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Abstract—Fifty years have passed since David Marr, Masao Ito, and James Albus proposed seminal models of
cerebellar functions. These models share the essential concept that parallel-fiber-Purkinje-cell synapses undergo
plastic changes, guided by climbing-fiber activities during sensorimotor learning. However, they differ in several
important respects, including holistic versus complementary roles of the cerebellum, pattern recognition versus
control as computational objectives, potentiation versus depression of synaptic plasticity, teaching signals ver-
sus error signals transmitted by climbing-fibers, sparse expansion coding by granule cells, and cerebellar inter-
nal models. In this review, we evaluate different features of the three models based on recent computational and
experimental studies. While acknowledging that the three models have greatly advanced our understanding of
cerebellar control mechanisms in eye movements and classical conditioning, we propose a new direction for
computational frameworks of the cerebellum, that is, hierarchical reinforcement learning with multiple internal
models.
This article is part of a Special Issue entitled: In Memoriam: Masao Ito—A Visionary Neuroscientist with a Passion for the

Cerebellum. � 2020 The Author(s). Published by Elsevier Ltd on behalf of IBRO. This is an open access article under the

CC BY license (http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

Masao Ito (1928–2018) made unique and profound

contributions to our understanding of cerebellar

functions, not only through experimental work (inhibitory

action of Purkinje cells: Ito and Yoshida, 1964; Ito et al.,

1964; Obata et al., 1967; adaptation of vestibulo-ocular

reflex: Ito et al., 1982a; long-term depression of parallel-

fiber-Purkinje-cell synapses: Ito et al. 1982b; Ito and

Kano, 1982; molecular mechanisms of synaptic plasticity:

Ito, 2001), but also through theoretical studies (Ito, 1970,

1974, 1984, 2006, 2008, 2011). Fifty years ago, David
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Marr (Marr (1969)), Masao Ito (Ito (1970)), and James

Albus (Albus (1971)) proposed computational models of

cerebellar learning functions, based on neural circuits of

the cerebellum (Eccles et al., 1967). As Ito acknowledged

(Ito, 1970, 1974, 1984), his model was deeply influenced

by Marr’s model. However, the three models differed in

several important respects.

With recent advances in experimental and

computational studies, we compare and evaluate

differences between these three seminal models (See

Tyrrell and Willshaw, 1992; Sanger et al., 2020 for related

efforts). In particular, we extend detailed discussions of

three important differences of the models: parallel-fiber-

Purkinje-cell synaptic plasticity, codon theory, and internal

models. For oculomotor control and classical condition-

ing, Ito’s model was sufficiently robust to influence exper-

imental and computational studies for the past fifty years.

While we acknowledge that the three models were among

the most successful and influential computational models

in neuroscience, they were insufficient as a computational

framework for understanding several cerebellar functions,

including whole body movements (Morton and Bastian

2007; Hoogland et al., 2015; Machado et al., 2015) or

cognitive functions (Ito 2008; Strick et al., 2009; Lu
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et al., 2012; Schmahmann et al., 2019). In conclusion, we

propose a new computational framework of hierarchical

reinforcement learning with multiple internal models for

phylogenetically newer parts of the cerebellum and newer

functions.

COMPARISONS OF THE MODELS OF MARR,
ITO, AND ALBUS

In this section we compare several characteristics of the

three models proposed by Marr, Ito, and Albus (see

Table 1). First, the three models all propose that

modification of parallel-fiber-to-Purkinje-cell synapses

guided by climbing-fiber inputs is central to sensorimotor

learning in the cerebellum (Table 1). Ito acknowledged

that his model followed Marr’s model regarding this

fundamental principle (Ito, 1970, 1974, 1984).

Neural circuits of the cerebellar cortex are much more

uniform, regardless of different regions and zones (Sillitoe

and Joyner 2007; Zhou et al., 2014; Tsutsumi et al., 2015,

2019), than those of the cerebral cortex. Based on this

hardware uniformity, researchers, and especially theo-

rists, are tempted to assume a uniform computational the-

ory for the cerebellum (Apps and Garwicz, 2005; Apps

and Hawkes, 2009). This assumption is not well substan-

tiated for the following reasons. One of the outstanding

contributions of David Marr (Marr (1982)) was his pro-

posal of three levels of brain research: computational the-

ory, representation and algorithm, and hardware

implementation. If we accept that these three levels are

somewhat independent, then hardware uniformity does

not imply unified computational theory or uniform algo-

rithms used in the cerebellum. Furthermore, different

regions of the cerebellum receive mossy-fiber and

climbing-fiber inputs from many different areas of the

brain and the rest of the nervous system. Thus, input rep-

resentations cannot be uniform either. Different regions of

the cerebellum are involved in adaptation of oculomotor

control, learning in conditioning, whole body movement,

and cognitive functions. Correspondingly, mossy and

climbing-fiber inputs range from direct inputs from sen-

sory organs to inputs originating from higher association

cortices of the cerebrum. Deep cerebellar nucleus outputs

range from premotor neurons to higher cerebral associa-

tion cortices via the thalamus. It would be very surprising

if a single computational theory and a single representa-

tion and algorithm could explain all these diverse cerebel-

lar functions, inputs, and outputs. Still, if we interpret the

common proposal by Marr, Ito, and Albus as a computa-

tional algorithm used in the local circuits around Purkinje

cells, some common algorithms and representations

might be omnipresent in the cerebellum. We will explore

mainly this possibility in this review.

Holistic versus modulating control

Marr and Albus proposed their models in a framework in

which the cerebellum controls movements entirely by

itself (holistic controlling role). Their models did not

consider computational roles played by other brain

regions or other parts of the nervous system, except for
climbing-fiber inputs. In contrast, Ito conceptualized the

cerebellum in a network comprising other brain regions or

other parts of the nervous system (complementary,

modulating role, Table 1). For oculomotor control,

conditioning, and higher cognitive functions, the

cerebellum works as a side path in parallel to a main path

formed by other brain regions or other parts of the

nervous system.
Pattern recognition versus regression

The major objectives of most machine learning algorithms

are either classification or regression. In the simplest

classification, an algorithm determines whether a given

sample belongs to a given class. In a regression, an

algorithm approximates a target function using output

computed from multiple inputs. In many cases of

regression, the target function is smooth and nonlinear.

Deep neural networks can classify millions of images

into thousands of object categories, in what constitutes

a pattern recognition problem. Three-layer neural

networks can also approximate nonlinear inverse

dynamics of multi-link robotic manipulators (Miyamoto

et al., 1988), a regression problem that can be used for

movement control.

Marr and Albus viewed pattern recognition tasks as

objectives of cerebellar learning. In contrast, Ito targeted

control tasks as objectives of cerebellar learning, thus

treating them as regression problems. Adaptation of

oculomotor control is best treated as a learning control

and regression problem. Learning in a visually guided

arm-reaching task likewise can best be treated as

learning control and regression problems. In learning of

conditioned responses, both pattern recognition views

and control views are still advocated. Khilkevich et al.,

(2018) reported that over-trained rabbits with eyeblink

conditioning either generate conditioned eyelid responses

with a stereotyped amplitude, or else fail completely to

generate eyelid responses, in an all-or-nothing manner.

Since this pattern of response was maintained even when

noise was added to mossy-fiber input, they regard this as

experimental evidence that the cerebellum is able to rec-

ognize patterns whether mossy-fiber input is a condi-

tioned stimulus or not. Thus, conceptually, the

cerebellum is often interpreted as solving the pattern

recognition problem of whether mossy-fiber inputs are

conditioned stimuli. However, others still view the cerebel-

lar role in conditioned learning as learning control, includ-

ing amplitudes of conditioned responses, just as the

terminology changed from ‘‘eyeblink conditioning” to

‘‘eyelid conditioning” (Medina et al., 2001, 2002). In sum-

mary, most sensorimotor learning problems are better

viewed as control and regression problems, rather than

pattern recognition and classification problems, because

many experimental data demonstrate kinematic and

kinetic representations of movements in the cerebellum.

We must await future studies to see how much pattern

recognition and how many regression characteristics are

involved in the newest functions of cerebellar higher cog-

nitive functions.



Table 1. Comparisons of the models of Marr, Ito and Albus. A check mark indicates an included concept, – denotes not mentioned, and a question mark

means that the model was ambiguous on that point

Marr Ito Albus

(1) Modification of parallel-fiber synapses on Purkinje cells conditioned

by climbing-fiber inputs is central to learning

✔ ✔ ✔

(2) Holistic or Complementary role of cerebellum in motor control? Holistic Complementary Holistic

(3) Pattern recognition versus Control Pattern recognition Control Pattern recognition

(4) Synaptic plasticity of parallel-fiber-Purkinje-cell synapses when

climbing fiber is activated

LTP LTD Anti-Hebbian

(5) Does climbing fiber input represent teaching signal, error signal or

unconditioned stimulus?

Teaching signal Error signal Unconditioned stimulus

(6) Sparse expansion coding by granule cells or ‘‘Codon” theory ✔ — ✔

(7) Internal Models — ✔ ?

Table 2. Numbers of plastic synapses in the human cerebellum. The

cell number column indicates the number of postsynaptic neurons.

These numbers are based on Ito (1984), and Fukutani et al. (1992) and

Andersen et al., (2004) for deep cerebellar nucleus

Cell number Synapse number

Parallel fiber – Purkinje 15 million 10,000 billion

Mossy fiber – Granule

cells

50 billion 200 billion

Mossy fiber – Golgi cells 5 million 5 billion

Mossy fiber – deep

cerebellar nucleus

500 thousands 5 billion

Purkinje cell – deep

cerebellar nucleus

500 thousands 5 billion
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SYNAPTIC PLASTICITY IN ACHIEVING
SUPERVISED LEARNING

Sites of synaptic plasticity for cerebellar learning

The three models assumed markedly different synaptic

plasticity rules at parallel-fiber-to-Purkinje-cell synapses

(Table 1). Marr assumed potentiation of these synapses

when climbing-fibers, parallel fibers, and Purkinje cells

are activated. Marr also postulated that in the

cerebellum, only these synapses exhibit plasticity. In the

past three decades, many different types of synapse

have proven to be plastic (Table 2) (Hansel et al., 2001;

Zhang and Linden, 2006; Hirano, 2013; D’Angelo et al.,

2016), and many of them are Hebbian or anti-Hebbian

(Gao et al., 2012). Among these, in addition to plasticity

of molecular layer inhibitory interneurons, plasticity of m

ossy-fiber-to-deep-cerebellar-nucleus synapses has

attracted experimental and theoretical interest intended

to reveal their contributions to motor learning and its

mechanisms (Miles and Lisberger, 1981; Lisberger and

Sejnowski, 1992; Attwell et al., 2002; Tabata et al.,

2002). Recently, memory transfer from parallel-fiber-to-

Purkinje-cell synapses to mossy-fiber-to-deep-cerebel

lar-nucleus synapses has been intensively studied

(Shutoh et al., 2006; Anzai et al., 2010; Yamazaki et al.,

2015; Lee et al., 2015).

The number of parallel-fiber-to-Purkinje-cell synapses

is 50 times larger than the sum of all other plastic

synapses (Table 2). The capacity of the learning

system, e.g., the allowable number of non-spurious

memories in a recurrent artificial neural network

(Hopfield, 1982; Gardner and Derrida, 1988), and approx-

imation capacity of multi-layer perceptrons (Cybenko,

1989; Funahashi, 1989), increases as the number of

parameters (Cover, 1965), or the number of synapses in

biological networks, increases. Thus, learning capacity

of the cerebellum largely depends on parallel-fiber-to-

Purkinje-cell synapses, and it is reasonable that the three

models emphasized these synapses so heavily. A huge

learning system with trillions of learning parameters pos-

sesses immense learning capacity, but necessitates a

huge learning sample for training, in order to guarantee

good generalization in circumstances other than those in

which the original learning occurred (Watanabe, 2009,

Zhang et al., 2017; Suzuki, 2018; Schmidt-Hieber, 2017;
Amari, 2020). A smaller learning system with a small

number of synapses has a small learning capacity, but

is better at generalization when provided with even a

small number of learning samples. Transfer learning from

parallel-fiber-Purkinje-cell synapses to mossy-fiber-deep-

cerebellar-nucleus synapses may benefit from these

respective advantages and disadvantages of huge and

small learning systems. For example, long-term memory

should possess more stringent generalization capability

compared with short-term memory, because the former

faces larger numbers of new different situations than the

latter. Consequently, a small capacity system is more sui-

ted for long-term memory in situations in which only a

fixed number of training samples is given (see Sanger

et al., 2020 for related discussions).
LTD-LTP in parallel-fiber-Purkinje-cell synapses as
supervised learning machinery

Ito proposed that climbing-fiber inputs represent error

signals and that parallel-fiber-to-Purkinje-cell synapses

undergo long-term depression (LTD) when both parallel-

fiber and climbing-fiber inputs are activated (Table 1).

Climbing-fiber inputs represent error signals originating

from retinal slips in oculomotor control adaptation,

including vestibulo-ocular reflexes, optokinetic

responses, and ocular following responses (Simpson and

Alley, 1974; Simpson et al., 1996; Kawano et al., 1996a,

b; Kobayashi et al., 1998; Kawano, 1999). Especially for

ocular following responses, parallel-fiber inputs represent
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large visual-field motion in visual coordinates, while

climbing-fiber inputs represent motor errors derived from

retinal slips in motor coordinates (Kawano et al., 1996a,b;

Kawato, 1999). This is a very rare example of an experi-

mental paradigm for which sensory and motor coordinates

are clearly separated. In visually guided arm reaching,

climbing-fiber inputs represent errors (Kitazawa et al.,

1998). Albus assumed that climbing-fiber inputs represent

unconditioned stimuli, and that parallel-fiber-to-Purkinje-

cell synapses obey the anti-Hebbian rule: synaptic efficacy

decreases when parallel fibers, Purkinje cells, and

climbing-fibers are all excited. In classical conditioning,

climbing-fiber inputs can be interpreted as either uncondi-

tioned stimuli or unconditioned responses. However, this

interpretation cannot be applied to broader classes of sen-

sorimotor learning, and unconditioned stimuli or uncondi-

tioned responses can be equally well interpreted as

sensory errors or motor errors, which can be reduced by

learned conditioned responses.

Ito and others experimentally demonstrated LTD (Ito

et al., 1982a,b; Ito and Kano, 1982; Hirano, 1990;

Linden and Connor, 1995; Ito, 2001). Later, long-term

potentiation (LTP) was discovered when parallel-fibers

were activated in the absence of climbing-fiber inputs

(Hirano, 1990, 2013; Sakurai, 1987). Accordingly,

parallel-fiber-to-Purkinje-cell synapses possess bidirec-

tional synaptic plasticity LTD-LTP controlled by the pres-

ence and absence of climbing-fiber inputs, respectively.

Earlier there was some controversy as to whether LTD-

LTP is essential for several types of motor learning in

the cerebellum, but there is now a consensus that it is

important and necessary (Welsh et al., 2005;

Schonewille et al., 2011; Anzai and Nagao, 2014; Ito

et al., 2014; Yamaguchi et al., 2016; Inoshita and

Hirano, 2018; Kakegawa et al., 2018). If LTD-LTP is

granted, it is contradictory to assign a teaching signal role

to climbing-fiber inputs. Purkinje-cell simple-spike outputs

would learn a sign-inverted waveform of the ‘‘teaching sig-

nal” that contradicts the ‘‘teaching signal.”

In the simplest interpretation, bidirectional LTD-LTP

implements the Widrow-Hoff rule for ADALINE (Widrow

et al., 1976; Fujita, 1982; Kawato et al., 1987; Kawato

and Gomi, 1992) to minimize a squared error of regression

in the steepest descent direction. The following is a mathe-

matical demonstration that LTD-LTP can implement a sim-

ple supervised learning rule if the climbing-fiber firing

modulation from its spontaneous level represents an error

signal. Let usassume thatPurkinje-cell simple-spikeoutput

y is a linear weighted summation of parallel-fiber input xi by
the parallel-fiber synaptic weight wi,

y ¼
X
i

wixi

Purkinje-cell simple-spike output y learns to

approximate a time-varying target value, by, after sign

inversion due to inhibitory action by Purkinje cells.

�y ! by
If learning occurs in the steepest-descent direction of

the squared error E ¼ by � �yð Þð Þ2 ¼ by þ yð Þ2, the

steepest-descent-direction of change in wi is as follows,
� dE

dwi

¼ � d by þ yð Þ2
dwi

¼ �2 by þ yð Þxi

Let CF denote an instantaneous firing frequency of

climbing-fiber input. CF denotes its spontaneous firing

level. The basic assumption implied in Ito (1970) was that

if the difference CF� CF encodes the error by þ y, then
LTD and LTP realize steepest-descent learning with a

positive learning coefficient e, as follows.

dwi ¼ �2e by þ yð Þxi=�2e CF� CF
� �

xi

This equation is in agreement with LTD (negative dwi,

and wi decreases) when CF� CF is positive (when

climbing-fiber input is activated), and LTP (positive dwi,

and wi increases) when CF� CF is negative (when

climbing-fiber input is silent). Considering that the

baseline or spontaneous climbing-fiber firing rate is low,

around 1 Hz, the negative modulation below

spontaneous firing rate often lead to a fall to zero. If

CF� CF can be negative then dwi is positive, when CF

is smaller thanCF. In other words, LTP is triggered

when climbing-fiber input is silent, which is less active

than spontaneous firing. This means that the negative

error signal would be an inhibition of spontaneous

climbing-fiber inputs (Ohmae and Medina, 2015). This is

the basic assumption of the unified LTP-LTD model

(Kawato and Gomi, 1992).

Disinhibition of inferior olive nucleus neurons by

Purkinje cells, via inhibition of the deep cerebellar

nucleus, can implement the second term y of the error

computation by þ y, at least partially (Nicholson and

Freeman, 2003; Rasmussen et al., 2008; Chaumont

et al., 2013; Ohmae and Medina, 2015). In order for this

interpretation of LTD-LTP as the error minimizing

synaptic-plasticity algorithm, the neural circuit that is

downstream to deep cerebellar nucleus should have a

proper sign and an aligned coordinate frame so that a

change in �y reduces the error by � �yð Þ. These sign

and coordinate requirements are fundamental to Ito’s

model, and were experimentally demonstrated at the

detailed neural circuit level for oculomotor adaptation,

including vestibulo-ocular reflex, optokinetic responses,

and ocular following responses (Simpson and Alley,

1974; Ito, 1974, 2006; Gomi and Kawato, 1992:

Kawano, 1999: Kawato, 1999, Yamamoto et al., 2002).

For a broader class of sensorimotor learning by the cere-

bellum, examination of these theoretical requirements at

the neural circuit level is still technically demanding,

mainly because we do not fully understand the essential

low dimensions at which learning occurs. We will discuss

these error and dimension issues in the Section entitled,

‘‘Toward a new computational theory of the cerebellum.”
Coincidence detection between parallel-fiber and
climbing-fiber inputs and a temporal window of
synaptic plasticity

Doya (1999) postulated that the three learning algorithms

proposed in computational neuroscience, unsupervised

statistical learning, reinforcement learning, and super-

vised learning, are the main functions of the cerebral cor-
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tex, the basal ganglia, and the cerebellum, respectively

(see also Raymond and Medina, (2018) for cerebellar

supervised learning). In the Section entitled, ‘‘Toward a

new computational theory of the cerebellum”, we argue

against this classification and propose that all three brain

regions are for reinforcement learning. However, here we

agree with Doya (1999), in the sense that a local neural

circuit around Purkinje cells is most suited for supervised

learning, based on a biophysical model of LTD for

parallel-fiber-to-Purkinje-cell synapses (Fig. 1A, B). Large

calcium increases in dendritic spines induce long-term

decreases of synaptic efficacy, LTD, in the cerebellum

(Fig. 1C), while it induces long-term increases of synaptic

efficacy, LTP, in the cerebral cortex (Fig. 1D). In contrast,

small calcium increases induce LTD in the cerebral cor-

tex, while by themselves, they do not induce LTP in the

cerebellum (Tanaka et al., 2007). Consequently, other

factors such as nitric oxide are necessary for LTP induc-

tion in the cerebellum (Ogasawara et al., 2007).

Fig. 1A depicts schematically the early phase of LTD

of parallel-fiber-Purkinje-cell synapses up to a large

calcium increase (Kuroda et al., 2001; Ito, 2002;

Kotaleski et al., 2002; Doi et al., 2005). Parallel-fiber

inputs depolarize dendritic spines via a-amino-3-hydrox

y-5-methyl-4-isoxazolepropionic acid receptors

(AMPARs). In parallel to this action, glutamate released

from parallel fibers binds to metabotropic glutamate

receptor type 1 (mGluR1) inducing a slow increase of

inositol 1,4,5-triphosphate (IP3) with 100 millisecond-

order time to peak, via G-proteins and phospholipase

Cb. On the other hand, climbing-fiber inputs, which lag

about 100 ms behind parallel-fiber inputs, induce large

depolarizations in dendrites via multiple strong excitatory

synapses, thereby opening voltage-dependent calcium

channels on the spine and inducing calcium influx (Ito,

2002; Doi et al., 2005) (Fig. 1A). Because the latter elec-

trical event is much faster than the former, IP3 and Ca2+

concentrations increase simultaneously in the spine. This

triggers a regenerative Ca2+ increase by IP3-induced

Ca2+ release (IICR) through IP3–bound IP3 receptors

(IP3Rs). IP3Rs are IP3-gated Ca2+ channels on the endo-

plasmic reticulum (ER), which is the intracellular Ca2+

store. IICR results in a supralinear Ca2+ surge with sev-

eral micro-molar peaks (Wang et al., 2000; Doi et al.,

2005) (Fig. 1B).

The Ca2+ surge induces subsequent reactions

including activation of a mitogen-activated protein

kinase (MAPK)-positive feedback loop, which

phosphorylates and then internalizes AMPARs, and

induces and consolidates LTD (Kuroda et al., 2001).

Tanaka et al., (2007) demonstrated that a MAPK-

positive feedback loop operates as a leaky integrator of

Ca2+ concentration to determine the threshold of LTD,

thus determining the temporal window of LTD. IP3Rs

and IP3-dependent IICR act as coincidence detectors of

the preceding parallel-fiber and delayed climbing-fiber

inputs, as detailed in the following. Because the opening

probability of IP3Rs increases with IP3 concentration,

the Ca2+ threshold for IICR Ca2+ surge decreases within

a few hundreds of milliseconds (blue curve in Fig. 1B)

after multiple parallel-fiber inputs as IP3 concentration
slowly increases via the mGluRs pathway, typically

achieving its minimum after 100 milliseconds (Fig. 1B).

Ca2+ increase by climbing-fiber inputs around this

minimum-threshold time is sufficiently large to cross the

threshold (thick black curve in Fig. 1B) so that IICR

Ca2+ surge is triggered and drives LTD as explained

above. If climbing-fiber inputs are either too early (gray

curve in Fig. 1B) or too late (dotted curve in Fig. 1B) with

respect to this minimum-threshold time, then the Ca2+

increase is below the threshold of the IICR Ca2+ surge

and fails to induce LTD (Fig. 1B). In summary, the tempo-

ral window of LTD is determined by a slow increase in IP3

concentration and the resultant dynamic threshold

change determined by IP3Rs kinetics, and is on the order

of 100 milliseconds. Simplistically speaking, the molecular

cascade consisting of glutamate, mGluR1, G-proteins,

phospholipase Cb, IP3, IICR of IP3Rs generates the delay

such that the climbing fiber signal coming later can fall in

the temporal window of LTD.

In addition, the intensity of climbing-fiber input can

matter. Complex spikes measured in extracellular

recording are not homogeneous and consist of 1–6

consecutive spikes of climbing-fibers (called spikelets;

Armstrong and Rawson, 1979; Maruta et al., 2007;

Mathy et al., 2009). The number of spikelets is essential

to induce motor learning (Rasmussen et al., 2013; Yang

and Lisberger, 2014). As the number of spikelets

increases, it may reach the threshold of Ca2+ spikes,

which could not be reached by shorter spikelets, and

may extend the temporal window of Ca2+ surge and

LTD. On the other hand, in saccadic adaptation, the tim-

ing of climbing-fiber input on the order of 100 milliseconds

is suggested to be more important than the number of spi-

kelets (Herzfeld et al., 2018). The ability of spikelet to

extend the temporal window may vary, depending on

the context and/or the area in the cerebellum.

Contrasting synaptic plasticity mechanisms between
Purkinje cells and pyramidal neurons

Fig. 1C, D contrast different synaptic plasticity

mechanisms of Purkinje cells of the cerebellum and

pyramidal neurons of the cerebral cortex, while

illustrating different morphological, physiological, and

molecular mechanisms, with emphasis on coincidence

detection. The large Ca2+ surge in Purkinje cells is

induced by IICR from IP3Rs and is mainly triggered by

calcium influx caused by climbing-fiber inputs. Note that

action potentials in Purkinje cells do not backpropagate

because of excessive electrical load by extensive

dendrite branching (Vetter et al., 2001) and the low den-

sity of sodium channels on dendrites (Llinas and

Sugimori, 1980; Stuart and Häusser, 1994). Conse-

quently, whether Purkinje cells are excited is irrelevant

to LTD, while the large depolarization and subsequent

Ca2+ increase induced by climbing-fiber inputs are deci-

sive for LTD occurrence. Thus, supervised learning

guided by error signals is suggested for the cerebellum.

In contrast, in cerebral pyramidal neurons (Fig. 1D),

NMDA receptors (N-methyl D-aspartate receptor,

NMDAR) are coincidence detectors of glutamate released

from presynaptic terminals and the backpropagating



Fig. 1. Different synaptic plasticity mechanisms of Purkinje versus pyramidal cells. (A) Schematic diagram of an LTD biophysical model (Doi et al.,

2005). (B) Simulation reproduces the temporal window of Ca2+ surge that triggers LTD. (C) An LTD biophysical model overlaid on morphology, key

molecules, and physiology of Purkinje cells. (D) Synaptic plasticity and coincidence detection mechanisms in pyramidal neurons in the cerebral

cortex and medium ganglion cells in electrical lobes (ELL) in comparison with Purkinje cells in the same format as shown in (C). *Figure (A) and (B)
were published in J Neurosci 25, Doi T, Kuroda S, Michikawa T, Kawato M, Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics

detect spike timing in cerebellar Purkinje cells, 950–961, Copyright The journal of Neuroscience (2005). *Figure (C) and (D) were published in Curr

Opin Neurobiol 21(5), Kawato M, Kuroda S, Schweighofer N, Cerebellar supervised learning revisited: biophysical modeling and degrees-of-

freedom control, 791–800, Copyright Elsevier (2011).
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action potential from the axon initial segment (Linden,

1999; Caporale and Dan, 2008). Glutamate, released

from presynaptic terminals, binds to NMDARs, and back-

propagating action potentials increase the postsynaptic

voltage and consequently release a Mg2+-block of

glutamate-bound NMDARs, resulting in full activation of

NMDARs (Linden, 1999; Caporale and Dan, 2008;

Urakubo et al., 2009). This leads to a large Ca2+ influx

via NMDARs and induces subsequent reactions to con-

solidate LTP. Because the release of NMDARs from the

Mg2+-block by backpropagating action potentials is the

decisive event that leads to large calcium influx, Hebbian

and unsupervised statistical learning are suggested for

the cerebrum (Fig. 1D). For parallel-fiber-Purkinje-cell
synapses of adult cerebellum, there is no evidence that

NMDARs in Purkinje cells participate significantly in LTD

(Perkel et al., 1990; Renzi et al., 2007; Kono et al.,

2019). In striatal medium spiny neurons, while Ca2+ influx

depends on NMDAR activation by backpropagating action

potentials, as in the cerebrum, synaptic plasticity also

depends on activation of dopamine receptors (Wickens

et al., 1996; Shen et al., 2008). In D1 receptor-

expressing neurons, activation of the positive feedback

loop, composed of PKA, PP2A and DARPP-32, serves

as the coincidence detector of Ca2+ influx and dopamine

input (Lindskog et al., 2006; Fernandez et al., 2006;

Nakano et al., 2010); thus, the reinforcement learning rule

is supported. Because D1 receptors and DARPP-32 are
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expressed in prefrontal cortex, but at lower levels, the

positive feedback loop probably does not possess bista-

bility between the basal state and the excited state; thus,

it cannot implement reinforcement learning rules, as in the

basal ganglia. This is because any reinforcement learning

rule necessitates memory functions provided by some

kinds of bistability. In summary, Purkinje cell LTD is

unique, supervised, and not Hebbian, while all those in

the cerebral cortex, hippocampus, and basal ganglia are

basically Hebbian, meaning that action potentials of the

post-synaptic neurons are essential for synaptic plasticity.

According to the different mechanisms of coincidence

detection in synaptic plasticity for the cerebellar cortex

and the cerebral cortex, temporal windows of synaptic

plasticity are also qualitatively and quantitatively

different. The synaptic eligibility trace is a record of a

synapse’s recent activities to mark it as being eligible to

change and to become distinct from other synapses

(Barto et al., 1983). The synaptic eligibility trace for Purk-

inje cells is slowly rising IP3 (Okubo et al., 2004; Doi et al.,

2005); thus, the temporal window of LTD with respect to

parallel-fiber input is �100 ms in the cerebellum. In con-

trast, NMDAR dynamics are the synaptic eligibility trace

for pyramidal neurons, dynamics that determine a tempo-

ral window of �10 ms (Markram et al., 1997). Further-

more, when synaptic input precedes postsynaptic firing,

LTP is induced, whereas if the synaptic input lags behind

the firing, LTD is induced, which is spike-timing-

dependent plasticity (STDP) (Bi and Poo, 2001). While

late phases of LTD of the cerebellum and LTP of the cere-

brum seem to share common signal-transduction mecha-

nisms, the early phases are distinctly different, as

explained above, and partly explain differences in learning

algorithms at a micro level, as in dendritic spines.

Meta-plasticity of the temporal window of Purkinje-
cell LTD

In the framework of Ito’s model, simple spikes of Purkinje

cells elicited by a combination of parallel-fiber inputs and

spontaneous activities represent motor commands, and

complex spikes of Purkinje cells elicited by climbing-

fiber inputs represent error signals caused by executed

movements. Thus, complex spikes should be delayed

with respect to simple spikes, because of feedback

delays. This delay includes latency for conduction of

command signals within a neural circuit downstream to

the cerebellum, muscle stretches, movement execution,

sensory organ activation, afferent signal conduction, and

finally activation of inferior olive neurons. Yamamoto

and colleagues (2002) assumed that this delay was com-

pensated by the temporal window of LTD and conducted

efficient learning simulations. That is, the temporal corre-

spondence between the responsible motor command

(parallel-fiber inputs and simple spikes) and the resulting

motor error (climbing-fiber inputs and complex spikes) is

guaranteed in LTD, if the motor-sensory time delay is

matched to the temporal window of LTD (Ogasawara

et al., 2008). The motor-sensory time delay should be dif-

ferent for different cerebellar regions controlling different

movements. For example, the delay is expected to be

small, around 30 ms, for ventral paraflocculus controlling
ocular-following responses. The delay is expected to be

large and longer than 100 ms for a region in a hemisphere

responsible for visually guided arm-reaching. The size

(width and center) of the LTD temporal window for differ-

ent parts of the cerebellum should be matched to the

motor-sensory time delays, if the objective of the LTD

temporal window is to cancel the delay. Suvrathan and

colleagues (2016, 2018) found experimental data sup-

porting this theoretical requirement. In the biophysical

model of LTD (Doi et al., 2005), the optimal time delay

between parallel-fiber inputs and climbing-fiber inputs for

effective LTD, the time for IP3 concentration to reach its

maximum after parallel-fiber inputs arrive, is determined

by a biochemical reaction delay in the mGluR pathway.

This biochemical delay depends on concentrations of

the molecules involved, three-dimensional arrangements

of anchor proteins, diffusion constants of molecules, and

geometrical characteristics of cytosols within dendritic

spines. It would be exciting research to theoretically and

experimentally investigate possible chemical mecha-

nisms for meta-plasticity to change some of the above

factors so that the biochemical delay is matched to the

neural delay in a region- and movement-specific manner

in the cerebellum.
CODON THEORY

Marr and Albus proposed ‘‘Codon Theory” for

representations and computations by granule cells,

while Ito did not address this subject (Table 5). Because

Brindley (1964, 1969), a mentor of Marr, already dis-

cussed cerebellar-supervised learning, codon theory is

one of the most innovative elements of Marr’s model.

The number of cerebellar granule cells is �50 billion,

exceeding the sum of all other neurons in the brain. Each

granule cell possesses 4 to 5 synapses on small dendrites

and receives synaptic inputs from mossy-fibers. The num-

ber of granule cells is 200 times the number of mossy-

fibers, �250 million (Fig. 2B). This corresponds to ‘‘ex-

pansion coding” in modern terminology. In modern com-

putational terminology, codon theory also postulates

‘‘sparse coding” such that only a small number of granule

cells are activated when specific combinations of their

mossy-fiber inputs are activated. By expanding the

dimension of input representation (expansion) and reduc-

tion of the number of simultaneously activated granule

cells (sparseness), interference of associative memories

for different contexts is minimized; thus, efficient learning

can be expected.

Codon theory predicts nonlinear input–output

transformation at granule cells, low firing rates of

granule cells, activation of only a small portion of all

granule cells, and multiple modalities of mossy-fiber

inputs to individual granule cells, at least for certain

regions of the cerebellum and for certain cerebellar

functions. In the past two decades, large technical

advances of intracellular and patch clamp recordings, as

well as Ca2+ imaging from granule cells have been

made. Contradictory data for the above four predictions

has been obtained and some have even argued that

codon theory has been disproven. Sanger et al., (2020)



Fig. 2. (A) Circuit diagram of the cerebellum with the dentate nucleus, emphasizing its parallel path characteristics to the cerebral cortex in

sensorimotor control (taken from Sanger et al., 2020). In (A), IO: inferior olive nucleus, CPC; cortico-ponto-cerebellar pathway, CTC; cerebello-

thalamo-cortical pathway. (B) Relative numbers of cells and synapses in mossy- fibers, granule cells, Purkinje cells, and dentate-nucleus circuits

(taken from Sanger et al., 2020). In (B), the area of each gray rectangle is proportional to the approximate cell count for the corresponding cell type.

The area of each blue inset illustrates the relative number of output synapses from that type of neurons. *Fig. 2 was published in Journal of

Physiology, 598(5), Sanger TD, Yamashita O, Kawato M, Expansion coding and computation in the cerebellum: 50 years after the Marr-Albus

codon theory, 913–928, Copyright John Wiley and Sons (2020).
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recently reviewed this evidence and pointed out that

seemingly contradictory data obtained under specific

preparations and conditions cannot disprove the core of

codon theory. Because of this recent review, here we only

very briefly discuss the above four points: nonlinear trans-

formation, low firing rates, sparse coding, and multiple

input modality.

Under some experimental conditions, granule cells

can fire at high rates when activated by only a single

mossy-fiber, and the input–output firing-rate relationship

is linear (Jörntell and Ekerot, 2006; Rancz et al., 2007;

Arenz et al., 2008; van Beugen et al., 2013). Kawano

and colleagues showed that instantaneous firing rates of

both mossy-fibers and parallel fibers are related to eye

movement dynamics and are similar during ocular follow-

ing responses in ventral paraflocculus (Kawano and

Shidara, 1993; Kawano et al., 1996a,b). Head rotation

velocities were predicted from mossy-fiber firing frequen-

cies to granule cells, suggesting that instantaneous firing

rates encode information in granule cells (Arenz et al.,

2008). Recent Ca2+ imaging studies indicated that a

large proportion of granule cells are excited simultane-

ously, which appears to contradict sparse coding

(Spanne and Jörntell, 2015; Badura and De Zeeuw,

2017; Giovannucci et al., 2017; Knogler et al., 2017;

Wagner et al., 2017; Gilmer and Person, 2018). However,

this point critically depends on temporal resolution, or on a

minimal meaningful time bin of granule cell encoding. In

some examples of eye movements, temporal resolution

of simple-spike firing is around 1 millisecond (Shidara

et al., 1993; Gomi et al., 1998; Payne et al., 2019). If a

sampling frequency of Ca2+ imaging is 30 Hz and 50%

of granule cells are co-activated in the imaging resolution,

minimally only 1.5% of granule cells are simultaneously

activated in a 1-millisecond time bin. For the vestibular

cerebellum and regions that directly receive tactile inputs,

under decerebrated and/or anesthetized conditions, gran-

ule cells receive synaptic inputs from a single modality

(Jörntell and Ekerot, 2006; Bengtsson and Jörntell,

2009). However, Ishikawa et al., (2015) found that

mossy-fiber inputs of somatosensory, auditory, and visual

modalities from the cerebral cortex converge on individual

granule cells (Chabrol et al., 2015; Shimuta et al., 2019).

In this case, nonlinear input–output relationships were

observed for combined stimuli. Anatomically, one

mossy-fiber carrying proprioception from the external

cuneate, and another mossy-fiber carrying other modali-

ties from pontine nuclei converge to a single granule cell

(Huang et al., 2013).

In the Section, Comparisons of models by Marr, Ito,

and Albus, we discussed pattern recognition versus

control functions of the cerebellum. An all-or-nothing

(firing or not) representation is best suited for pattern

recognition, and codon theory is based on these

assumptions. Even for instantaneous firing-rate coding

and control (regression), codon theory might be relevant

to enhancement of approximation precision in

regression, as follows. Neuronal origins of mossy-fibers,

granule cells, and Purkinje cells form a three-layer

feedforward neural network. Funahashi (1989) and

Cybenko (1989) mathematically proved that such three-
layer neural networks can learn to approximate any arbi-

trary, smooth, nonlinear functions if the intermediate layer

has a sufficiently large number of neurons, and synaptic

weights are optimally chosen. As will be discussed in

the Section, Internal models, function approximation

capability is essential for learning acquisition of forward

models or inverse models of nonlinear, controlled objects

within the three-layer network. Because mossy-fiber-

granule-cell synapses possess Hebbian plasticity

(Schweighofer et al., 2001; Sgritta et al., 2017), backprop-

agation learning algorithms used for deep neural net-

works cannot be applied. Consequently, in order to

increase function approximation capability of the three-

layer network, a huge number of granule cells and a rich

repertoire of nonlinear basis functions are essential there

(Sanger et al., 2020). In this sense, the spirit of codon the-

ory, which was proposed in pattern recognition domains,

is still relevant even for cerebellar functions and regions

related to control, regression, and instantaneous firing-

rate coding. This is because the rich repertoire of nonlin-

ear transformations, provided by a vast number of granule

cells, is essential for approximation capabilities by the

cerebellum, and it is a core assumption of codon theory.

Higher expansion ratios are beneficial for more

elaborate cerebellar functions dealing with strong

nonlinearity; thus, the relevance of codon theory is

higher for larger expansion ratios. Recent structural

magnetic resonance imaging studies on gray matter and

input fibers of human cerebellum suggested that

expansion ratios of granule cells from mossy fibers are

different between the vermis and hemispheric regions.

The gray-matter volume of the hemisphere was 11.4�
of that of the vermis, while the cross-sectional area of

the cerebrocerebellar peduncle was estimated at less

than 2.8� the spinocerebellar tract (Keser et al., 2015).

On the assumption that diameters of mossy-fibers of

these two regions of the cerebellum do not differ, we esti-

mate that the expansion ratio of the hemisphere is 4x lar-

ger than that of the vermis. Large expansion ratios might

be more marked for phylogenetically newer parts of the

cerebellum and higher cognitive functions. In contrast,

seemingly contradictory data against codon theory were

mostly obtained in older parts of the cerebellum under

anesthetized or decerebrate preparations. We postulate

that codon theory is more relevant to newer functions of

the cerebellum.
INTERNAL MODELS

Cerebellar internal models

Internal models in neuroscience are the neural networks

that simulate input–output relationships of some

processes, such as controlled objects in movement

execution. ‘‘Internal” implies that the neural network is

within the brain or the cerebellum. ‘‘Model” implies that

the neural network simulates a target dynamical

process. When humans move their bodies quickly, the

necessary computation is too difficult to be solved by

simple feedback controllers alone, and internal models

are necessary (Gomi and Kawato, 1996). Here, we
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include both forward and inverse (see below) models as

possibilities. There is always feedback control, but except

very basic feedback control, model-predictive controllers

or precomputed ballistic movements include some forms

of internal models. When humans grow their bodies and

manipulate different objects, their dynamics change dras-

tically; thus, internal models cannot be genetically prepro-

grammed or fixed, and must be acquired through learning.

Ito (1970) proposed that internal models are acquired by

learning in the cerebellum (Table 1; Fig. 3A, B). Neither

Marr nor Albus mention internal models around 1970,

but Albus (1975) later proposed an artificial neural net-

work model called CMAC (cerebellar model articulation

controller), and one of its possible applications was to

learn inverse dynamics models of robots.

Internal models are classified as either forward or

inverse. Forward models possess the same input–

output direction as controlled objects and simulate their

dynamics. For example, controlled objects such as

eyeballs or arms receive motor commands and

generate movement trajectories, that can be

represented as sensory feedback about the executed

trajectories. Forward models receive copies of motor

commands (corollary discharge or efference copy) and

predict movement trajectories or sensory feedback

(sensory consequence). In control engineering and

robotics, forward models have been and still are just

called ‘‘internal models.” Jordan and Rumelhart (1992)

coined this term to discriminate them from inverse mod-

els, and this terminology was soon adopted by cognitive

science and neuroscience. On the other hand, inverse

models simulate inverted input–output relationships of

controlled objects. In a sense, inverse models provide

inverse functions of modeled dynamical systems. Inverse

models of controlled objects can receive desired trajecto-

ries as inputs and can compute necessary motor com-

mands to realize the desired trajectories. Because an

inverse model possesses the inverse input–output rela-

tionship of a controlled object, a cascade of the inverse

model and the controlled object becomes an identity

map. This implies that the trajectory realized by this cas-

cade is equal to the desired trajectory; thus, the inverse

model provides an ideal feedforward controller. We note

that forward models are well-posed problems (every

action causes a unique result) whereas inverse models

are not (the same result can occur following many

actions). So, among many possibilities, the brain needs

to select one for the inverse model to learn. Although

the combination of an inverse model followed by a forward

model is the identity, it is not unique.

Fig. 3C, D show our interpretations of Fig. 3A, B

proposed by Ito, while utilizing modern terminology and

computational backgrounds of inverse and forward

models, respectively. In Fig. 3C, the 3-neuron vestibulo-

ocular reflex arc and the flocculus form a parallel

system and the combined system provides an inverse

dynamics model of a controlled object, a downstream of

the oculomotor system from the vestibular nucleus. Note

that the 3-neuron arc is fixed and the flocculus is

modifiable; thus, the combined system is modifiable and

can learn the inverse dynamics model. The sensory
error between the desired trajectory (sign inverted head

rotation) and the realized trajectory (eye rotation) is

given as a retinal slips and it is transformed into motor

coordinates by the control network of optokinetic

responses, and used as the motor command error to

guide learning of a part of the inverse dynamics model

in the flocculus (Gomi and Kawato, 1992; Tabata et al.,

2002). Fig. 3B can be also interpreted to mean that a

newer part of the cerebellum provides an inverse dynam-

ics model of a controlled object. In this interpretation, a

sensorimotor cortex of the cerebrum provides a feedback

motor command produced through long-loop sensory

feedback through an external world, and this feedback

motor command is utilized to train the inverse dynamics

model in the cerebellum, that is, it functions as an ideal

feedforward controller. In another interpretation based

on the forward model (Fig. 3D), part of the cerebellar

hemisphere provides a forward model of the controlled

object. It computes a predicted trajectory while receiving

the efference copy of the motor command. The difference

of the realized trajectory and the predicted trajectory pro-

vides a sensory prediction error that can be used as an

error signal to train the forward model. This forward model

can be used as an essential element for internal feedback

control, bypassing the long-loop through the external

world, reducing feedback delays and increasing control

performance. Fig. 3D illustrates this latter interpretation

of Fig. 3B based on later computational models of internal

feedback control with forward models (Kawato et al.,

1987; Kawato and Gomi, 1992; Miall et al., 1993). A linear

quadratic regulator (Bemporad et al., 2002; Li and

Todorov, 2004) and an optimal feedback controller pro-

posed by Todorov and Jordan (2002) can be regarded

as more sophisticated feedback control algorithms, which

also utilize forward models.

As discussed in the Section, Codon theory, the 3-layer

feedforward neural circuit comprising neuronal origins of

mossy-fibers, granule cells, and Purkinje cells, is

expected to closely approximate arbitrarily complex

nonlinear functions with a vast number of granule cells,

if an appropriate error signal is provided and optimal

synaptic weights are learned. Thus, the cerebellum

basically possesses learning capability to acquire

internal models if climbing-fiber inputs provide

appropriate error signals. Kawato and colleagues (1987)

proposed that forward and inverse models are acquired

distinctively in different parts of the cerebellum. Learning

of forward models is computationally straightforward,

since the error signal can be computed as the difference

between the realized trajectory (or sensory feedback)

and the predicted trajectory (or predicted sensory feed-

back) (Fig. 3D) (see also discussion of computing by þ y
by Purkinje-cell disinhibition in the Section, Synaptic plas-

ticity in achieving supervised learning). In contrast, learn-

ing of inverse models is fundamentally difficult, because

we cannot assume the existence of a teaching signal by,
i.e., ideal motor commands in the brain. This is because

if such an ideal motor command already exists, it can

be used as the appropriate motor command in movement

executions, and inverse models or learning them is

unnecessary. We postulated a ‘‘feedback-error-learning”



Fig. 3. Figures from Ito (1970) and interpretations thereof, based on inverse and forward internal

models. (A) and (B) are two figures from Ito (1970), and (C) and (D) are their interpretations,

respectively. (A) Fig. 6(C) of Ito (1970) for feedforward control of the vestibulo-ocular reflex. FL,

flocculus, V, sensory input from the vestibular organ, SV, rostral part of the vestibular nuclear complex,

OM, oculomotor neuron, EB, eyeball, TL, teaching line for the learning in cerebellar cortex. (B) Fig. 7
(B) of Ito (1970) for the control system of voluntary movements. AC, cerebral association area, MC,

cerebral motor area, SM, spinal motor system, SC cerebral sensory area, MA, motor activity, H,

internalized feedback pathway through the external world, NC, neocerebellum in which SM, MA, H,

SC, and AC are modeled in a miniaturized form. (C) Inverse dynamics model interpretation of (A) for
adaptation of the vestibulo-ocular reflex. FL and V-SV-OM in (A) correspond to flocculus and 3 neuron

arc in (C), respectively. Dashed rectangles in (A) and (C) correspond with each other. The flocculus

and the 3-neuron arc function in parallel to acquire an inverse dynamics model of the controlled object.

A feedback controller for optokinetic responses in the accessory optic system transforms a retinal slip

into the motor error, which is used for adaptive changes of the inverse dynamics model in the flocculus.

(D) Forward internal model interpretation of (B). The neocerebellum acquires a forward model of a

controlled object, and uses it for internal feedback control. NC in (B) corresponds to forward model in

(D). MC in (B) corresponds to feedback controller in (D). H in (B) corresponds to upper feedback loop

in (D).
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scheme in which the inverse

dynamics model receives the error

signal in a motor command coordi-

nate from the output of the feed-

back controller, which performs

more crude and poorer sensorimo-

tor transformation than the inverse

model can do, but still provides the

necessary motor error (Kawato

et al., 1987). The feedback con-

troller receives a sensory error as

its input, and the output from the

feedback controller can be

regarded as the motor error neces-

sary for training the inverse model

(Fig. 3C). Accordingly, climbing-

fiber inputs for some regions were

postulated to represent outputs of

feedback controllers (Kawato and

Gomi, 1992; Gomi and Kawato,

1992; Bhushan and Shadmehr,

1999; Tabata et al., 2002;

Ramnani, 2006; Ito, 2008). Inoue

and colleagues (2016, 2018)

showed that motor commands of

cerebral motor cortex in non-

human primates can drive motor

adaptation and can be potential

sources of error signals for the

cerebellum, in accordance with the

feedback-error-learning scheme.

Experimental support for forward
and inverse models

Experimentally, it is not easy to

address whether the cerebellum is

predicting the sensory

consequence of the movement

(forward model) or computing the

necessary feedforward motor

command (inverse model).

Fundamental mathematical

difficulties in asking this question

were demonstrated by Mehta and

Schaal (2002). It has been reported

that the activity of cerebellar Purk-

inje cells and cerebellar nuclei

encode kinematics (position and/or

velocity) of movement, suggesting

forward models in the cerebellum

(Laurens et al., 2013; Brooks and

Cullen, 2013; Brooks et al., 2015;

Herzfeld et al., 2015, 2018; Streng

et al, 2018). However, since signals

of position or velocity can be a part

of the motor command, the possibil-

ity of signaling by inverse models

cannot be excluded. Similarly,

some experimental data demon-

strated that Purkinje cell activities

directly drive movements and sup-
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port inverse models rather than forward models (Heiney

et al., 2014; Bhanpuri et al., 2014; Hoogland et al.,

2015; Lee et al., 2015; El-Shamayleh et al., 2017;

Chabrol et al., 2019; Payne et al., 2019). However, it is

also possible that stimulation interferes with normal pre-

diction of sensory consequences of movement and

induces artifactual movements by sensori-motor transfor-

mation in the downstream of the cerebellum. To solve the

problem of discriminating forward from inverse models,

carefully designed paradigms are required to dissociate

movement consequences and motor commands.

Pasalar et al., (2006) and Yamamoto et al., (2007) are

representative examples of such studies in non-human

primates, but surprisingly, they drew opposing conclu-

sions. The former supported the forward model, while

the latter supported the inverse model. This discrepancy

can be explained by assuming that slow movement in

the former study does not require feedforward control by

an inverse model, whereas feedforward control was

essential for much faster movements in the latter study.

Although other research also supported cerebellar for-

ward models (Wolpert et al., 1995; Blakemore et al.,

2001; Kawato et al., 2003; Bastian, 2006; Tseng et al.,

2007; Izawa et al., 2012; Sultan et al., 2012), experimen-

tal data for cerebellar inverse models are more straight-

forward in their interpretations. In particular, various

studies on ocular following responses in the ventral

paraflocculus (see the Section, Synaptic plasticity in

achieving supervised learning) have demonstrated that

Purkinje cell input and output correspond to sensory and

motor coordinates, respectively, and that the inverse

model is computed in the cerebellum (Shidara et al.,

1993; Kawano et al., 1996a,b; Gomi et al., 1998;

Kobayashi et al., 1998; Kawano, 1999; Kawato, 1999;

Yamamoto et al., 2002; Takemura et al., 2017).

Electrosensory lobe and forward models

One of the important functions of forward models is

central cancelation of sensory consequences of

autogenous movement. The electrosensory lobe of

weakly electric fish is one of many cerebellum-like

structures, and illustrates beautifully this proposed

function. Medium ganglion cells of the electrosensory

lobe estimate electrosensory signals induced by

external events by subtracting electrosensory signals

caused by the fish’s own electric organ discharge and

movements (Bell and Russell, 1978; Han et al., 2000;

Requarth and Sawtell, 2011; Kennedy et al., 2014;

Sawtell, 2017). This can be regarded as a special case

of estimating sensory inputs. Forward models can predict

sensory inputs caused by an animal’s own movement

from the efference copy of motor commands. Because

of this finding, some argue that the cerebellum should

also cancel sensory inputs caused by autogenous move-

ments utilizing forward models, i.e., central cancelation of

sensory consequences of autogenous movements by for-

ward models. However, this expectation is not fully sup-

ported when we consider different synaptic plasticity

mechanisms between medium ganglion cells and Purk-

inje cells and different representations of climbing-fiber

inputs to different types of neurons. In Fig. 1C, D, we con-
trasted different synaptic plasticity mechanisms of Purk-

inje cells and pyramidal neurons of the cerebrum.

Synaptic plasticity rules of medium ganglion cells are

anti-Hebbian and are more similar to those of pyramidal

neurons than of Purkinje cells. We note that anti-

Hebbian learning requires action potential generation in

post-synaptic neurons for depression of synapses, which

is different from Purkinje cell LTD. As already explained,

action potentials do not backpropagate in Purkinje cells,

and so far there is no evidence that post-synaptic firing

in Purkinje cells contributes to the synaptic plasticity of

LTD. Climbing-fiber inputs to medium ganglion cells rep-

resent total electrosensory signals, and parallel-fiber

inputs include motor corollary discharge signals related

to the electric organ discharge, and proprioceptive signals

related to movements and position of the tail, trunk, and

fins. When the medium ganglion cell, and parallel-fiber

synapse carrying the corollary discharge, and climbing-

fiber input are all simultaneously activated, according to

anti-Hebbian learning, parallel-fiber synapses undergo

LTD. Consequently, learning cancels the electrosensory

signal that can be predicted by the corollary discharge

from the firing output of the medium ganglion cell. As

explained in the Section, Synaptic plasticity in achieving

supervised learning, this anti-Hebbian learning is com-

pletely different from the supervised learning rule of Purk-

inje cells, and the same cancelation computation is

impossible for Purkinje cells. If climbing-fiber inputs to

Purkinje cells encode the error between the actual sen-

sory input and that predicted by the corollary discharge,

then climbing-fiber inputs should decrease to zero while

Purkinje cells continue to fire, if there is no external sen-

sory event after learning is completed. In contrast,

climbing-fiber inputs to medium ganglion cells continue

to fire while medium ganglion cells become silent when

there is no external sensory event after learning is com-

pleted. Accordingly, both upstream and downstream neu-

ral circuits represent markedly different pieces of

information, so they should be wired entirely differently

for the cerebellum and the electrosensory lobe. From

computational viewpoints, Purkinje cells can perform

sensori-motor transformation, whereas medium ganglion

cells simply subtract climbing-fiber inputs from parallel-

fiber inputs within the same dimensions without coordi-

nate transformation. We acknowledge that some parts

of the cerebellum most probably acquire forward internal

models for central cancelation of sensory consequences

of autogenous movement (Blakemore et al., 1998, 2001;

Wolpert et al., 1998; Kawato et al., 2003; Brooks and

Cullen, 2013; Brooks et al., 2015), but experimental

and computational evidence from the electrosensory

lobe is not directly relevant to this function of the

cerebellum.

Cerebellar internal models for cognition

Cerebellar internal models can simulate any dynamical

processes other than controlled objects in sensorimotor

tasks, but only if climbing-fibers represent appropriate

error signals between the actual and predicted outputs

from the dynamical processes, and possibly provide

computational mechanisms for recent proposals of
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cerebellar cognitive functions (Ito, 2008; Strick et al.,

2009; Lu et al., 2012; Honda et al., 2018;

Schmahmann et al., 2019; Deverett et al., 2019). Higher

cognitive functions are realized in the brain, utilizing

cerebral cortex, basal ganglia, and subcortical structures.

If inputs and outputs of these computational modules are

provided to newer parts of the cerebellum as parallel-

fiber and climbing-fiber inputs, different parts of the cere-

bellum can learn to acquire either forward or inverse

models of these cognitive processes. Imamizu and Higu-

chi showed that internal models of many different tools

are acquired in the human cerebellum in a modular man-

ner, and that their representations largely overlap with

those for language in the cerebellum, as well as in Bro-

ca’s area of the cerebral cortex (Imamizu et al., 2000,

2003; Higuchi et al., 2007, 2009). If multiple internal

models are acquired in a modular and switching mode

suggested by mixture-of-experts model of artificial neural

networks (Jacobs et al., 1991), they are advantageous to

cope with very complicated tasks such as rapidly switch-

ing manipulation of many different objects (Gomi and

Kawato, 1993). A basic form of Modular Selection And

Identification for Control (MOSAIC) architecture consists

of multiple paired forward and inverse models, and can

be regarded as a more parallelized version of the mixture

of experts architecture (Wolpert and Kawato, 1998).

Each forward model tries to predict local dynamics and

competes with other forward models for goodness of pre-

diction, which is measured as a responsibility signal. The

product of the error and the responsibility signals is given

as the final error signal for training the forward model and

the corresponding inverse model (Fig. 5B). A ‘‘divide and

conquer” learning strategy is implemented in this parallel

architecture. A prior probability of the responsibility signal

can be learned by a responsibility predictor. The respon-

sibility predictor can be interpreted as a parallelized ver-

sion of the gating network of the mixture-of-experts

architecture. MOSAIC can work either in supervised

(Fig. 5B) or reinforcement learning (Fig. 5A) paradigms

(Haruno et al., 2001; Doya et al., 2002). In the case of

reinforcement-learning MOSAIC, an actor or a critique

or both take the role of the inverse model. Because of

the dualistic nature of forward and inverse models,

MOSAIC can generate a sequence of complicated

behaviors, and can also recognize patterns in symbolic

representations of the sequence by observing continuous

movement trajectories (Kawato et al., 2000; Wolpert

et al., 2003; Samejima et al., 2006; Kawato and

Samejima, 2007). Based on these experimental and the-

oretical explorations of possible computational roles of

cerebellar internal models in cognitive functions, Ito

(2008) proposed a cognitive framework of cerebellar

internal models for thought processes. Fig. 4 shows the

number of PMC papers published per year with the fol-

lowing three PubMed search conditions; {(internal

model) AND cerebellum}, [{(internal model) AND cere-

bellum} AND (motor control)], [{(internal model) AND

cerebellum} AND cognition]. Rapid increases in all three

categories after 2000 indicate that cerebellar internal

models for both motor control and cognition have begun

to be widely accepted in the last two decades.
TOWARD A NEW COMPUTATIONAL THEORY
OF THE CEREBELLUM

The three models proposed by Marr, Ito, and Albus were

extremely successful in establishing a motor learning

framework within which our understanding of the

cerebellum was advanced for oculomotor control,

classical conditioning, and visually guided arm-reaching.

However, these models are not sufficient to extend our

understanding of cerebellar functions to whole body

motions or cognition, because of computational and

experimental reasons that we will discuss in this section.

Furthermore, based on analyses of difficulties with the

three models, we propose a new computational

framework of the cerebellum.
The curse of dimensionality

First, the three models do not provide insights regarding

how to resolve ‘‘curse of dimensionality” associated with

learning in systems with many degrees of freedom.

Numbers of muscles and neurons used by animals in

whole body movements are huge. Machine learning

algorithms, including supervised and reinforcement

learning, confront difficulties with such large systems. If

a whole-body movement includes 1000 muscles, and

each muscle can generate 100 different levels of force,

a simple and plain reinforcement learning algorithm

needs to visit and explore on the order of 1001000 states

to find a good solution. For example, unsatisfactory

results from the final competition of the DARPA robotic

challenge demonstrated these difficulties even with

systems having far fewer degrees of freedom than

biological systems, that is, humanoid robots (Atkeson

et al., 2018). Under some mathematical assumptions, a

statistical learning theory estimates a generalization error

for a test dataset not used for training, as d/2n, where d is

the number of parameters in the classification algorithm

and n is the number of training samples (Watanabe,

2009). Recent asymptotic theories motivated by the suc-

cess of deep neural networks estimated that the number

of necessary training samples for good generalization

could be relaxed, compared with the above estimate

(Zhang et al., 2017; Schmidt-Hieber, 2017; Suzuki,

2018; Amari, 2020), but tens of millions of training sam-

ples are still needed for tens of millions of synapses. Con-

siderations of these theoretical constraints for cerebellar

learning suggest an astronomical number of necessary

training samples to achieve good generalization, with

unacceptably long training periods, as follows. Let us

assume that there exist 10,000 microzones in the human

cerebellum, and that each microzone works as a single

machine-learning entity. Then each microzone possesses

1 billion parallel-fiber-Purkinje-cell synapses (Table 2). To

attain a 5% generalization error (that is, 95% correct), the

above estimate requires 10 billion training samples. In

extremely fast sampling, let us assume that a learner col-

lects training data at 100 Hz (1 sample per 10 ms), 3600

sec per hour, 8 hours per day. Under these assumptions,

347 days are necessary to collect 10 billion samples. This

extremely underestimated necessary training period is



Fig. 4. Numbers of PMC papers published each year, as shown by

PubMed searches for the keywords ‘‘cerebellum and internal mod-

els”, and ‘‘motor control” or ‘‘cognition”. The orange line indicates

[internal model AND cerebellum]. Green bars indicate [internal model

AND cerebellum AND motor control], and magenta bars indicate

[internal model AND cerebellum AND cognition]. The search was

conducted on 6 January 2020.
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already too long to be biologically realistic. One of the

most difficult tasks in robotics is still bipedal locomotion

in rough terrain. Human babies fall only �3000 times dur-

ing babyhood (Adolph et al., 2012). The three models do

not provide insights to explore neural mechanisms for this

remarkable capability of the cerebellum and the nervous

system in realizing ‘‘learning from a small sample” in sen-

sorimotor coordination for systems with huge numbers of

degrees of freedom.
Learning of error signals

Second, if it is granted that climbing-fiber inputs provide

error signals, and that LTD-LTP of parallel-fiber-

Purkinje-cell synapses is the basis of cerebellar

supervised learning, the three models do not address

how and where learning of error signals originates for

higher functions, including manipulation of tools and

language acquisition. For phylogenetically old functions,

such as the vestibulo-ocular reflex or ocular following

responses, error signals carried by climbing-fibers are

genetically determined from retinal slips within the

accessory optic system. In contrast, tool manipulation or

language acquisition is a recent event, occurring within

the last several hundred thousand years of human

evolution. It is implausible that climbing-fiber error

signals are genetically determined for these new

functions of the cerebellum. As explained in the Section,

Codon theory, the sign and coordinate frame of

climbing-fiber error signals should be strictly matched to

those of the output from the corresponding part of the

deep cerebellar nuclei, so that supervised learning

works. The cerebral cortex, which most probably sends

original pieces of information to shape climbing-fiber

inputs for the new functions, is too far from the
cerebellum to be able to align the sign and coordinates

between climbing-fiber input and output from the

cerebellum, that is, the cerebellar input–output

consistency. The three models do not provide insights

about how climbing-fiber inputs are learned in the

cerebellum while satisfying cerebellar input–output

consistency.
Dimensional mismatch

Third, the three models do not provide theoretical clues to

resolve a dimensional mismatch between one degree-of-

freedom climbing-fiber inputs and extremely large

dimensions to be controlled in whole body movements

(Morton and Bastian, 2007; Hoogland et al., 2015;

Machado et al., 2015) and higher cognition (Strick et al.,

2009; Lu et al., 2012; Schmahmann et al., 2019). Within

each microzone, climbing-fiber inputs are similar

(Andersson and Oscarsson, 1978; Ito et al., 1982a,b,

Apps and Garwicz, 2005; Apps and Hawkes, 2009); thus,

the error signal is basically one-dimensional. In oculomo-

tor control, three pairs of extraocular muscles approxi-

mately determine horizontal, vertical, and rotational axes

of motor coordinates. Accordingly, three microzones of

the flocculus possess horizontal, vertical, and rotational

retinal slips as climbing-fiber inputs (Andersson and

Oscarsson, 1978; Ito et al., 1982a,b). For oculomotor con-

trol, the three dimensions of motor coordinates are repre-

sented by three microzones of the flocculus. Thus

movement and cerebellar dimensions are matched. How-

ever, the three models do not provide theoretical insights

into how and where extremely large degree-of-freedom

systems for whole body motion or cognition can be con-

trolled and learned with single degree-of-freedom

climbing-fiber inputs. This theoretical issue is tightly cou-

pled to the first and second difficulties that we explained

above. If drastic reduction of dimensions from for example

1000 to only 1 is possible by some neural mechanisms

while preserving the sign and coordinate frames of

climbing-fiber inputs and cerebellar output so that super-

vised learning works efficiently, this dimensional reduction

simultaneously solves three difficulties: the curse of

dimensionality, learning of error signals, and dimensional

mismatches between huge problems and cerebellar

climbing-fiber inputs. Some recent studies propose possi-

ble roles of synchronization of inferior olive neurons by

electrical synapses, and meta-cognition, in reduction of

effective degree-of-freedom for learning systems to

resolve the curse of dimensionality (Tokuda et al., 2010,

2013, 2017; Kawato et al., 2011; Hoang et al., 2020;

Cortese et al., 2019a,b).
Recent experimental findings that cannot readily be
explained

Recent experimental advances in cerebellar research led

to findings that cannot be readily explained by the three

models of Marr, Ito, and Albus. These findings include

memory formation in granule cells (Yang et al. 2016;

Yamada et al., 2019), temporal-difference prediction

errors in climbing-fibers (Ohmae and Medina, 2015),

reward-related signals in climbing-fibers (Heffley et al.,
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2018; Heffley and Hull, 2019; Kostadinov et al., 2019;

Larry et al., 2019; Tsutsumi et al., 2019), in parallel fibers

(Wagner et al., 2017), and in cerebellar output (Chabrol

et al., 2019; Carta et al., 2019; Sendhilnathan et al.,

2020), simple-spike dependent memory formation (Lee

et al., 2015), control of Purkinje-cell plasticity mediated

by molecular-layer interneurons (Rowan et al., 2018),

and neuronal heterogeneity between Aldolase C (zebrin)

zones (Sillitoe and Joyner 2007; Zhou et al., 2014; Xiao

et al. 2014; Tsutsumi et al., 2015, 2019; Tang et al.,

2017). Here we postulate hierarchical reinforcement

learning with multiple internal models (Kawato et al.,

2000; Haruno et al., 2001, 2003; Doya et al., 2002;

Sugimoto et al., 2006, 2012a,b; Kawato and Samejima,

2007) as a new computational framework of the cerebel-

lum for resolution of the three theoretical difficulties, as

well as to accommodate the above experimental findings

(Fig. 5).

Biological constraints for computational exploration

Evolutionarily, the basal ganglia emerged 560 million

years ago, the cerebellum 420 million years ago, and

the cerebral cortex emerged 250 million years ago. The

main goal of the nervous system is to maximize fitness

by selecting optimal behaviors. Thus, it is a

reinforcement learning task. In specific situations,

animals need to achieve appropriate sub-goals that are

derived from the main goal, so as to maximize fitness.

Sub-goals should include foraging for food, finding

mates, and avoiding injury. A fundamental assumption

of our hypothesis is that each of the basal ganglia

individually, the basal ganglia and the cerebellum

combined, or the basal ganglia, the cerebellum, and the

cerebral cortex all combined, should be able to execute

most important functions at that evolutionary stage, and

to add the next most important and essential functions

by development and addition of a new brain division

(Northcutt, 2002; Shepherd and Rowe, 2017; Naumann

et al., 2015; Tosches et al., 2018). We postulate that

the three brain divisions, the basal ganglia, the cerebel-

lum, and the cerebral neocortex all have a single compu-

tational goal, in contrast to the proposal by Doya (1999).

The goal is reinforcement learning to select optimal

behaviors, although representations and main computa-

tional learning algorithms differ between the three divi-

sions, as discussed in the Section, Synaptic plasticity in

achieving supervised learning. The basal ganglia alone

in agnathans should provide a plain reinforcement learn-

ing system for action selection, with its direct and indirect

pathways differentially dependent on dopamine (Ericsson

et al., 2011). The plain reinforcement learning system of

agnathans is not provided with computational powers of

internal models and/or working memory systems that

became available only later in evolution. The cerebellum

in gnathostomes (fishes with jaws) combined with the

basal ganglia should be a reinforcement learning system

with hierarchy, modularity, and multiple internal models

(Fig. 5). Equipped with 10,000 microzones, enormous

numbers of granule cells, and Purkinje-cell LTD-LTP,

the cerebellum is well suited for temporal processing of

different inputs within several hundred milliseconds
(Medina and Mauk, 2000; Ohmae et al., 2013, 2017;

Kunimatsu et al., 2018; Kameda et al., 2019; Sanger

and Kawato, 2020). Temporal information processing

capability is maximally used in multimodal integration, for-

ward and inverse model learning, and in reward-related

information processing (Yamazaki and Lennon, 2019).

The cerebral neocortex in mammals combined with the

basal ganglia and the cerebellum is an even more sophis-

ticated reinforcement learning system with additional

computational powers acquired by pyramidal neuron

STDP and abundant recurrent connections. Multimodal

integration, associative memory, topographic representa-

tions, and cortical temporal dynamics can select abstract,

concise, categorical representations of behavioral con-

texts for fast and efficient reinforcement learning. Those

are necessary computations for adaptation and learning

of nursing, social and communication behaviors.

Inputs and outputs for reinforcement learning differ in

the three brain divisions. While the pyramidal tract

contains 2 million-fibers, the globus pallidus internal

contain 350,000 neurons (Hardman et al., 2002), and

the interpositus nucleus contains only 70,000 neurons in

humans (Fukutani et al., 1992; Andersen et al., 2004).

Thus, the ratio of output channel bandwidths for direct

motor control of the cerebral cortex, the basal ganglia,

and the cerebellum is 30:6:1. Consequently, the cerebel-

lum is constrained to act on a set of abstract motor and

reward related variables. This is related to the one-

dimension error signal spanned by climbing-fiber inputs

within a single microzone. If climbing-fiber inputs encode

reward/penalty related information, corresponding parts

of the cerebellum can learn state-value functions, state-

action value functions, reward prediction errors and other

reward-related variables from parallel-fiber inputs. The

cerebrocerebellum is connected to the cerebral cortex

via both inputs and outputs, and it can utilize efficient,

concise spatiotemporal representations acquired in the

cerebral cortex (Gao et al., 2018; Wagner et al., 2019).

It was recently revealed that for some parts, an output

from one microzone is fed to granule cells of another

microzone (Houck and Person, 2014; Gao et al., 2016;

Giovannucci et al., 2017), implying that these microzones

are hierarchically/heterarchically arranged (Ohmae S, pri-

vate communication) (Fig. 5B). Thus, we have multiple

modules, internal models, and hierarchy/heterarchy in

the cerebellum.

Hierarchical and modular reinforcement learning in
the cerebellum

Hierarchical and/or heterarchical reinforcement learning

frameworks with multiple internal models (Kawato et al.,

2000; Haruno and Kawato, 2006) could provide theoreti-

cal guidelines to resolve the three computational difficul-

ties of the models of Marr, Ito and Albus as well as to

interpret new experimental findings. The three computa-

tional difficulties of the three models are the curse of

dimensionality, learning of error signals, and dimensional

mismatch. The proposed frameworks resolve the curse of

dimensionality with hierarchical structure because the top

layer can search for the optimal solution in a much lower

dimension thanks to the dimensional reduction by the bot-



Fig. 5. A hierarchical reinforcement learning model with multiple modules. (A) A hierarchical
reinforcement learning model with top and bottom layers based on reinforcement MOSAIC (Doya
et al., 2002) and hierarchical MOSAIC (Haruno et al., 2003) (adapted from Sugimoto et al., 2006). (left
panel) The lower curved sheet represents continuous state-x space of the environment with nonlinear
dynamics. The continuous space is automatically divided into discrete regions (blue shades) according
to goodness of prediction by each forward model, while the MOSAIC architecture predicts the whole
nonlinear dynamics with different combinations of forward models, fi, where the index i is given for each
forward model. This discrete division of the continuous state-space allows this MOSAIC to treat the
transitions between state-space patches (blue regions) as discrete state transitions in semi-Markov
decision processes (i, i0, i00 in top layer). (right panel) The top layer maximizes a reward r provided by
the environment by controlling state-i transition while selecting the abstract action-j, and influencing
bottom layer reinforcement learning by providing inter-layer rewards Rij x; uð Þ for the state i and the
action j. In other words, the top layer supplies sub-goal information to the bottom layer. The whole
hierarchical reinforcement learning is driven by the reward r, while inter-layer communication was
achieved as a state abstraction by forward models in the bottom layer, and setting sub-goals for the
bottom layer by the top layer. The top layer symbolically represents which reinforcement-learning
modules in the bottom layer are selected, and controls Markov transitions between the discrete states
such as i, i0, i00, while selecting the abstract action j that determines inter-layer rewards for the bottom
layer. Reinforcement Q-learning takes place with the state-action value function, Q(i,j). P jjið Þ denotes j-
th action selection probability for the i-th state, i.e., top-layer policy, and is determined from Q(i,j). The
bottom layer is a continuous reinforcement learning system to learn an action u such that Rij x; uð Þis
maximized while the top layer is in the i-th state and takes the action j. When learning is achieved, the
top layer maximizes the reward in much smaller dimensions (discrete space of i) than in the original
large dimensions of the environment, and the bottom layer maximizes the sub-goals (inter-layer
rewards) from the top layer so that the bottom layer faithfully transforms the actions of the top layer in
the discrete space into the control of x in the continuous space. Vij xð Þ is the value function, which is
learned from the reward Rij x; uð Þ. x, bottom-layer state, y, bottom-layer observation, u, bottom-layer
action, fi x; uð Þ, i-th forward model, kfi , responsibility signal of the i-th forward model, uij is the bottom-
layer action under the i-th region with value function Vij xð Þ, and the top-layer state i and action j. Note
that there are no inverse models or responsibility predictors in this hierarchical reinforcement MOSAIC.
(B) Another MOSAIC model with loop structures implements interactions between the three modules
for the inverse model, forward model, and responsibility predictor (adapted from Kawato et al., 2000).
FMi, IMi, and RPi indicate the i-th forward model, the i-th inverse model, and the i-th responsibility
predictor, respectively, realized by Purkinje cells. ki is the i-th responsibility signal of the i-th modules,
which is common to FMi, IMi, and RPi. x is an actual state. bxi is a predicted state by FMi. e

F
i ¼ x� bxi is

the prediction error signal of the state, and kieF
i is the final error signal used to change FMi in

supervised learning. bui is the i-th motor command generated by IMi.
P

iki bui is the responsibility-signal
weighted summation of the motor commands from all inverse models, and this is the total motor
command output from the cerebellum. ufb is a feedback motor command. kiufb is the final error signal to
change IMi used in supervised learning. bki is the i-th predicted responsibility signal computed by RPi.
ki � bki is the error in responsibility prediction to change RPi. Red arrows indicate the three different
kinds of error signals that drive supervised learning of the three modules. Blue arrows show
responsibility signals that control common weighting in supervised learning of the three modules.
Brown arrows show prior (predicted responsibility) and likelihood for responsibility estimation.
Predicted responsibility signals are computed before movement execution. The three kinds of
modules interact with each other in feedback connections between the cerebellar cortex, the dentate
nucleus (DE), the red nucleus (RN), and the inferior olive nucleus (IO). Convergent and divergent
connections between different modules anatomically implement hierarchical/heterarchical structures
between different layers, and are shown in the triangle consisting of DE, RN and IO. VL, ventrolateral
thalamus, CBR CX, cerebral cortex, PN, pontine nucleus. *Figure (A) was published in The IEICE
transactions on information and systems (Japanese edition), 89(7), Sugimoto N, Samejima K, Doya K,
Kawato M, Hierarchical Reinforcement Learning: Temporal Abstraction Based on MOSAIC Model,
1577–1587, Copyright IEICE (2006). *Figure (B) was published in Kagaku, 70(11), Kawato M, Doya K,
Haruno M, Multiple paired forward and inverse models (MOSAIC) – the information-processing and
possibility, 1009–1017, Copyright Iwanami Shoten (2000).
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tom layer and requires only a

moderate number of learning tri-

als. Multiple models connected

serially rather than in parallel pro-

vide a computational architecture

where one module can learn the

error signal, which is used in learn-

ing by the other module. Hierarchi-

cal and/or heterarchical structures

could connect top and bottom lay-

ers with huge differences in

dimensions. Here, the top layer

may possess very low-

dimensional symbolic representa-

tions, while the bottom layer may

possess extremely high-

dimensional representations

related to motoneurons and mus-

cles. We note that the three mod-

els did not discuss hierarchy,

heterarchy, serially connected

multiple modules, or how repre-

sentations with huge differences

in dimensionality could be related

within the cerebellum. New frame-

works may provide several clues

to interpret the new experimental

findings, and are partially moti-

vated by biological constraints

including evolutionary views about

the brain.

The hierarchical reinforcement

learning scheme with multiple

modules shown in Fig. 5A

(Sugimoto et al., 2006) illustrates

how abstract symbolic representa-

tions in the top layer are imple-

mented as responsibility signals

in the bottom layer. This model is

a combination of a reinforcement

MOSAIC (Doya et al., 2002) and

hierarchical MOSAIC (Haruno

et al., 2003). In each layer, rein-

forcement learning occurs with

multiple modules. The responsibil-

ity signal determines which for-

ward model in the bottom layer

best represents the environment.

Patterns of responsibility signals

allow the hierarchical MOSAIC to

achieve discretization of continu-

ous space. Changes of dynamics

in the continuous space are

approximated by Markov transi-

tions between the abstract and

discrete states. The top layer con-

trols this transition as well as pro-

viding sub-goals to the bottom

layer. Drastic dimension reduction

is achieved by this abstraction in

the top layer. In the bottom layer,
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a ‘‘divide and conquer” strategy works with many experts

(forward models), even for highly nonlinear problems.

Abstraction and divide-and-conquer together resolve the

curse of dimensionality. In most successful engineering

applications of hierarchical reinforcement learning algo-

rithms in robotics, higher-level abstract representations

and/or sub-goals of the bottom layer were determined

by researchers (Atkeson et al., 2000). So far, intermediate

goal postures for a standing robot were manually selected

as representations in the top layer by Morimoto and Doya

(2001). As another example, Bentivegna et al., (2003)

selected right-bank shots as higher-level actions in air-

hockey by a humanoid robot DB. Neither the cerebellum

nor the whole brain can enjoy the luxurious special treat-

ment that a homunculus in the brain selects appropriate
representations for the top layers.

From a neuroscience point of

view, abstract representations of

movements in the top layers could

be movement sub-goals, syn-

ergies, motion of center of gravity,

locomotion gates, periods and

phases of rhythmic movements,

and phase relationships of limb

rhythms. Computationally, the

most difficult question is how

appropriate high-level representa-

tions can be automatically

acquired without homunculus or

genetic hard-wiring. Hierarchical

and reinforcement MOSAIC can

find higher-level representations

through the pattern of responsibil-

ity signals, that is, which combina-

tion of forward models, value

functions and policies is most

appropriate in a given situation,

and could provide a computational

possibility for automatically learn-

ing sub-goals and synergy.

The heterarchical MOSAIC

shown in Fig. 5B (Kawato et al.,

2000) shows how the three mod-

ules, forward models, inverse

models, and responsibility predic-

tors, are heterarchically arranged

by convergent and divergent con-

nections within the closed circuit

consisting of the dentate, red,

and inferior olive nuclei. Responsi-

bility predictors can predict

responsibility signals, which esti-

mate goodness of prediction of

each forward model from pieces

of contextual information. In Allen

and Tsukahara (1974) and

Kawato and Gomi (1992), func-

tions of the closed loop circuit

between the dentate nucleus, the

parvo-cellular part of the red

nucleus, and the inferior olive
sending climbing-fibers (De Zeeuw et al., 1998; Sokolov

et al., 2017) were discussed, but remain enigmatic,

although this Ogawa’s triangle (also known as the triangle

of Guililain and Mollaret) is huge in humans (Ogawa,

1941). A recent study reported that cerebellar output dur-

ing eyeblink conditioning can contribute to generation of

an error signal in climbing-fibers (Ohmae and Medina,

2019). If this triangle is a neural connection from outputs

of one microzone to error signals of another, the second

theoretical difficulty can be tackled in the hierarchical rein-

forcement learning framework. In the upper level of hier-

archical reinforcement learning, abstract, concise

representations could be used and the curse of dimen-

sionality would be drastically relaxed. With the cascade

arrangements of microzones, climbing-fiber error signals
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for one microzone could be learned by the other upper-

layer microzone. Hierarchical structures could bridge con-

cise, abstract representations in the top layer with high-

dimensional representations in the bottom layer. One-

dimensional error signals for each module in each layer

could provide amechanism to find a low-dimensional order

parameter for motor control represented in its outputs.

This is a new era of cerebellar research with veritable

explosions of new techniques, new findings, and new

computational ideas. It is important and timely to

evaluate contributions and limitations of the Marr, Ito,

and Albus models and to explore future directions based

on advances made following their proposals. In this

review, we have made a computationally oriented effort,

and in introducing these models we have experienced

the same excitement that we felt when we first

encountered these theories 50 years ago.
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