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not possible to use invasive techniques in order to identify brain activity
corresponding to activity of individual muscles. Further, it is believed that the spatial resolution of non-
invasive brain imaging modalities is not sufficient to isolate neural activity related to individual muscles.
However, this study shows that it is possible to reconstruct muscle activity from functional magnetic
resonance imaging (fMRI). We simultaneously recorded surface electromyography (EMG) from two
antagonist muscles and motor cortices activity using fMRI, during an isometric task requiring both reciprocal
activation and co-activation of the wrist muscles. Bayesian sparse regression was used to identify the
parameters of a linear mapping from the fMRI activity in areas 4 (M1) and 6 (pre-motor, SMA) to EMG, and to
reconstruct muscle activity in an independent test data set. The mapping obtained by the sparse regression
algorithm showed significantly better generalization than those obtained from algorithms commonly used in
decoding, i.e., support vector machine and least square regression. The two voxel sets corresponding to the
activity of the antagonist muscles were intermingled but disjoint. They were distributed over a wide area of
pre-motor cortex and M1 and not limited to regions generally associated with wrist control. These results
show that brain activity measured by fMRI in humans can be used to predict individual muscle activity
through Bayesian linear models, and that our algorithm provides a novel and non-invasive tool to investigate
the brain mechanisms involved in motor control and learning in humans.

© 2008 Elsevier Inc. All rights reserved.
Introduction

The Central Nervous System (CNS) controls the dynamic
interaction with the environment using muscles, via their
force and impedance properties (Hogan, 1984; Burdet et al.,
2001). Observing the evolution of muscle activity is critical in
understanding fundamental brain processes such as learning
(Franklin et al., 2003) and motor synergies (d'Avella et al.,
2006). Therefore, studying brain activity and regions related
to individual muscles may provide important clues in under-
standing the motor system. Hence electrophysiological stu-
dies with monkeys investigating interactions between muscle
activity, kinematics and brain activity have revealed impor-
tant information about the organization of the motor system,
such as the coordinate frames used by the brain (Kakei et al.,
1997) and its functional topography (Cisek et al., 2003), and
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has enabled decoding of brain activity corresponding to
various task variables such as trajectories (Koike et al.,
2006), relative positions of hand and target (Pesaran et al.,
2006) and arm orientation (Scott et al., 1997a,b).

How can one infer the areas of the CNS related to motor
control in humans, where electrophysiology is restricted to
exceptional cases? Functional magnetic resonance imaging
(fMRI) enables us to determine specific brain areas involved in
the control of motor tasks in humans with good spatial
accuracy. Human motor imaging experiments have studied
the neural correlates of force control (Pope et al., 2005; Dai et
al., 2001; Ehrsson et al., 2000) and various high level motor
processes, such as internal model loading (Bursztyn et al.,
2006), model switching (Imamizu et al., 2004) and differences
in control strategies (Schaal et al., 2004; Diedrichsen et al.,
2005; Milner et al., 2007). However, to our knowledge, no
study using fMRI to seek for neural correlates of individual
muscle level processes has been reported in the literature.
This may stem from the belief that the fMRI resolution is not
sufficient to isolate neural activity related to individual
muscles. Also, only recently have methods been developed
to monitor muscle activity during fMRI (Van Duinen et al.,
2005; Ganesh et al., 2007).
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Fig. 1. Experiment setup and visual display. (A) The subject hand was fixed in an isometric position onto an fMRI compatible manipulandum. Straps and a plastic splint helped
restrict motion to a wrist rotation. (B) Visual feedback of the applied torque (red bar) and total EMG activity (blue bar) is provided. During the torque condition shown here, a
target (yellow block) appears in front of the torque bar and the subject had to match it for the period it was displayed. During the co-contraction condition the target block appears
in front of the co-contraction bar.

1 http://www.fil.ion.ucl.ac.uk/spm/.
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However, the results of this paper will demonstrate that it
is possible to use fMRI to reconstruct activity corresponding to
individual muscles. The paper first introduces a novel method
to map fMRI to muscle activity. Data was obtained from
surface electromyography activity (EMG) recorded from two
muscles simultaneously to fMRI in conditions requiring
various levels of reciprocal activation and co-activation. We
adapt a Bayesian sparse regression method to map voxels
from areas 4 (M1) and 6 (pre-motor, SMA) of the brain to the
quantitative muscle activity (EMG) of the two muscles.

The prediction power of the learnedmapping is then tested
on a data set distinct from the training set, and compared with
mapping identified using support vector machine regression
(SVR) and ordinary least square regression (OLS), which are
commonly used methods in decoding. The distribution of
selected activity voxels is analyzed and compared to previous
findings from electrophysiological studies in monkeys. The
results demonstrate, for the first time, that the fMRI resolution
is sufficient to reconstruct individual muscle EMG from brain
activity in humans.

Experiment

Protocol

Six healthy male subjects aged between 23 and 40 years
participated in the study. The institutional ethics committee
approved the experiments and subjects gave informed
consent prior to participation. An fMRI compatible interface
(Gassert et al., 2006) was used to restrain the subject's wrist to
an isometric posture with the help of straps and a plastic
splint (Fig. 1A) while the subject contracted. This device has a
custom optical torque sensor which was used to collect wrist
joint torque during the experiment.

The task consisted of isometric wrist contractions in both
flexion and extension directions performed during scanning.
Subjects were presented with visual feedback of the torque
applied to the manipulandum and their total muscle activity
(summation of the rectified, smoothed EMG activity from
antagonist wrist muscles) at all times (Fig. 2B) during
alternating torque, co-contraction and rest conditions.

During the torque condition a flexion/extension target
torque level in the set {−3.6, −2.4, −1.2, 0, 1.2, 2.4, 3.6} Nm
was displayed in a pre-decided sequence every 4 s. The
subjects were instructed to slowly increase the torque to the
target level and hold it throughout the target display period,
which lasted 3 s, after which they could relax for 1 s before a
new target appeared and they contracted again to reach the
new torque target.

In the co-contraction condition muscle activation targets
were presented with similar time sequence and the subjects
were required to increase muscle activation to the target
levels by co-contracting the wrist muscles without applying
any torque. The co-contraction target was evaluated by the
mean of the EMG recorded during the immediately preceding
torque condition. The co-contraction target was presented
randomly either to the left or right of the screen so as to make
the visual display similar to that in the torque condition. All
subjects were trained before the fMRI experiment so as to
familiarize with the paradigm and visual feedback.

The three conditions covered the possible combinations of
muscle activities, which are when mainly either the flexor or
extensor is active (torque),when theyare both active equally (co-
contraction) and when they are both inactive (rest). The torque
andmuscle activation target sequences were chosen so as to get
slow varying but distinct antagonist muscle EMG profiles after
convolution with a haemodynamic response function (HRF).

An example of this is shown in Fig. 2B where during the
torque condition the presented target sequence {−2.4, −2.4,
−2.4, −3.6, −3.6, −3.6, −1.2, −1.2, 2.4, 2.4, 2.4, 3.6, 3.6, 3.6, 2.4,
2.4} Nm. The selected HRF function corresponds to the
canonical form used in SPM1 (Fig. 2). The slow varying EMG
profile was necessary to 1) ensure detection by fMRI and 2)
reduce effects of errors in the HRF profile. The alternating
activation and rest periods limited subject fatigue and move-
ment artifacts while still providing a changing brain activity
varying sufficiently slowly to be detected during fMRI.

Two 13 minutes long sessions were conducted for three of
the subjects. In each session the regressor pattern repeated
four times with a rest period of 30 s between repetitions. For
the other three subjects, the two sessions were combined into
one long experiment.

http://www.fil.ion.ucl.ac.uk/spm/


Fig. 2. Creation of muscle activity regressands. The figure shows the (rectified and integrated) EMG activity recorded on the ECRB (blue plot above zero), FCR (represented by negative
blue plot below zero) and torque data over a short period of 160 s during the experiment. These values were collected online during scanning and used to give visual feedback to the
subject as shown in Fig. 1B. The expected brain activation (dash black) is constructed by convolving the muscle activity with the HRF (green). Both the (blue) muscle activity and (red)
torque pulsate with a time period of 4 s corresponding to the target presentation. Note that in the torque condition there is a non zero torque while either one of the muscle activities
is low depending on the direction of the torque. In the co-contraction condition both FCR and ECRB activities are high while the torque signal is close to zero, showing the subject
contracted his wrist muscles without applying any directional torque.
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The data collected was divided into three sets: a regression
set and selection set, which together form a training set, and a
distinct test set. The first half of the experiment (the first
session, for the subjects who did two sessions; the first half of
the session, for the subjects who did a single long session) was
used as regression set. The first 25% of the second half of the
data formed the selection set while the remaining data was
used as test set. The regression was performed on the
regression set while tuning the parameters using the selection
set. The trained function was then tested on the test set to
check for the prediction power of the identified mapping.

Electromyography

EMG was recorded from two muscles acting at the wrist
(flexor carpi radialis (FCR) and extensor carpi radialis brevis
(ECRB), which are the major contributors to wrist flexion and
extension in a sideways position (Haruno and Wolpert, 2005).

After electrode placements for each muscle were deter-
mined using functional movements, the area was cleansed
with alcohol and abrasive gel (Nuprep, D.O.Weaver & Co, USA).
EMG electrodes designed for use in the MR environment (NE-
706A, Nihon Kohden, Japan) were filled with EEG electrode
paste (Biotech, GE Marquette Medical Systems, Japan) and
firmlyfixed to the subjects skinwith tape. Two electrodeswere
positioned on the belly of each muscle separated by approxi-
mately 1 cm. An elastic cloth sleeve was placed over the
electrodes and wires, fixing them against the subjects forearm
to avoid any accidental electrode removal and to minimize
movements of the electrode wires during the scanning. Once
the subject was positioned in the scanner the long braided
electrode wires were firmly fixed to prevent movement in the
magnetic field. To avoid external noise being carried into the
shielded MR room, the electrode wires were passed through
multiple ferrite filters before passing through wave guides in
the penetration panel of the MR room. EMG channels were
cleaned online during scanning and used to provide EMG
feedback using the methodology of Ganesh et al. (2007).
fMRI

A 1.5 TMR scanner (Shimadzu-Marconi ECLIPSE 1.5T Power
Drive 250) was used to obtain blood oxygen level-dependent
(BOLD) contrast functional images. Images weighted with the
apparent transverse relaxation time were obtained with a
gradient-echo echoplanar imaging (EPI) sequence. Data was
collected from the upper cortex located in the top of the brain
to about the center of the ventricles, so as to include areas 4
and 6 completely. Scanning was performed at a repetition time
of TR=1.5 s with echo time, 47 ms; flip angle, 60°, 15 slices
(thickness 3 mm, gap 0 mm) of 64×64 in-plane voxels (in-
plane field of view of 224 mm2).

Reduction of movement artifacts

Movement artifacts are a major problem in motor experi-
ments as the artifacts are correlated with the movements and
thus difficult to separate from actual activity. In our experi-
ment the forearm is fixed, the task is isometric and performed
with a distal link, namely the wrist, the movement artifacts
are thus expected to be small, if any. However to further
reduce any artifacts, the following steps were taken:

While movement artifacts occur immediately on start of
the movement and last as long as the movement (Birn et al.,
2004), the brain activity is more delayed and long lasting. The
experiment was designed to exploit this property in order to
reduce potential artifacts in the data. By employing a pulsed
activation paradigm (3 s of target presentation followed by 1 s
of rest) the movement artifacts are highly correlated with the
pulsating torque regressor (Fig. 2) but the correlation of the
artifacts and brain activity is weakened. Further, due to the
pulsating paradigm, the frequency content of the movement
artifacts is much higher than those of the brain activity, so a
low-pass filter can be used to filter the artifacts before the
regression analysis. In our analysis the cut-off frequency for
the low-pass filter was set to 0.2 Hz (5 second period) so as to
attenuate movement artifacts which repeat every 4 s.
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A custom made bite bar was used in all experiments to
reduce head movement. In this way, head motion amplitude
was below 1 mm and 1° for all the subjects. This was first
detected by the SPM movement parameters and confirmed in
a separate experiment using the OPTOTRACK 3020 from
Northern Digital Inc. with optical markers fixed on the head
providing a measurement at 100 Hz.

The images obtained from the experiment were realigned in
SPM before performing the regression.
Algorithm

Preprocessing

The brain images from the two sessions were realigned to
the first scan of session 1 to ensure there was no displacement
among scans from the two sessions. For each subject the region
of interest (ROI), in our case area 4 (M1) and area 6 (pre-motor,
SMA), were manually mapped on the individual T2 structure
scans according to literature (Talairach and Tournoux, 1988;
Picard and Strick, 2001). The voxel activity from the ROI was
extracted and band-pass filtered between 0.003 Hz (300 s) and
0.2 Hz (5 s) before the regression analysis. The low frequency
cut-off value was chosen so as to remove any drift in the fMRI
signal while allowing signals corresponding to the muscle
activitywhich repeated every ~196 s. The high cut-off of 0.2 Hz
was chosen to remove any possible activity corresponding to
movement artifacts. This preprocessed data was used as the
regressor in the regression analysis.

The integrated EMG profile obtained after the use of theMR
artifact cleaning algorithm (Ganesh et al., 2007)was convolved
with a haemodynamic response function (HRF) and used as the
regressand for the regression analysis.
Fig. 3. Evolution of error with number of voxels selected during training. The plot shows the
the FCRmuscle of subject 2. With the decrease in the value of σ (and increase in the number o
shows a (red) U-shaped behavior with respect to σ. The binary search algorithm is used to fi

voxel number corresponding to σopt is taken as the optimal (nopt) for the reconstruction of
Regression analysis

Our aimwas to reconstruct the muscle activity represented
by EMG using brain voxels and thus get a functional mapping
between a set of voxels in the brain and the activity of a
particular muscle. We used the Bayesian linear sparse
regression algorithm proposed by Figueiredo (2003) for the
mapping and developed a recursive procedure to optimize the
function complexity as described below. Linear regression has
been previously shown to efficiently reconstruct muscle
activity from brain in (monkeys) electrophysiological studies
(Townsend et al., 2006; Ting et al., 2005; Koike et al., 2006;
Morrow and Miller, 2003). We decided to use a sparse
regression method for the following two reasons:

- Sparseness leads to simple functions and helps avoiding
over-fitting, as explained in the later section.

- Sparse regression methods set the coefficients of irrelevant
voxels to zero thus removing any effects of their activity in
the final result. Therefore given muscles will be connected
to specific brain activity centers, as is generally agreed in
the literature.

The linear regression function is in the form

y ¼ Hβ þw ð1Þ
where y=[y1,…,yn]T is the muscle activity (regressand) to be
reconstructed,

H ¼
x11 : : : xp1
v O v
x1n : : : xpn

2
4

3
5

is the design matrix with the time series of a set of p voxels
from the selected ROI in the ‘regression set’, andw=[w1,…,wn]T
evolution of training and selection set testing error and COD values with change in σ for
f selected voxels) the (blue) training error decreases. However the testing error typically
nd the value of σopt at which the testing error is minimum and COD is maximum. The
the EMG.



Table 1
The coefficient of determination (R2) values achieved by the mapping during the
training and testing phases with a sparse selection of voxels (#)

Sub FCR reconstruction
(R2)

# voxels ECRB reconstruction
(R2)

# voxels

Training Testing Training Testing

1 0.82 0.38 10 0.85 0.62 31
2 0.78 0.38 15 0.46 0.57 52
3 0.58 0.51 3 0.64 0.42 18
4 0.70 0.39 13 0.89 0.63 6
5 0.74 0.42 8 0.77 0.44 29
6 0.76 0.41 5 0.65 0.47 9
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is the noise for n brain scans recorded in an experiment. The
parameters β=[β1,…,βp] will be computed as a solution of

βV¼ argmin
β

kjHβ−ykj22 þ 2σ2αkjβkj1
n o

: ð2Þ

The first term with the Euclidean norm || ||2 expresses the
least square approximation of the regressand, while the second
term with kjβkj1 ¼ ∑jβij is to produce a sparse representation.
The larger σ will be, the larger weight will be put on
minimization of ||β||1 thus on sparseness. The || ||1 norm,
corresponding to the absolute value, has a larger gradient than
the || ||2 norm in the vicinity of the minimum and thus should
converge fast to zero, i.e. to a sparse representation. This criterion
was named as least absolute shrinkage and selection operator or
LASSO (Tibshirani, 1996).

Theα parameter, coming froma Laplacianprior (Figueiredo,
2003)

p βjαð Þ ¼ ∏
i

kα
2
exp −αjβijf g ¼ α

2

� �k
exp −αkjβkj1

� �
;

can be eliminated using a Jeffrey's non-informative hyper-
prior as explained in Figueiredo (2003). This allows us to use
the expectation-maximization (EM) algorithm to implement
the LASSO criterion in two steps (Osborne et al., 2000;
Tibshirani, 1996):

E-step

U tð Þ ¼ diag jβV1; tð Þj; N ; jβVk; tð Þj
� � ð3Þ

M-step

βðtþ1Þ ¼ UðtÞðσ2I þ UðtÞHTHUðtÞÞ−1UðtÞHTy ð4Þ
β is computed iteratively through these steps and determined
by the value of σ.The optimal value of σ can be determined by
utilizing over-fitting as a cost.
Fig. 4. Predicted waveform. The figure shows the actual (red) and reconstructed (blue) E
(represented by negative plot below zero) for subject 2.
Determination of σ to avoid over-fitting

To achieve a good generalization of mapping, it is necessary
to control the complexity of the learnt function. A too complex
function will reproduce unimportant details of the training set
thus over-fitting the training data. Such a function will fit the
training data well but will be unable to predict a different test
data well. Conversely, an overly simple function will not be
able to capture the true mapping between the regressor and
the regressand, thus under-fitting the training data. In our
case the number of voxels chosen during training decides the
ability of the model to generalize. The typical behavior of our
data set is represented in Fig. 3A. The regression algorithm has
the parameter σ to adjust the number of voxels used during
training. We utilize over-fitting, detected by the performances
on a representative selection set, as a criterion to select an
optimal value of σ. The EM algorithm loop starts with σ=1.
The mapping vector β(σ) is computed as explained above and
the corresponding coefficient of determination (R2) is eval-
uated in the selection set. A binary search is used to determine
the σ maximizing R2.
Results

Reconstruction performance

Table 1 shows the performance of the method in reprodu-
cing FCR and ECRB EMG activity for 6 subjects. The
performance has been quantified using the coefficient of
determination R2 ¼ 1− ∑ y−yrð Þ2

∑ y−yð Þ2 , where y represents the muscle
regressand value, ȳ its average and yr the reconstructed value.
For the first three subjects, the training and test sets were
chosen from the single long session, while for the last three
subjects the training regression and test sets were taken from
separate sessions.

The R2 values obtained on the test for the different subjects
vary between 0.38 and 0.64, corresponding to a good
reconstruction. The R2 values can be seen to be higher when
the training and testing are done in the same session. Fig. 4
shows a representative time series of the predicted and actual
EMG for subject 1.

To test if the performance of the algorithm is good enough
indicatorof actual brain activityand is above statistical chance, an
additional analysiswas also carried out for eachof the subjects, in
which a similar regression analysis was performed with voxels
from the right prefrontal cortex. This area is generally not
expected tohave activity related to individualmuscle activations.
MG waveforms for the two muscles, ECRB (represented by plot above zero) and FCR



Fig. 5. Comparison of performance during different conditions. The plot shows the COD values for each subject, averaged for the two muscles when the testing is done only in the
co-contraction condition (blue), force condition (red) and on the entire test data (green). Overall the performance is relatively similar in the two conditions with half the subjects
showing a better performance in one condition and half in the other. The performance with the entire test data is roughly the average of the performance in the two conditions.
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For five of the six subjects, the trained voxels could not give R2

values more than 0.18 in testing while for one subject the value
reached 0.21 for one muscle. Overall the values were well below
the values obtained with the voxels from areas 4 and 6.

To compare the reconstruction performance in the force
and co-contraction conditions (Fig. 5), reconstruction was
carried out in the two conditions separately. It was found that
the performance of the algorithm was comparable in the two
conditions with three subjects showing a better performance
during co-contraction and three showing better in the force
condition. The performance of the entire test set was roughly
the average of the performance in the individual conditions.

Comparison with other regression methods

The results from our algorithm were compared with two
other methods commonly used in decoding: ordinary least
square regression (OLS) and support vector machine regression
(SVR). OLS was implemented inMatlab using the pinv function
while SVR was implemented according to the method of Gao
et al. (2003). Fig. 6 compares the performance of the sparse
linear regression (SLR) algorithm with ordinary least square
regression (OLS) and support vector regression (SVR). The OLS
and SVRmethods performed extremely well in training giving
R2 value of 1 in each case. The weights β (Eq. (1)) obtained
from the two methods were different, demonstrating the
possibility of distinct mappings fitting the data. In compar-
ison, the SLR gave lower values of R2 in training, but much
higher values in the test phase. This shows that the SLR is able
Fig. 6. Comparison with algorithms generally used for decoding brain activity. The average
least square (OLS) and sparse linear regression (SLR) are shown for (A) training set and (B) t
they perform poorly on the test set. The SLR is able to generalize much better than SVR and
to generalize beyond the training set, in contrast to the other
two methods tested here.

Distribution of brain activity to distinct muscles

An interesting aspect of the results is the distribution of
voxels selected for the FCR and ECRB muscles shown in Fig. 7.
The bar charts in the figure give the weighted histogram of the
voxels along z. Each bar represents the sum of the absolute
weights as obtained from the sparse regression of voxels in
one particular slice. The weights have been normalized by the
maximumweight. The sum of the FCR weights (blue bar) and
ECRB weights (red bar) indicates the importance of the slice in
the reconstruction of that particular muscle activity. Green
lines indicate the center of mass of the z-distribution.

To check that the reconstruction selected the functionally
important voxels, we adopted a procedure where the voxels
selected by the algorithm for a muscle were removed from the
data, after which the regression procedure was re-run. The
results showed a drop of about 50% in the coefficients of
determination for all subjects when the few selected voxels
were not used.

The FCR and ECRB voxel distributions (Fig. 7) were found to
spread over cortical areas 4 and 6. In general there were less
selected voxels in area 4 than 6. However, except for the FCR
voxels of subject 6, for all the subjects and for both the
muscles, at least one of the two top voxels in regression was
located in area 4. The spread of voxels was roughly over the
medial and medial–dorsal region in areas 4 and 6.
R2 values obtained for the two muscles from support vector regression (SVR), ordinary
est set. While SVR and OLS give an R2 value of 1 during training illustrating a perfect fit,
OLS, as exemplified by the similar correlation coefficients in the training and test sets.



Fig. 7. Voxel distribution shown as glass brain representation of the left cortex for the six subjects. The grey lines represent the z contours which increase from z=0 mm to z=45 mm
in steps of 3 mm, corresponding to the 15 fMRI slices. Areas 4 (dark grey) and 6 (light grey) corresponding to each subject have been marked on the plots. Voxels representing FCR
(red) and ECRB (blue) were found to be distributed throughout areas 4 and 6. Note that the voxel size has been magnified in the figure to improve visibility. The bar graphs show the
weighted z-distribution. Each bar represents the sum of absolute normalized weights assigned to voxels corresponding to FCR (blue bar) and ECRB (red bar) in one particular slice
with the green line representing the center of mass of the distribution.
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For all subjects, there was almost no overlap between
voxels chosen to reconstruct the FCR and ECRB muscles, even
though the twomuscles were evaluated in separate regression
analyses. The number of voxels chosen to reconstruct the
extensor (ECRB) activity (Table 1) was found to be larger than
for the flexor reconstruction.

Discussion

This study showed that fMRI activity related to individual
muscle activity can be reliably identified, and provided an
algorithm to map fMRI activity to muscle activity. A technique
based on Bayesian sparse regression was utilized to identify a
linear mapping from fMRI data in areas 4 (M1) and 6 (pre-
motor, SMA) of the brain, which have been shown to be
directly associated with muscle activation (M1: Morrow and
Miller, 2003; Rathelot and Strick, 2006; Koike et al., 2006;
Jackson et al., 2007";; Townsend et al., 2006 and pre-motor:
Cisek et al., 2003; Crammond and Kalaska, 2000; Kurata and
Wise, 1988; Ojakangas et al., 2006) to the EMGs of antagonist
wrist muscles. The proposed method does not require any
manual parameter tuning or thresholding. This method was
implemented on six subjects, who had performed an
isometric wrist task requiring control of both force and co-
contraction. The results demonstrated that fMRI can be
reliably mapped to EMG by testing the mapping on data
distinct from the training data.

Role of spinal reflexes

In this study muscle activity was predicted from the brain
activity patterns alone and reflex contributions through
direct spinal pathways were neglected. As in most non-
human primate studies, we considered voluntary and smooth
movements for the reconstruction. Errors due to neglect of
reflexes may become prominent in the case of real move-
ments with perturbations (Jackson et al., 2007). While it may
be impossible to estimate the reflex contributions from
observation of the brain activity alone, comparison of the
predicted and actual muscle activities may be used to isolate
and study reflex components from EMG signals recorded
during experiments.

SPM and ordinary linear regression

In a system like ours, where single muscle activity is
regressed with a brain activity matrix of large dimension,
ordinary linear regression provides a perfect fit (Fig. 6A).



Fig. 8. Regression of muscle activity using SPM. The images from the training session of a subject were realigned to the first image of the session and analyzed, without smoothing,
using a standard SPM analysis with the two muscle activity, and six re-alignment parameters (provided by SPM) as regressors. The figure shows the voxels selected by the SPM
regression analysis p≤0.001, uncorrected) for only the FCR (green square), ECRB (blue square) and both FCR and ECRB (red square) in the motor cortex. The voxels selected for the two
muscles overlap significantly with around 50% of the ECRB voxels being common for both muscles at this threshold. Three of the top five and 7 voxels of the top 10 peak ECRB voxels
are also selected for FCR.
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However, the many possible mappings and over-fitting due to
the high dimensionality of the regressors are major concerns.
These concerns cannot be addressed by the ordinary least
square algorithm and the mapping identified is usually data
specific and cannot be generalized for test data other than
the data used for training (Fig. 6B).

Statistical toolboxes such as Statistical Parametric Map-
ping (SPM)1, used commonly for brain image processing,
often rely on simple linear regression to isolate brain activity
related to physical processes. Regression in SPM is set up
with the brain voxels as the regressand y, and the
physiological parameters, muscle activity in our case, con-
stituting the regressor H (Eq. (1)). As the physiological
parameters are usually small in number, the dimension of
the regressor matrix in SPM is small leading to fewer possible
mappings. Thresholding of the results in SPM helps in
isolating motor cortex voxels from the other brain regions
and thus reducing over-fitting. However, within the motor
cortex, the voxels corresponding to individual muscles often
significantly overlap in space (Fig. 8).

We chose to take motor cortex activity as the regressor as
wewere interested specifically in the reconstruction of muscle
activity without having to account for other neural processes
that may be prevalent during the experiment. Sparse regres-
sion helps us to generalizewell beyond the training set, despite
the relative large dimension of our regressor matrix.

Themapping in our sparse regression algorithm and in SPM
are essentially inverse of each other (Eq. (1)). Use of both kinds
of mapping during analysis can complement and improve
insights that can be obtained from the same pair of data sets.
For example, the definition of a functional region of interest
using SPMmay provide additional information in interpreting
the sparse regression analysis, while, during analysis of high
level motor processes using SPM, sparse regression may be
used to equalize or remove activity corresponding to low level
muscle processes.
Local versus global mapping

The technique presented in this paper, based on fMRI, has
lower temporal and spatial resolution compared to electro-
physiology. However, electrophysiology usually involves
recording a set of neurons locally in the brain during
completion of a task, thus it is not possible to know the entire
population of the neurons related to, for example, a muscle. To
get a complete map of the neurons associated with particular
muscles in monkeys, Rathelot and Strick (2006) introduced
the rabies virus into a muscle and analyzed the brain area
retrogradely labeled by this virus via two stages of synapses.
This method, however, cannot be applied to healthy humans,
and gives no information about the strength of the connec-
tions. In contrast, the technique introduced in this paper can
provide a rough but quantitative mapping of the brain areas
associated with muscles. It is non-invasive and can be
routinely used on humans.

Transcranial magnetic stimulation (TMS) has been used for
isolating neural correlates of muscles, however getting
focused stimulation with TMS has been difficult (van Elswijk
et al., 2008) and the spatial resolution of stimulation is limited
to few centimeters (Wassermann et al., 1992, Hallet, 2007).
TMS being a top-down process, mapping of all the brain
regions associated with a muscle would require stimulation
and checking of each individual brain sitewhich is tedious and
still the quantitative contribution of brain sites may be
difficult to determine. However TMS can help isolating the
specific brain regions involved in the activation of a muscle. As
we use fMRI to detect brain activity, it is difficult for our
algorithm to determine if the selected voxels activate the
muscle or receive feedback from the muscle.

While we recorded surface EMG from the FCR and ECRB
muscles, other agonist and antagonist wrist muscles may have
similar activation patterns and thus similar regressands as FCR
and ECRB respectively (Hoffman and Strick 1999). This means
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that the brain voxels isolated in this study may correspond to
other functionally similar muscles. However, our purpose here
was to show that the method works for a given set of
regressands. To map individual muscles more precisely, a task
could be chosenwhich generates rich data able to differentiate
the activity pattern of each of the involved muscles.

Activity distribution

For eachmuscle, the distribution of the voxels selected byour
algorithm spread over areas 4 and 6 of the brain, with a bias
towards the medial–dorsal region. In area 4, the voxel distribu-
tion was not limited to the wrist areas, but was also spread in
areas generally associatedwith shoulder, arm and fingermuscle
activations. This is in agreement with the distributed brain
activity reported for finger muscles in monkeys (Rathelot and
Strick 2006), and confirms a previous study in humans (Sanes et
al., 1995). While neurons in the dorsal pre-motor region are
known to be associated with muscle activity (Cisek et al., 2003;
Crammond and Kalaska 2000; Kurata and Wise 1988), dorsal
pre-motor is also known to be involved in coding of hand, target
position (Pesaran et al., 2006) and gaze shifts (Sylvestre and
Cullen 2006). In our experiment, gaze shift as minimized by
keeping the targets close to the center and providing the subject
with a fixation point. Furthermore, gaze and visual feedback,
which may be correlated to the force produced, are not
correlated to the activations of individual muscles, especially
during the co-contraction conditionwhile the reconstruction of
our algorithm is comparable in both conditions (Fig. 5).

While the voxel distribution for both FCR and ECRB muscles
was found to be distributed over the motor cortex, the two
distributions were found to be orthogonal with an overlap of
less than 5%. While it is generally agreed that muscles are
controlled by distributed neural sites, the sites have usually
been reported to be overlapping (Townsend et al., 2006). The
voxels isolated by our algorithm may not represent the
complete set of brain areas associated with muscle activation.
Minimally contributing voxels and noise may be pruned by the
regressionprocess to achieve better generalization, and activity
may bemissed due to the linear nature of our regressionmodel.
Thus, while we cannot conclude that the neural correlates of
individual muscle activations are orthogonal, our results show
that the voxels most prominently correlated to individual
muscle activations have distinct distributions.

The orthogonal mapping of these prominent voxels may
give important clues regarding the coordination of muscles in
complex actions. The similarity of the brain maps obtained in
this study and that of Rathelot and Strick (2006) regarding
patchy, intermingled but disjoint representations of individual
muscles is in sharp contrast to usual fMRI analysis results;
continuous map and large overlap between antagonist
muscles (Fig. 8). This might indicate that reconstruction of
EMG from fMRI could provide a more causal and anatomical
representation of muscle control than its inverse mapping.

Possible applications

Mappingbrain tomuscle activitycanbeused to examinehow
brain processes involved in motor control and learning in
humans are coded in the brain. In particular it may be used to
infermuscle combinations such asmuscle synergies (d'Avella et
al., 2006), or reciprocal and co-activation required to control
force and impedance (Haruno and Ganesh 2007, Burdet et al.,
IEEE EMBC, 2004). Mapping between brain andmuscles may be
used in rehabilitation studies and diagnostics. Similar to
electrophysiological studies of post stroke monkeys (Nudo et
al.,1996), it will enable precise characterization of themigration
of brain activity related to muscles in humans, and may thus
explain how brain functions are affected by rehabilitation
procedures. Finally, in studies of high level motor processes
using fMRI, detected muscle related voxels may be used to help
equalize or remove activity corresponding to low level muscle
processes.
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