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a b s t r a c t

In the cerebellar learning hypothesis, inferior olive neurons are presumed to transmit high fidelity
error signals, despite their low firing rates. The idea of chaotic resonance has been proposed to realize
efficient error transmission by desynchronized spiking activities induced bymoderate electrical coupling
between inferior olive neurons. A recent study suggests that the coupling strength between inferior olive
neurons can be adaptive and may decrease during the learning process. We show that such a decrease in
coupling strength can be beneficial formotor learning, since efficient coupling strength depends upon the
magnitude of the error signals. We introduce a scheme of adaptive coupling that enhances the learning of
a neural controller for fast arm movements. Our numerical study supports the view that the controlling
strategy of the coupling strength provides an additional degree of freedom to optimize the actual learning
in the cerebellum.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

Intensive research on neurophysiology and theoretical model-
ing of the cerebellum paved the way for the establishment of the
basics of the cerebellar learning (Albus, 1971; Ito, 1970; Ito, Saku-
rai, & Tongroach, 1982; Kawato, Furukawa, & Suzuki, 1987; Kawato
& Gomi, 1992; Marr, 1969; Miall, Christensen, Cain, & Stanley,
2007; Miall, Weir, Wolpert, & Stein, 1993; Schweighofer, Spoel-
stra, Arbib, & Kawato, 1998; Shidara, Kawano, Gomi, & Kawato,
1993; Tseng, Diedrichsen, Krakauer, Shadmehr, & Bastian, 2007).
Synaptic plasticity in parallel fiber–Purkinje cell (PC) synapses
has been predicted by the learning theory of Albus (1971), Marr
(1969) and Ito (1970) and was experimentally demonstrated by
Ito et al. (1982). Synaptic plasticity in vestibular input synapses to
central vestibular nuclei neurons has been postulated in theoret-
ical studies (Lisberger, 1988; Raymond, Lisberger, & Mauk, 1996)
and then experimentally examined in motor learning of vestibulo-
ocular reflex (Highstein, Partsalis, & Arikan, 1997; Khater, Quinn,
Pena, Baker, & Peterson, 1993; Pastor, De la Cruz, & Baker, 1997).
Moreover, synaptic plasticity at mossy fiber–granule cell relay has
been observed in experiment (D’Angelo, Rossi, Armano, & Taglietti,
1999) and implemented in a computational model (Schweighofer,
Doya, & Lay, 2001). Among these studies, the most famous form of
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the cerebellar learning is based upon long-term synaptic changes
induced at the PCs, which output motor commands to the cere-
bellar nuclei (CN) while receiving two types of major excitatory
inputs: >100,000 parallel fibers from granule cells and a sole but
powerful climbing fiber input from inferior olive (IO). Whereas the
granule cells transmit signals from the sensory system and the
cerebral cortex, the IO neurons were found to send error signals
(Gilbert & Thach, 1977; Kitazawa, Kimura, & Yin, 1998).When con-
jointly activated at the PCs, these two inputs cause a long-term de-
pression (LTD), reducing the efficacy of the synaptic transmission
in the parallel fiber (Ito et al., 1982).

1.2. Chaotic resonance

Structures and functions of the cerebellum have been modeled
in a variety of artificial learning machines such as a cerebellar
model for articulation controller (Albus, 1975), which learns
inverse or forward models from errors. In the supervised learning
of the artificial machine, synaptic connections from the granule
cells to the PCs are modified by minimizing the errors carried
through the climbing fibers. The main difference between the
learning machine and the biological system is that, in the real
cerebellum, the error signals are carried by the IO neurons, whose
firing rate is very low, with typically a single or two spikes per
movement. This provides a severe limit of precisely transmitting
the error signals with high temporal resolution in contrast to
the artificial machine, which is capable of transmitting any high
frequency component of the error signals.

http://dx.doi.org/10.1016/j.neunet.2012.12.006
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Concerning this problem, a network of IO neurons may play a
key role. As far as the IO neurons are activated in a synchronous
manner, an ensemble of IO neurons behaves as a single neuron,
which does not help overcome the limited capability of the error
transmission. However, if the IO neurons operate asynchronously,
the spike timings of each neuron are scattered to increase the
time resolution of the population coding of the error signal. Here,
it is natural to consider that the level of synchrony between
the IO neurons is regulated by the electrical coupling by gap
junctions (De Zeeuw et al., 1998; Llinás, Baker, & Sotelo, 1974).
If the coupling strength is too strong, it induces coherent IO
activities. If the coupling is too weak, on the other hand, common
input stimuli entrain the IO neurons, resulting again in their
coherent activities. In contrast, intermediate strength of the
electrical coupling was found to induce irregular or even chaotic
spikes, which effectively desynchronize the IO activities and thus
optimize the population coding (Schweighofer et al., 2004). The
advantages of desynchronized firing activities were discussed in
an abstract and a general framework (Masuda & Aihara, 2002,
2003). By distributing the frequency components of the error
signal over sporadic, irregular, and non-phase-locked spikes, the
temporal resolution of the error transmission is significantly
improved. The Purkinje cells can then reconstruct the complete
error signal via spatio-temporal integration of the IO cell activities.
Since optimal learning is realized with an intermediate coupling
strength that maximizes the level of the chaotic activity, this
hypothesis has been termed as chaotic resonance. The idea of
chaotic resonance has been examined so far for IO networks for
information transmission (Schweighofer et al., 2004) as well as for
a feedback-error learning of multi-joint arm control (Tokuda, Han,
Aihara, Kawato, & Schweighofer, 2010).

1.3. Learning in early and late stages

Despite such intensive studies, important open questions
remain on the chaotic resonance. For instance, it is still unclear
how to tune the coupling strength of the IO neurons into a
certain range so that an efficient learning takes place. Although the
coupling strength has been assumed to be fixed to a constant level,
there have been several physiological studies suggesting that the
formation of synchronously firing IO neurons is a dynamic process
and that the coupling can be modulated by inhibitory inputs from
the cerebellar nucleus (Best & Regehr, 2009; Lang, Sugihara, &
Llinás, 1996; Llinás et al., 1974; Uusisaari & De Schutter, 2011).
Moreover, a recent study (Kawato, Kuroda, & Schweighofer, 2011)
proposed a functional role of a triangle circuit of IOs, PCs, and CN,
which may change the effective strength of the IO coupling during
the motor learning (Fig. 1). In this circuit, PCs inhibit the activity of
the CN cells, which provide inhibitory synapses on the dendritic
spines that form electrical connections between neighboring IO
neurons (Oniuzka et al., 2013; Onizuka et al., 2010). In the early
stage of learning, since the executed behaviors deviate from the
desired ones, plans and motor commands are strongly modulated
and the error signals should be large. This activates the PC cells,
which then strongly suppress the CN cells. The suppressed CN
cells deactivate their inhibitory shunting effects on the IO coupling,
and therefore the IO neurons are strongly electrically coupled. In
contrast, in the late stage of learning, the executed movements
become smooth and get close to the desired ones. Then the input
signals to the PCs and the error signals are weakened. Since the
PCs are weakly activated, the CN cells are only weakly suppressed.
Because of the strong inhibitory effects from the active CN cells,
the electrical coupling between the IO neurons is weakened. In
this way, the coupling strength between the IO neurons can be
modulated during the learning process.
1.4. Adaptive coupling to control inferior olive activities

The aim of the present paper is to examines the idea of
adaptive coupling in cerebellar learning. In accordance with the
hypothesis of Kawato et al. (2011), the coupling strength between
IO neurons is slowly decreased as the learning proceeds. We
examine the advantage of the adaptive coupling over conventional
situations, in which the coupling strength is fixed to a constant
level during the entire learning. We focus on the basic property
of chaotic resonance, which is in principle an interplay between
synchronization of the IO neurons induced by error signals and
destruction of the synchronized IO activities by chaos. In motor
learning, a group of IO neurons receives an error signal as a
common external forcing. In the study of coupled oscillators, it is
well known that such a common force entrains the activities of
the IO neurons, and as a result of the entrainment, the neurons
are synchronized (Goldobin, Teramae, Nakao, & Ermentrout,
2010; Pikovsky, Rosenblum, & Kurths, 2001; Teramae & Tanaka,
2004). On the other hand, an intermediate coupling between
the IO neurons can induce chaotic dynamics that destroys the
synchronized neural activities (Fujii & Tsuda, 2004; Tsuda, Fujii,
Tadokoro, Yasuoka, & Yamaguchi, 2004). The balance between the
neuronal synchrony and its destruction is the key factor of the
chaotic resonance. This feature can be combined with the idea of
adaptive coupling. Namely, in the beginning of the learning, the
error signals are so large that they strongly entrain the IO neurons.
To destroy such a strong synchrony, an intermediate coupling
strength is required to effectively produce chaotic dynamics. On
the other hand, in the late stage of learning, the error signals
become weak and do not strongly influence the IO neurons.
Without much entrainment to the error signal, no strong coupling
is required to destroy the synchronized activities of the IO neurons.
This represents a design principle for the optimal control of the
coupling in cerebellar learning.

The present paper is organized as follows. First, to study the
basic properties of the network of IO neurons, we analyze its
capability of information transmission using an artificial signal
as an input to an IO network. The optimal coupling strength
is shown to depend upon the strength of the input signal;
strong input requires intermediate coupling, whereas weak input
requires only weak coupling. Then this idea is applied to the
control problem of a multi-joint arm, where a model of the IO
neurons is implemented to transmit the error signals in feedback-
error learning. In accordance with the basic property of efficient
information transmission, the optimal coupling strength depends
again upon the strength of the error signal. As a final study, we
designed a control scheme for the adaptive coupling to slowly
decrease its strength as the learning proceeds. Such adaptive
coupling is shown to be more efficient than the situation in which
the coupling strength is fixed during the entire learning.

2. Methods

2.1. Inferior olive model

Following our previous study (Tokuda et al., 2010), the
dynamics of IO neurons are described by the µ-model (Fujii &
Tsuda, 2004; Tsuda et al., 2004), which generates a limit cycle
oscillation under an isolated condition, whereas it gives rise to
complex chaotic activity through gap-junction connections with
other neurons. These properties reproduce the basic activity
of IO neurons known from physiological and modeling studies
(Katori, Lang, Onizuka, Kawato, & Aihara, 2010; Lang et al.,
1996; Llinás & Yarom, 1981a, 1981b, 1986; Makarenko & Llinás,
1998; Manor, Rinzel, Segev, & Yarom, 1997; Schweighofer et al.,
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(a) Early stage of learning. (b) Late stage of learning.

Fig. 1. Schematic illustration for possible functions of a triangle circuit consisting of inferior olive (IO), Purkinje cell (PC), and cerebellar nucleus (CN). PCs inhibit CN cell
activity, whereas CN cells provide an inhibitory effect on synaptic connections of IO neurons. (a) In the early stage of learning, since the executed trajectories are far from
the desired ones, plans and motor commands highly modulate PCs, and thus the excited PCs suppress CN cells. Since an inhibitory synaptic effect from the CN cells is not
activated, IO neurons are strongly coupled. (b) In the late stage of learning, since the movements become smooth and close to the desired ones, inputs to PCs become weak.
Since weakly modulated PCs do not strongly suppress CN cells, inhibitory synaptic effect from the CN cells is activated and, coupling of IO neurons is weakened.
2004; Schweighofer, Doya, & Kawato, 1999). A network of locally
connected µ-neurons is given by:

ηi
dxi
dt

= −yi − µx2i


xi −

3
2


+ I + Ji,

ηi
dyi
dt

= −yi + µx2i ,
(1)

where

Ji =

g(x2 + xN − 2x1) (i = 1)
g(xi+1 + xi−1 − 2xi) (i = 2, . . . ,N − 1)
g(x1 + xN−1 − 2xN) (i = N).

(2)

Here xi and yi represent the membrane potential and the ion
channel activity of the ith neuron (i = 1, 2, . . . ,N),N is the total
number of neurons, ηi is a time constant of the ith neuron, µ is a
system parameter, g is the strength of the electrical coupling, and
I is an external input. Compared to our previous study (Tokuda
et al., 2010), the µ parameter was set to be the same for all
the neurons. Instead, time constant ηi was set differently to each
neuron to describe the heterogeneity of the IO neurons. Since the
time constant determines the oscillation frequency of each neuron,
this heterogeneity gives rise to asynchronous firing of the neurons
when they are weakly coupled.

The spiking activity of the kth IO neuron is defined as a
membrane potential that exceeds a threshold value of xth. In the
following simulations, Eqs. (1) and (2) were integrated by the
4th order Runge–Kutta algorithm from a random initial condition,
where 20 simulations were run to compute the average quantities
to determine the dependence of the neural dynamics on the
random initial conditions.

2.2. Capability of information transmission

To examine the basic property of the network of IO neurons, we
evaluated its capability of information transmission by computing
the mutual information, which is a quantity to measure mutual
dependence of two random variables (Rényi, 1970). If the
two random variables are independent, the mutual information
becomes zero. If the two random variables are identical, on the
other hand, the mutual information is equal to the entropy of the
random variable. Larger mutual information means that the two
variables are more strongly dependent upon each other.

Here, each neuron receives a common input signal, whereas
their spiking activities are temporally and spatially integrated as
the output response. The mutual information between the input
signal and the output response is measured. As an input signal,
a chaotic signal is generated from the Rössler equations (τ ẋ =

−y − z, τ ẏ = x + 0.36y, τ ż = 0.4x − (4.5 − x)z, τ = 1/0.22)
(Rössler, 1979), where the y-variable is injected to all the neurons
as I = I0 + βy. I0 and β stand for the minimal input and the
input gain, where the minimal input is set as I0 = 0.01. Output
S(t) represents the number of spikes generated from the network
of neurons within a time interval of 0.02 at time t . To compute
the mutual information between input I(t) and output S(t), the
signals are discretized into 25 bins for calculating the probability
distributions. Note that one of the key parameters is given by
input gain β , which determines the strength of the input signal.
Our interest is to compare the neural responses for a strong input
(β = 0.002) and a weak input (β = 0.0004).

2.3. Quantification of synchrony

The capability of information transmission is dependent upon
the degree of the synchronized activities of the IOneurons (Masuda
& Aihara, 2002, 2003; Schweighofer et al., 2004). If the network
of neurons is strongly synchronized, their activity is essentially
the same as that of a single neuron, which severely limits the
signal transmission because of the low firing frequency of the IO
neuron. As an index to measure the synchronized neural activity,
we computed order parameter R (Kuramoto, 1984). The order
parameter, which is defined as R exp(iΦ) = (1/N)ΣN

j=1 exp(iφj)
using the phase of the jth neuron given by angle φj =

arctan(
yj−0.10
xj−0.05 ), takes a real value between 0 and 1, where a large

value close to R = 1 implies strong mutual synchronization and a
small value close to R = 0 implies desynchronization.
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2.4. Quantification of chaotic activity

In the chaotic resonance hypothesis, chaotic dynamics plays
an important role in destroying the synchronized activity of IO
neurons. To quantify the strength of the chaotic activity, we
calculated the Lyapunov dimension. The Kaplan–Yorke formula
(Kaplan & Yorke, 1970) defines the Lyapunov dimension as
DL = k +

k
i=1 λi/|λk+1|, where λ1 ≥ λ2 ≥ · · · ≥ λ2N

stand for the Lyapunov exponents, which are computed by the
Shimada–Nagashima algorithm (Shimada&Nagashima, 1979), and
k is the maximal value of j such that

j
i=1 λi ≥ 0. The Lyapunov

exponent measures the separation speed of the nearby orbits
in a state space. A positive Lyapunov exponent implies chaos,
which exponentially expands the distance of the nearby orbits.
The Lyapunov dimension roughly measures the effective number
of positive Lyapunov exponents.

2.5. Feedback-error learning of multi-joint arm

We examined the function of IO neurons as a transmitter
of error signals in an idealized model of the cerebellum that
learns an inverse model of an arm movement by feedback-error
learning (Kawato et al., 1987; Kawato & Gomi, 1992; Schweighofer
et al., 1998; Shidara et al., 1993). In feedback-error learning, the
supervised learning of a feedforward controller occurs using a
feedback control signal as the error signal. Since we focus mainly
on the function of IO neurons, we only modeled the minimal
entities of the cerebellum and considered the functions of PCs,
granule cells, and IO neurons as in previous works (Schweighofer
et al., 2001; Tokuda et al., 2010).

It has been suggested that functionally related PCs, CN cells,
and IO neurons are grouped into micro-complexes or modules
(Apps & Hawkes, 2009; Ito, 1984, 1990; Marshall & Lang, 2009;
Schweighofer, 1998). Within each micro-complex, population of
IO neurons is coupled by gap junctions to form a closed network.
For simplicity, the network of IO neurons is considered to be
independent from networks of other micro-complexes. In each
micro-complex, a group of PCs projects to synergetic muscles of
a joint in the arm. Since we modeled a two-joint arm consisting of
elbow and shoulder, we constructed twomicro-complexes, each of
which controls elbow or shoulder joint.

In our simulation, the granule cells receive a desired state in
joint space instead of sensory input from the mossy fibers because
of the following reason (Schweighofer et al., 2001). It has been
known that the mossy fibers have two origins: a cell originating
from the cerebral cortex and a sensory cell (Van Kan, Gibson, &
Houk, 1993). The mossy fibers of the central origin are considered
to carry information about the desired trajectory. Because there
are no delays and no noise in the model, the desired and sensed
trajectories become quite similar after the learning. Moreover,
because of the function of the cerebral feedback controller, they
are not so different even during the learning. Thus, for simplicity,
we assumed in the presentmodel that all inputs to themossy fibers
are of central origin.

The granule cells receive the mossy fiber inputs with fixed
random weights and are projected to PCs through parallel fibers.
The IO neurons transmit the feedback error signals to the PCs,
where the learning takes place to modify the efficacy of the
synaptic transmission in the parallel fiber. In the Appendix,
the details of the feedback-error learning and the simulation
conditions are described.

As a brief description of the IO model, feedback commands ufb,
which represent the error signals in the feedback-error learning
(Eq. (A.3) in the Appendix), are injected to the IO neurons as I =

I0 +β ·ufb. The spiking activities of the IO neurons are then used as
error signals to modify the synaptic plasticity between the granule
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Fig. 2. Mutual information (solid line) and synchronization index (dotted line)
of a network of IO neurons receiving a chaotic signal. Coupling strength is varied
in range of g ∈ [0, 0.3]. Error bars stand for a standard deviation over twenty
simulations starting from random initial conditions. (a) Input signal is weak (β =

0.0004). (b) Input signal is strong (β = 0.002).

cells and the PCs. Since the input gain β determines the forcing
strength of the IO neurons, it provides an important parameter to
control the synchronized IO activity.

3. Results

3.1. Information transmission

The mutual information and the synchronization index were
calculated for a network of IO neurons. The coupling strength was
varied in the range of g ∈ [0, 0.3]. Fig. 2(a) shows the case of
a weak input (β = 0.0004), while Fig. 2(b) shows the case of
a strong input (β = 0.002). In the case of the strong input, the
synchronization index was relatively high in the weak coupling
regime. As the coupling strength increased, the synchronization
index decreased and took a minimal value at around g =

0.04. Further increase in the coupling strength monotonically
increased the synchronization index. The mutual information is
inversely proportional to the synchronization index. The mutual
information peaked around g = 0.04 and decreased as the
coupling increased or decreased from the peak. This relationship
is reasonable, because the desynchronized activity of the IO
neurons enhances the capability of information transmission. The
synchronized activity was high for both weak and strong coupling
because of the entrainment effect induced by the input signal
and the coupling effect between the IO neurons, respectively.
The Lyapunov dimension, on the other hand, peaked around
g = 0.045 (Fig. 3), which is near the minimum point of the
synchronization index. This implies that chaotic dynamics most
efficiently destroyed the synchronized activity of the IO neurons
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Fig. 3. Lyapunov dimension DL computed from a network of IO neurons. Coupling
strength is varied in range of g ∈ [0, 0.3].

when the Lyapunov dimension was maximized. This is in good
agreement with the chaotic resonance hypothesis.

The situation is different for the weak input (Fig. 2(a)). The
synchronization index increased monotonically as the coupling
increased; no peak was discernible. This is because the input
signal was not strong enough to entrain the IO neurons to achieve
synchrony and chaos played no role to destroy the synchronous
neural firings. For this reason, the peak in the Lyapunov dimension
did not produce any peak in the mutual information.

To clarify the relationship between the mutual information,
the synchronization index, and the Lyapunov dimension, we
computed the correlation coefficients. For strong input, the
correlation coefficient between the mutual information and the
synchronization index was −0.67 (p = 0.007), whereas between
the mutual information and the Lyapunov dimension it was
0.74 (p < 0.001). For weak input, the correlation coefficient
between the mutual information and the synchronization index
was −0.98 (p < 0.001), but between the mutual information and
the Lyapunov dimension it was −0.31 (p > 0.1). This indicates
that synchrony is always correlated with mutual information,
whereas chaos is correlated with mutual information only when
the input signal is strong.

3.2. Feedback-error learning

When the input error signals to the IO neurons are weak
(β = 0.001), we examined the efficiency of the feedback-error
learning. Fig. 4(a) compares two learning curves corresponding
to weak coupling (g = 0.001) and intermediate coupling (g =

0.05). The error bars represent standard deviations over twenty
simulations starting from random initial conditions. The weak
coupling produced an averaged error curve lower than that of
the intermediate coupling. The dependence of the learning error
at 10th step on the coupling strength is further displayed in
the range of g ∈ [0, 0.15] in Fig. 5(a). The error, which was
relatively small for weak coupling, monotonically increased as
the coupling strength increased. The synchronization index also
increased monotonically as the coupling strength increased. This
implies that increased coupling strengthened the synchronization
of the IO activities, which lowered the efficiency of the error
transmission and thus slowed down the learning.

Next, we focus on the case where the input signals to the IO
neurons are relatively strong (β = 0.05). As shown in Fig. 4(b),
the learning curve of the intermediate coupling (g = 0.05) took
smaller errors than the weak coupling (g = 0.001). Compared to
Fig. 4(a), the situation is reversed. The dependence of the learning
error at 10th step on the coupling strength indicates that the error
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Fig. 4. Learning error curves obtained from network of IO neurons with g = 0.001
(dotted line) and g = 0.05 (solid line). (a) Input signal isweak (β = 0.001). (b) Input
signal is strong (β = 0.05).

took a small value in the range of g ∈ [0.05, 0.1] (Fig. 5(b)).
The synchronization index showed a similar tendency and took
a small value around g = 0.05. This minimum is located close
to where the Lyapunov dimension is maximized, implying that
chaotic dynamics destroyed the synchronous IO activity, improved
the transmission of the error signal, and enhanced the learning.

Case studies of both strong and weak input signals indicated
that the optimal coupling strength to realize efficient learning
depends upon the strength of the input error signals. As shown
in Fig. 6, coupling strength that gives rise to minimum error was
shifted froma small value to a large one as the input gain increased.

As a final simulation, Fig. 7(b) shows the learning curve of
the adaptive coupling. The input gain was set as β = 0.013. At
the beginning of the learning, the coupling strength was set to
be g = 0.05, and it was reduced to g = 0.01 as the learning
proceeded (solid line of Fig. 7(a)). Compared with the cases where
the coupling strength was fixed to a constant value of g = 0.01
or g = 0.05, the adaptive coupling showed an error curve smaller
than those of the fixed couplings.

4. Conclusions and discussions

To summarize, we used a simple model to study the function
of IO neurons in cerebellar learning to determine how coupling
strength, which gives rise to efficient learning, depends upon the
strength of the error signals. First, to examine the capability of the
information transmission, an artificial signal was injected into a
network of IO neurons. By varying the coupling strength, mutual
information between the input signal and the output responses of
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the IO network was computed. The synchronization index highly
correlated with the mutual information (Fig. 2(a) and (b)), because
desynchronized activities of IO neurons are essential for efficient
information transmission (Schweighofer et al., 2004). When the
input signal is strong, the synchronized activity of the IO neurons
was enhanced due to their entrainment to the strong input signal.
This produces a large synchronization index in the weak coupling
regime (Fig. 2(b)). The synchronized IO activities were destroyed
with an intermediate coupling that produces a strong chaotic
activity. Since chaos is important to destroy synchrony to enhance
the information transmission, the Lyapunov dimension highly
correlated with the mutual information.
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When the input signal is weak, highly synchronized activity
of the IO neurons was not observed in the weak coupling
regime (Fig. 2(a)) because the input signal was not strong
enough to entrain the IO neurons. Here, since chaos played no
role in destroying the synchronous neural firings, the Lyapunov
dimension was not correlated with the mutual information.

These observations lead to the first part of our conclusion
that the balance between neuronal synchrony and its destruction
is the key factor to determine the optimal coupling strength.
A strong input signal that enhances neural synchrony requires
an intermediate coupling to destroy the synchrony, whereas
a weak input signal that does not enhance the neuronal
synchrony requires only weak coupling, which suffices to support
desynchronized IO activities.

In the second part of our study, we applied adaptive coupling
to the control problem of a multi-joint arm, where a model of the
IO neurons was implemented to transmit the error signals in the
feedback-error learning. In accordance with the basic property of
information transmission, the optimal coupling strength depended
again upon the strength of the error signal. For a strong error
signal, intermediate coupling strength effectively lowered the
synchronous IO activity that accurately transmitted the error
signal and enhanced motor learning (Fig. 5(b)). On the other
hand, for a weak error signal, weak coupling was enough to
realize desynchronized IO activities that enhanced motor learning
(Fig. 5(a)).
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In the final simulation, we designed an adaptive control to
slowly decrease the coupling strength as the learning proceeded
(Fig. 7(a)) based on the following expectation. In the beginning of
the learning, the error signals are large, because an untrained sys-
tem produces undesired movements. Strong coupling is required
to destroy the neuronal synchrony induced by such large error
signals. As the learning proceeds, the system movement becomes
close to the desired one and the error signals become smaller. Since
the small error signals only weakly influence the IO neurons, weak
coupling is sufficient to maintain the desynchronized neural activ-
ities. This scenario was confirmed and the adaptive coupling was
shown to bemore efficient than the situation inwhich the coupling
strength was fixed during the entire learning (Fig. 7(b)). Note that,
in the adaptive control, the coupling strength was changed rather
abruptly from a large value to a small one (Fig. 7(a)). This is due
to the property of the learning system, whose optimal coupling lo-
cation quickly switches from a large value to a small one around
the region of β ∈ [0.01, 0.02] (Fig. 6). Such a rapid switch implies
that the coupling should also be decreased quickly as soon as the
error signals are weakened in the learning process. The controlling
scheme of the coupling should be designed in such a way to adapt
to the inherent property of the learning system in the cerebellum.

The present adaptive coupling scheme is supported by the
recent hypothesis of Kawato et al. (2011) who focused on the
physiological functions of the closed triangle circuit of IO–PC–CN,
which may control the coupling strength of the IO neurons (Fig. 1).
In the early stage of learning, the PCs are strongly modulated by
motor commands. The modulated PCs inactivate the inhibitory
effect of the CN cells on the IO coupling. Thus the IO neurons are
initially strongly coupled. In contrast, in the late stage of learning,
the PCs are only weakly modulated and hardly inactivate the
inhibitory effect of the CN cells. Thisweakens the coupling strength
of the IO neurons. The hypothesis therefore implies that, in the
actual cerebellar learning, the coupling strength is adaptive and
should be weakened as the learning proceeds. The present study
demonstrated that such an adaptive control of the coupling is quite
beneficial in the motor learning.

The role of electrical coupling in cerebellar learning has
been confirmed by recent experiments on mice mutants lacking
electrical coupling between the IO neurons. Although these
mice show no general motor deficits, they exhibit deficits in
learning-dependent motor tasks such as locomotor or eye-blink
conditioning (Van Der Giessen et al., 2008). The authors suggested
that the electrical coupling among the IO neurons by gap junctions
is essential for proper timing of their action potentials and for
learning-dependent timing in cerebellar motor control. Similarly,
humans with reduced or no IO coupling exhibit no general motor
deficits but show motor learning impairments (Van Essen et al.,
2010). Our hypothesis of the adaptive coupling may provide
additional explanation on these learning deficits.

Our idea is distinguished from the related function of the IO
circuitry. It has been known that a CN–IO pathway can function
as a negative feedback loop, in which the CN inhibits the IO
firing through GABA (Andersson, Garwicz, & Hesslow, 1988; De
Zeeuw et al., 1996; Hesslow, 1986; Nelson & Mugnaini, 1989).
The cerebellar learning can be regulated by this negative feedback
(Bengtsson & Hesslow, 2006; Best & Regehr, 2009; De Zeeuw
et al., 1998; Lang et al., 1996; Marshall & Lang, 2009). For
instance, through interactions between excitatory and inhibitory
inputs, the negative feedback system may selectively transmit
error signals when they are needed and inhibit them when the
signals should be blocked (Andersson & Armstrong, 1987; Apps,
Atkins, & Garwicz, 1997; Gellman, Gibson, & Houk, 1985; Hesslow
& Ivarsson, 1996; Kim, Krupa, & Thompson, 1998; Lidierth & Apps,
1990). The blocking of the teaching pathway is also considered
to play an important role in the reinforcement learning for
classical conditioning of discrete responses such as associative
eyeblink conditioning (Hesslow & Ivarsson, 1996; Kim et al.,
1998; Thompson, Thompson, Kim, Krupa, & Shinkman, 1998). In
contrast to such a strong blocking function, our scheme does not
directly inhibit the input signals, but it tunes the coupling strength
to control the capability of information transmission of the IO
neurons. In this sense, our focus is more on a delicate level of
regulating the error signals.

Finally,wenote that the original scenario of Kawato et al. (2011)
further discussed the possibility of degrees-of-freedom control.
Here, strong initial coupling may induce highly synchronized
activities of IO neurons and PCs, reducing the number of
independently firing PCs. They have conjectured that such
low degrees-of-freedom can be advantageous for avoiding local
minima and increasing learning speed. As learning proceeds,
weakened coupling may reduce the synchronized activities of the
IO neurons and the PCs and they may exhibit complex dynamics
with full degrees-of-freedom. Such high degrees-of-freedom can
be useful for slow but sophisticated learning in the late stage. The
present study did not consider such an initially strong coupling
that may control the degrees-of-freedom of the IO–PC–CN circuit.
We only focused on coupling strength ranging from small to
intermediate levels. Future work takes into account the degrees-
of-freedom control in the cerebellar motor learning.
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Appendix

This Appendix provides a basic framework of the feedback-
error learning of a multi-joint arm and details of the simulation
conditions. As amodel for a multi-joint arm, we utilized a two-link
human arm on a horizontal plane and adapted parameters from
Katayama and Kawato (1993). The equation of motion for the arm
movement is given by

M(θ)θ̈ + C(θ̇ , θ)θ̇ = τ , (A.1)
where θ is a vector of the arm joint angles and τ is a motor
command. Inertial and Coriolis matricesM and C are given by
M11 = I1 + I2 + 2W2L1 cos(θe) + W1L21,
M12 = M21 = I2 + W2L1 cos(θe),M22 = I2,
C11 = −2W2L1 sin(θe)θ̇s,

C12 = −W2L1 sin(θe)θ̇e = −C21, C22 = 0,
where θe is an elbow joint angle, θs is a shoulder joint angle, L1 and
L2 are segment lengths, I1 and I2 are inertia parameters, andW1 and
W2 are two other parameters.

In feedback-error learning, the outputs of a crude feedback
controller and a feedforward controller are summed to form the
motor command. The controller receives a desired minimum jerk
trajectory (Flash & Hogan, 1985) in the joint coordinates. The
vectors of the motor commands are given by the sum of feedback
ufb and feedforward motor commands uff as:
τ = ufb + uff . (A.2)
The feedback commands are given by the proportional derivative
(PD) control as

ufb = KP · (θd − θsensed) + KD · (θ̇d − θ̇sensed), (A.3)
where θd and θsensed are the vectors of the desired and actual joint
position. Note that ufb represents an error signal, which is used
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both for feedback control and as input to the IO. The IO trains the
feedforward controller composed of a network of a ‘‘granule cell’’
layer, which sends its output to a ‘‘Purkinje cell’’ layer:

GCj = tanh


i

vjisi


, (A.4)

PCk =


j

wkjGCj, (A.5)

where GCj is the jth granule cell activity, PCk is the kth PC activity,
v represents the fixed weights from the inputs to the granule cells,
w represents the modifiable weights from the granule cells to the
PCs, and input s = [θe, θs, θ̇e, θ̇s, θ̈e, θ̈s] represents the desired state
vector.

The weights from the granule cells to the Purkinje cell layer are
updated based on a simplifiedmodel of synaptic plasticity between
the granule cells and the PCs (Kawato & Gomi, 1992):

w′

kj = wkj + α · (IOk − IOmean) · GCj, (A.6)

where IOk is the spiking activity of the kth IO neuron and α
is a learning rate. Before learning, mean firing rate IOmean is
determined by averaging the mean firing rates over all the IO
neurons with constant input I = I0.

The motor task is to reach a target located at [0.1, 0.3] m
starting from [−0.1, 0.3] m with a movement time of 0.6 s.
The shoulder is located at [0, 0]. During each learning trial, the
feedback command is integrated as learning error. 100 granule
cells send their inputs to 50 PCs for each joint, where 50 IO neurons
per joint are connected to the PCs in one-to-one fashion. The
fixed weights from the desired state to the granule cells layer are
initialized by randomvariablesN(0, 1), and themodifiableweights
from the granule cell to the Purkinje cell layer are initialized to
zero. In the IO models, the µ-parameter is set to µ = 1.65, which
has been reported as plausible for spiking neurons (Fujii & Tsuda,
2004; Tsuda et al., 2004). Time constants ηi are set randomly to
each IO neuron as ηi ∈ [0.035, 0.045], which realizes a low firing
frequency of about 2 Hz for a constant input. Other simulation
parameters are given as xth = 0.75, I0 = 0.2, α = 0.02, L1 =

0.33 m, L2 = 0.34, I1 = 0.067 kg m2, I2 = 0.97 kg m2,W1 =

1.52 kg, and W2 = 0.34 kg m, KP = 100, KD = 1, and time step
dt = 0.003.
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