albeit ameliorating the algorithm by subdividing learning           

among multiple systems and meta-variables [10,11], remain dependent on the need for            

ad-hoc definitions. Here we suggest that brains do not simply solve supervised classification             

problems but transform them into different - and more tractable - problems. We propose that               

an adaptive role of higher cognition is to allow precisely this transformation to take place.  

More specifically, we propose a model of how higher cognition is able to simultaneously              

operate the dimensionality reduction and feature selection processes necessary for          

simplifying complex problems. Adjusting the degree of synchronization between neurons has           

been suggested as one possible way to control the degrees-of freedom of a neural system               

[12]. We draw on similarities with simulated annealing, exploring how different frequency            

modes of brain dynamics serve as inherent implementation channels to reduce           

degrees-of-freedom and reach optimal solutions.  
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Computational advantages of higher cognitive functions in learning 

Statistical learning theory of singular problems demonstrates that the generalization error is            

given by dividing the degrees-of-freedom (d) of the search space by the number of training               

sample (n): [13,14]. If brains (d ~ 1011 neurons) need to solve arbitrary   ∝ d/(2n)e             

classification problems utilizing only a few hundred learning samples (n ~ 102), the             

generalization error would become huge, at least 1011/102 = 109. We postulate that brains              

transform these intractable learning problems into more feasible reinforcement learning          

problems with small degrees of freedom while being guided by reward and penalty. Higher              

cognitive functions such as attention, memory, concept formation, and metacognition might           

find low-dimensional manifolds of meta-representations that are essential for learning from a            

small sample (fig. 1). Here we will briefly review findings from attention, memory, concept              

formation, and metacognition, focusing on their role in facilitating learning. We are aware             

that these are vast and active areas of investigation and that it would be hard to do justice to                   

all the relevant work that has been done. We have therefore decided to provide a snapshot                

of properties, modules and architectures that we believe are particularly relevant to inspire             

the development of new AI architectures. It is important to recognize that recent work in the                

field of machine learning has also started to incorporate some of the intuitions discussed              

here.  

Attention is the ability to direct computing resources toward relevant dimensions (stimulus            

attributes, spatial location, etc.) for focal processing, acting as a filter to amplify relevant              

information while dampening background clutter [15]. But how does an agent learn what to              

attend? Rewards and punishments serve to constrain attentional focus [16], and attending to             

specific features rather than to the whole improves versatility [17]. Essentially, we learn what              

to attend to at the same time as we are paying attention to what we are learning [18,19]. In                   

machine learning, a useful and efficient way to use attention mechanisms is to decompose              
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tasks or questions into a series of simpler operations [20], or target specific parts of a query                 

(e.g. particular words in a sentence) [21].  

An intelligent agent must also be able to remember or even sometime forget past events.               

Accordingly, episodic memory plays a special role in goal-directed behavior and learning            

[22]. Reality is statistically structured however, and forms of gist-like memory can enhance             

reinforcement learning [23]. Schematic memory still depends on episodes; it is by virtue of              

statistics over individual traces that summaries can be created. Not surprisingly, both            

persistence (remembering) and transience (forgetting) are essential ingredients to optimize          

decision-making [24]. Human-like memory processes are very different from what is usually            

considered in AI agents, where memory is often deterministic and non-sparse as well as              

storing all information. Linking neural networks to external buffer memory resources already            

produces impressive learning capabilities, unattainable by classic neural networks         

architectures [25,26]. The development of predictive memory architectures, where memory          

formation itself is guided by a process of predictive inference [27], is one step towards               

systems storing only relevant information.  

Concepts are abstractions, closely intertwined with schematic memories. Concepts can be           

created almost at will, and a key aspect is that they can be connected, creating conceptual                

maps [28]. Being highly hierarchical and compositional, more abstract concepts can be            

formed from existing ones. New concepts or conceptual maps can emerge from learning, but              

can also direct subsequent learning [29]. Concepts share obvious links with memory in their              

ability to represent schematized information, but work in AI has yet to follow this line of                

thought. Conceptual representations in AI are currently restricted to simple visual domain            

examples that make use of the principles of hierarchy and compositionality [30]. 

Self-monitoring processes, a more abstract class of cognitive functions, can encompass           

much richer representations. The ability to monitor one’s thoughts is referred to as             
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metacognition, and is linked to the psychological construct of confidence, i.e. how good an              

agent is at keeping track of the probability of a choice being correct [31,32]. This aspect is                 

very important for AI since it dovetails with a broad range of phenomena such as error                

monitoring and reality checking [33]. Of particular relevance to AI systems is the ability to               

explicitly track the evolution of the level of self-knowledge, which might provide biological             

agents with significant advantages when interacting with their environment [34–38]. Although           

metacognition and consciousness are intimately related, the question of what is the            

computational advantage of consciousness itself remains currently unanswered.        

Consciousness could represent the selection of information for global broadcasting within           

the system, making it flexibly available for local (and distant) computational units [33]. In              

machine learning consciousness could also be interpreted as a powerful constraint on            

low-dimensional representations [39]. Earlier efforts suggest that some forms of          

self-monitoring are computationally simple and can directly arise even in two-layer attractor            

networks [40]. Generative adversarial networks (GANs) are an exciting development in this            

direction: a generative model captures the data distribution, and a discriminative model, akin             

to metacognition, operates a reality check on new samples [41].  
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Neural implementation of high level cognitive architecture 

To generate solutions leading to efficient learning and flexible behaviors, nature had to solve              

physical constraints. The brain cannot be equipped with ad hoc representations for every             

possible event in the world, since the horizon of possible states is practically infinite;              

moreover, it does not have unlimited computing resources. These constraints may be            

inspirational for developing new AI, yet it is important to keep in mind that some biological                

constraints (e.g. positive neuronal firing rates) may be bypassed by in-silico intelligent            

systems.  

In its most basic interpretation, solving complex problems for the brain accounts to finding              

the relevant (hidden) states for RL. One solution to accelerate the search for hidden states is                

to capitalize on the brain’s massively parallelized neural circuit architecture. Parallel           

searches are instantiated in multiple recurrent circuits linking basal ganglia with the cortex             

(Fig. 2). These recurrent circuits effectively are information-transmitting loops: they can carry            

task-dependent explicit representations (stimuli, goals, etc.), abstract summaries, reward         

prediction errors (RPEs), predicted states. Although they carry heterogeneous information,          

parallel loops do not function independently from each other. Rather, loops formed by sparse              

neural populations continuously interact at the synaptic level through cooperation and           

competition. Excitatory interactions (cooperation) appear between loops with similar,         

inclusive and related representations. In contrast, inhibitory interactions (competition)         

develop between loops with exclusive, different or unrelated representations. Due to the            

dynamical nature of the neural network comprising these excitatory and inhibitory           

interactions, a winner-take-all scenario emerges [42,43]. That is, only the loop with the “best”              

representation survives while other loops are suppressed. Here “best” means the loop            

associated with the representation that minimizes RPE. Therefore, selection of the best loop             

essentially corresponds to the automatic selection of relevant states for RL.  
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Excitatory and inhibitory interactions can occur virtually anywhere in the brain. However, the             

basal ganglia should play the most important role in these synaptic interactions for the              

following reasons. Because of multiple inhibitions and direct, indirect, hyperdirect pathways           

linking basal ganglia to cortex, winner-take-all computations can best be implemented in            

basal ganglia [43,44]. Furthermore, RPEs are largely computed in basal ganglia [45], making             

these nuclei the ideal focal point for RPE-based loop comparison and selection. 

So far, we have discussed a relatively simplified model that is amenable to clearly delineate               

the theory. The reality of the brain is nevertheless more intricate. Several brain areas are               

likely interacting to orchestrate an efficient search and ensure convergence to task-relevant            

low-dimensional manifolds. Prefrontal, sensorimotor, hippocampal cortices, as well as         

cerebellum, thalamus, and basal ganglia all make loops. Above this automatic machinery,            

what is the role of higher cognitive functions? How can they further accelerate learning              

computations? Metacognition, attention and memory synchronize abstract representations in         

prefrontal cortex (PFC) or hippocampal formation (HPC) with concrete representations in           

sensorimotor areas. Recurrent connections between these regions connect reinforcement         

learning mechanisms with representational and abstraction engines that makes for an ideal            

candidate circuitry (Fig. 2).  

Dopamine inputs to the HPC ensure that learned or partially learned rules are             

conceptualized and stored in memory [46]. But HPC function stretches far beyond            

memories, and one influential idea is that it plays a key role in building cognitive maps for                 

spatial [47] and conceptual navigation [28]. HPC neurons functionality probably extends so            

that they take the role of predictive units extracting structure and low-dimensional bases of              

the world [48,49]. These discoveries are in line with a recent proposal that during decision               

making, inferable state-to-state transitions represented in the cortex keep track of the            

evolving hidden space to accelerate learning [50,51]. More specifically, the PFC is thought to              
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hold an exclusive position along the hierarchy of representations as the substrate forging             

meta-representations [11,31] and abstraction processes [10,52,53]. Furthermore, the PFC         

oscillatory frequencies act as mediators of abstraction: the synchronization frequency helps           

demix the abstraction level encoded in different regions of the PFC [54]. In fact, this is not                 

only the case for the PFC; oscillatory frequencies effectively form communication channels            

throughout the brain [54–56].  

At the neuronal level, representing distributions of stochastic variables in population activities            

is a mechanism for finding serial correlations between meta-representations and RPE. The            

cortex could perform probabilistic inference on such distributions either by sampling over            

neural populations [57], or by weighting correlations between neurons [58].  

Learning new problems would invariably start with a consistent scenario: ignition of myriads             

of parallel loops resulting in widespread neural activity over extensive cortico-striatal           

networks. The selection of RL states starts with broad sweeps to evolve in a fine search.                

Initially, broad brain regions are equally activated and participate in the search. Next,             

dimension reduction and feature selection begin to drop-out less activated loops,           

accelerated by higher cognition (Fig. 2). Finally, only a small number of loops remain and               

neural activity should be concentrated to basal ganglia and the few cortical locations carrying              

the most relevant representations. A useful analogy for this process is simulated annealing             

and Gibbs sampling, optimization techniques to approximate global solutions in large search            

spaces [59,60]. Annealing starts by first using high temperatures causing large changes in             

the objective function, then iteratively descending to lower temperatures causing ever           

smaller rearrangements - until convergence. That is, high temperatures are a form of             

dimension reduction, while low temperatures are akin to feature selection. We suggest that             

dimensionality reduction relates to abstraction, operating at low oscillatory frequency modes           

with low spatial resolution and using large neural populations, while feature selection relates             
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to specific content utilizing high frequency modes and sparse neural ensembles (Fig. 3). Low              

frequency synchronization delineates the horizon of relevant dimensions so that high           

frequency-based feature selection can happen - the key element is that in the brain these               

take place simultaneously, accelerating interaction and winner-take-all convergence of loop          

drop-out. Recent work has elegantly linked the brain’s structural connectivity (particularly the            

thalamo-cortical system) with neural activity patterns and dynamics, providing a formal basis            

for harmonic patterns of certain frequencies [61]. The authors of this work demonstrate that              

these connectome-specific harmonics patterns self-organize through the interplay of neural          

excitation and inhibition in coupled dynamical systems.  

At last, we can now delineate how cognitive functions may affect and expedite learning              

processes. We have a system composed of massively parallelized modules centered around            

RL machinery, where communication frequency determines the abstraction level of          

representations, and where cognitive functions have the ability to synchronize          

representations at different abstraction levels. Initially, when the search is still in its infancy              

and characterized by activity over broad areas, the system is typified by low abstraction, and               

low spatiotemporal-frequency synchronization, with most processes unconscious. RPEs may         

be tied to any aspects of the task, with most RPEs being unspecific and irrelevant. Attention                

and memory play important roles at this stage for the selection of relevant features (i.e.,               

loops) [62] through synchronization in high spatiotemporal-frequency channels [55,63]. As          

learning progresses, feature-specific RPEs become predominant, and the number of          

activated loops greatly decreases. The abstraction level increases because feature-specific          

RPEs can be represented summarily, hence further reducing the dimensionality and           

complexity of the problem. Hidden states in reinforcement learning can now be discovered             

more readily because the search domain has shrunk. The degree of certainty or uncertainty              

on neural meta-representations can provide a fast track to which states are relevant or              

irrelevant in reinforcement learning, by virtue of its self-monitoring property [33].           
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Metacognition should thus plays a central role when learning switches from initial broad             

search to rule acquisition in localized sparse neural ensembles. Furthermore, learning may            

reach the highest level of abstraction by piercing the veil of consciousness. Conscious             

representation of rules can be interpreted as a maximally abstract summary, a tensor with              

very low dimensionality that nevertheless carries fundamental information [39]. These sort of            

meta-representation vectors are extremely useful because they can be easily applied to            

new, similar but previously unexperienced, problems.  
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Conclusions 

Fruitful interactions between neuroscience and AI have opened up a new exciting era             

beyond DNN, which require huge training samples. Brains utilize higher cognitive functions            

such as attention, memory, concept formation, and metacognition to transform seemingly           

intractable supervised learning problems with astronomical degrees-of-freedom state spaces         

and small samples, into reasonable reinforcement learning problems within a low-dimension           

meta-representation manifold.  

We postulated that the neuronal mechanism implementing this transformation of          

computational problems is likely comprised of parallel search of low-dimensional          

meta-representations via synchronization of multiple loops formed by the cerebral cortex,           

HPC and basal ganglia. Brain connectivity and nonlinear neural dynamics provide harmonic            

modes spanning from low to high spatiotemporal frequencies. Interactions between different           

modes may provide dimension reduction and feature selection analogous to simulated           

annealing, albeit much faster. That is, low frequency mode could allow for dimension             

reduction analogous to high temperature in annealing, while high frequency modes could            

select a small number of features analogous to low temperature. Furthermore, real-time            

interactions between high and low frequency modes may enable fast parallel searches to             

quickly determine the reinforcement learning search domain. Attention and episodic memory           

are presumed mechanisms operating feature selection, while conceptualization mainly takes          

the form of dimension reduction. Discovery of relevant hidden states may be greatly             

accelerated by metacognition through synchronization of meta-representations.  

Taken together these cognitive modules, acquired over millions of years by natural selection,             

might inspire a new generation of AI architectures that will take us one step closer to human                 

level intelligence.   
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FIGURES 

 

 

Fig. 1: General schematic, solutions to complex problems in artificial intelligence and nature             

(brains). Higher cognitive functions continuously interact between them and with reinforcement           

learning to drive generalization and learning from small sample.   
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Fig. 2: Winner-take-all parallel computing takes place in loops spanning the basal ganglia and              

neocortex. Excitatory and inhibitory interactions between multiple loops formed by the basal ganglia,             

thalamus and cerebral cortical regions implement winner-take-all computations. The loop with the best             

representation for reinforcement learning and minimum reward prediction errors thus wins and all             

other loops are suppressed. These winner-take-all computations implement dimension reduction and           

feature selection, while being accelerated by high cognitive functions as follows. Attention executes             

feature selection rather than dimension reduction, with relatively low abstraction. Episodic memory,            

among different kinds of memories, represents feature selection in the time domain, and its              

abstraction level is relatively low. Conceptualization executes dimension reduction rather than feature            

selection, and its abstraction level is high. Metacognition does both dimension reduction and feature              

selection and its abstraction level is very high. Consciousness has the highest abstraction level and               

results in pure dimension reduction. dlPFC: dorsolateral prefrontal cortex, OFC: orbitofrontal cortex,            

HPC: hippocampal formation, MC: motor cortex, PPC: posterior parietal cortex, ITC: inferior temporal             

cortex, VC: visual cortex, VTA/SNc: ventral tegmental area / substantia nigra, RL: reinforcement             

learning. Figure modified from Haruno & Kawato [64]. 
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Fig. 3: Different frequency modes in synchronization of neural activity represent coarse and fine              

dimension reduction and feature selection. While low-frequency spatio-temporal modes contain          

many neurons and connections, high frequency modes contain small numbers of neurons and             

connections. Nonlinear dynamics interactions between low and high-frequency modes provide the           

computational means for fast parallel search of the optimal metarepresentation, corresponding           

smallest reward prediction errors (RPE), neurons and connections. When a low frequency mode is              

selected first, all high frequency modes contained within it are generally activated because low and               
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high frequency modes share common neurons and connections. Among the activated high-frequency            

modes, those with the highest correlations between meta-representations and RPE are further            

activated, and an optimal mode is thus selected. Consequently, dimension reduction with            

low-frequency synchronization and feature selection with high-frequency synchronization proceed         

together by closely interacting. Low frequency mode corresponds to dimension reduction such as             

principal component analysis (PCA) and high temperature in annealing. High frequency mode            

corresponds to feature selection such as L1-norm regularization or automatic relevance           

determination, and low temperature in annealing. Real or simulated annealing takes long time but              

brains cannot afford that. There exists no external control of temperature in the proposed interaction               

between different modes, and in a sense nonlinear brain dynamics analogously implement simulated             

annealing. With low signal to noise ratio, which is common in most learning problems, first an optimal                 

low-frequency mode is activated because it contains many areas, neurons and connections. This             

increases the chances of correlation computations surviving high noise conditions. Then,           

high-frequency modes contained in it are generally activated, and correlations can be more reliably              

computed by constrained domains and general excitatory inputs to them. The selection of the optimal               

high-frequency mode can be executed more robustly. This interaction between low and            

high-frequency modes roughly implements annealing. 
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