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Surfaces are rich in visual information that can poten-
tially be used to perceive the underlying structure of a sur-
face (Gibson, 1979). When addressing a perceived surface
structure, it must be done from two aspects: its qualitative
features (Todd & Reichel, 1989) and quantitative features
(Koenderink & van Doorn, 1991). In some cases, de-
scribing a surface in a qualitative manner is sufficient for
understanding its appearance. For other tasks, however, it
seems that quantitative surface aspects should be utilized.
Dealing with the surface geometry in the sense of Euclid-
ean metrics, depth, orientation, and curvature can be con-
sidered as primitive descriptors of a three-dimensional

(3-D) surface geometry (Erens, Kappers, & Koenderink,
1993). Many studies of computer vision have shown that
these descriptors are adequate for achieving high perfor-
mance with a machine (Horn, 1986) and thus are at least
a plausible description for aspects of human vision. In the
human vision system, is this quantitative geometrical in-
formation utilized to understand a 3-D structure?

Many psychophysical approaches have recently been
used to study the sensitivity and precision of the human
vision system for metric descriptors. Most of these behav-
ioral studies have addressed the relationship between sur-
face perception and visual cues (e.g., horizontal dispar-
ity, texture, shading, motion, etc.) and have looked at the
accuracy and stability of the responses for a metric surface
geometry by controlling visual cues attached to virtual sur-
faces. It is known that when humans are asked to perform
such tasks, although their responses are self-consistent,
there is frequently systematic biases to their data. One ex-
ample of this is the tendency when presented a shaded
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The primary objective of this study was to quantitatively investigate the human perception of surface
curvature by using virtual surfaces and motor tasks along with data analysis methods to estimate sur-
face curvature from drawing movements. Three psychophysical experiments were conducted. In Ex-
periment 1, we looked at subjects’ sensitivity to the curvature of a curve lying on a surface and changes
in the curvature as defined by Euler’s formula, which relates maximum and minimum principal cur-
vatures and their directions. Regardless of direction and surface shape (elliptic and hyperbolic), sub-
jects could report the curvature of a curve lying on a surface through a drawing task. In addition, mul-
tiple curves drawn by subjects were used to reconstruct the surface. These reconstructed surfaces
could be better accounted for by analysis that treated the drawing data as a set of curvatures rather than
as a set of depths. A pointing task was utilized in Experiment 2, and subjects could report principal cur-
vature directions of a surface rather precisely and consistently when the difference between principal
curvatures was sufficiently large, but performance was poor for the direction of zero curvature (as-

ymptotic direction) on a hyperbolic surface. In Experiment 3, it was discovered that sensitivity to the
sign of curvature was different for perceptual judgments and motor responses, and there was also a
difference for that of a curve itself and the same curve embedded in a surface. These findings suggest
that humans are sensitive to relative changes in curvature and are able to comprehend quantitative sur-
face curvature for some motor tasks.
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image to judge the surface to be flatter than the shape
being simulated (Bülthoff & Mallot, 1988; Mingolla &
Todd, 1986; Pollick, Watanabe, & Kawato, 1996). Hu-
mans do not always report a physical entity as it is, and re-
ported surface structures frequently agree between and/or
within subjects (Koenderink, van Doorn, & Kappers,
1992; Pollick et al., 1996). Such findings suggest that the
human vision system codes and reconstructs surface
geometry; in other words, these descriptions of surface
geometry are consistently represented. Visual psycho-
physics has primarily studied depth (Bülthoff & Mallot,
1988) and orientation (Koenderink et al., 1992; Norman,
Todd, & Phillips, 1995; Pollick et al., 1996) and, to a lesser
extent, curvature (Johnston & Passmore, 1993; Kappers,
Koenderink, & Lichtenegger, 1994; Schwartz, 1994).
Little evidence has suggested the ability to judge quan-
titative surface curvature by humans.

The curvature of a surface does not mathematically
change if the surface is translated in depth or rotated in
orientation, so this plays an important role in describing
local surface shape. Here, we summarize the concept for
the measurement of 3-D surface curvature (for a more

general description, see the Appendix). One of the most
primary elements of surface curvature is curvature of a
curve on the surface. The plane that contains the surface
normal at a point P0 is called the normal plane, and the
normal curvature is defined as the curvature of the curve
at the intersection between the surface and a normal plane
(Figure 1).

The normal curvature changes with the rotating of the
normal plane around the surface normal at P0, and its
changing could be described by the following equation,
called Euler’s formula (de Vries, Kappers, & Koenderink,
1994; Lipshutz, 1969; O’Neill, 1966):

κN = κ maxcos2α + κ minsin2α, (1)

where κ max and κmin are the maximum and the minimum
principal curvature, respectively, which have the maxi-
mum and minimum curvature within the infinitely large
family of the normal curvature. Also, the direction of the
normal plane that gives κ max and κmin is called the prin-
cipal direction. The two directions of principal curvature
are always orthogonal, and α is the angle between κ max
and the curves in question (Figure 2). 

Figure 1. Surface, surface normal, and normal plane. A normal plane contains a surface normal at P0.
An intersection between the surface and the normal plane is called normal section, and its curvature is
called normal curvature. The changing of normal curvature with the rotating of the normal plane around
the surface normal could be described by Euler’s formula (Equation 1).
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In contrast to depth and orientation, curvature has two
advantages for describing local surface shape. First, cur-
vature has both a qualitative function for describing sur-
face shape and a quantitative function that measures mag-
nitude of surface curving. A local shape, for example,
can be classified into two groups by using the sign of prod-
uct of the maximum and minimum principal curvatures
(Gaussian curvature, K ). When K is positive, the local
shape is characterized as elliptic; when K is negative, it
is characterized as hyperbolic. The boundary between
these two categories, when K is zero, is characterized as

parabolic. In addition to this qualitative aspect, we can
compare the size of objects, such as two spheres, by using
the radius of the principal curvatures. Second, the cur-
vature description of the surface does not depend on the
viewpoint. Regardless of viewing direction and the dis-
tance between observer and object, classification of the
surface shape by Gaussian curvature and comparison of
principal curvature radii are achieved. Similar to other
perceptual situations, we should notice that there exists an
adequate range of curvature to which humans are sensitive
(Phillips & Todd, 1996).

Figure 2. A family of curves lying on the elliptic and hyperbolic surfaces (upper) and changes of the curvature of
curves at P (lower). For the asymptotic direction on the hyperbolic surface, the curvature of a curve becomes zero.
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Some psychophysical evidence suggests that humans
utilize the principal curvature for perceiving surface geom-
etry. Stevens (1981) showed that human subjects could
reconstruct the surface geometry using the curves depicted
on the surface on the assumption that they agree with the
principal curvature locally. Kappers et al. (1994) studied
haptic sensation for real surfaces. When subjects evalu-
ated the surface shape using only haptic sensation, it was
observed that the principal curvature and its direction
could be informative about surface shape. Koenderink
(1990) proposed a shape index and curvedness that com-
bine the principal curvatures; these scales independently
describe surface shape and the amount of curvature. He
and his colleagues performed psychophysical experi-
ments of surface perception using these scales, and the re-
sults suggest that they can be utilize with intuitive judg-
ment of surface shape by subjects (de Vries et al., 1994;
Erens et al., 1993; Kappers et al., 1994). However, there
seems to be no adequate method for directly obtaining a
quantitative surface curvature. Standard psychophysical
techniques, such as the yes/no task, the ratio task, and the
forced-choice task (Green & Swets, 1966), have been em-
ployed to study the perceptual threshold of curvature
(Johnston & Passmore, 1993). These techniques statisti-
cally provide the threshold of curvature, but not the cur-
vature itself.

In this paper, we address the possibility of a quantita-
tive curvature representation that is coded by humans.
The primary objectives and motivation of this study were
the following three points. First, we attempted to obtain
quantitative curvature data and address subjects’ sensi-
tivity to surface curvature. All of the experiments uti-
lized virtual quadratic surfaces rendered with visual cues
(i.e., texture, shading, perspective, and horizontal 
disparity). A drawing task (Experiments 1A and 1B) and
a pointing task (Experiment 2) were used for the report-
ing of singular directions of curvatures in which curva-
ture was maximum, minimum, and zero. In addition to
these experimental paradigms, in Experiment 3, we com-
pared perceptual judgment and motor response for the
same stimuli to discuss task specific curvature represen-
tation. Second, to address the coding process for surface
curvature during the drawing task, we established two dif-
ferent curvature estimation methods from drawing data
(Experiments 1A and 1B). Both methods estimated the
same geometrical properties (maximum and minimum
principal curvatures and their directions) through draw-
ing trajectories made by subjects for different directions
passing through the tip of a surface. One method (called
the differentiation from best-fitted surface, DFF, method)
dealt with the data as a set of depths. In this method, we
fit a second-order polynomial surface to the drawing tra-
jectories by using a least mean square error criterion, and
we calculated the principal curvatures and their direc-
tions by differentiation. The other method (called the cur-
vature from curves, CFC, method) dealt with the data as
a set of curvatures. This method estimated the same sur-
face properties as the DFF method by using differential

geometrical techniques, not a differentiation process. Fi-
nally, we discuss the relationship between surface shape
and the precision of reporting curvature (Experiments 1A
and 1B). Previous research suggests that perception of
curvature depends on surface shape. It was reported, for
example, that subjects showed poor performance on
tasks of discriminating Gaussian curvature (de Vries,
Kappers, & Koenderink, 1993; Kappers et al., 1994; Nor-
man & Lappin, 1992; Phillips & Todd, 1996; van Damme
& van de Grind, 1993). We discuss the dependency of
shape on curvature sensitivity in terms of how consistent
are qualitative means and our quantitative experimental
paradigm.

EXPERIMENT 1
Reporting Surface Curvature

by Using a Drawing Task

The purpose of Experiment 1 was to develop a method
for estimating curvature from drawing trajectories and to
investigate quantitative curvature properties from the data
of the subjects. The curvature of curves lying on a sur-
face is defined as a function of maximum and minimum
principal curvatures and its direction (Euler’s formula,
Equation 1). For different surface curvatures, we investi-
gated how subjects could report the curvature of curves.
Experiment 1 consisted of two parts: a four-direction draw-
ing task (Experiment 1A) and a 16-direction drawing task
(Experiment 1B). In both experiments, virtual quadratic
surfaces (elliptic and/or hyperbolic) were presented as
visual stimuli rendered with various visual cues. Three dis-
tinct points appeared on the virtual surface, and the sub-
jects’ task was to draw a curved line that connected those
points along the surface.

Experiment 1A
Four-Direction Drawings for a

Random Difference in Principal Curvatures

Method
Subjects. The subjects were 2 naive subjects (S.Y. and N.Y.),

who were paid for their participation, and 1 of the authors (H.W.).
All subjects had normal or corrected-to-normal vision.

Surface definition. We generated nonrotated quadratic surfaces
defined by the following equation:

z = (κ maxx2 + κmin y2). (2)

Here, κ max and κmin are maximum and minimum principal cur-
vatures. In the screen, x- and y-axes agreed with horizontal direc-
tion and vertical direction, respectively, and the z-axis agreed with
viewing direction. Fifteen elliptic surfaces and 15 hyperbolic sur-
faces were randomly generated. All the parameters of these 30 sur-
faces are shown in the Table 1. 

Visual cue conditions. Two visual cue conditions were em-
ployed: a full cue condition and a removed cue condition. In the full
cue condition, stimulus of a quadratic surface was simulated by
using horizontal disparity, perspective, coarse-grained texture, and
lambertian shading. A light source was located at infinity in the di-
rection (0, 0, 1). In the removed cue condition, the texture cue was
not included. Figure 3 shows an example of stimuli.

1
�
2
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Apparatus. Figure 4 illustrates how the apparatus was arranged.
The stimuli were presented on a Silicon Graphics IRIS Crimson/
Reality Engine, and stereo was obtained by using a 120-Hz se-
quential presentation of left and right images in liquid crystal shutter
glasses (CrystalEyes) synchronized to the display monitor, yielding
a screen resolution of 491 � 1,280. Interocluar separation was ad-
justed to the value measured for each subject. The subject was asked
to hold a stylus and trace a surface in 3-D space within 2 sec. An
IRED (infrared light-emitting diode) was attached to the tip of the
stylus, and the position of the IRED was measured with a 3-D posi-
tion analysis system (OPTOTRAK, Northern Digital) connected to
a computer (J3100, Toshiba). Position data were recorded at 800 Hz. 

Procedure. The subject was seated in front of the CRT display
at a distance of 60 cm, and the subject’s head was fixed with a chin-
rest. Head height was adjusted such that the viewing direction
agreed with the z-axis (depth) of the screen and the center of eyes
agreed with the center of the display. Under this viewing condition,
the CRT display subtended a width of 34.7º and a height of 24.7º.
The stimulus of an elliptic surface subtended approximately a width
of 22.4º and a height of 19.4º, and that of a hyperbolic surface sub-
tended approximately a width of 26.0º and a height of 19.4º (de-
grees of visual arc). For each trial, 1 of 30 surfaces (15 elliptic and
15 hyperbolic), one of four drawing directions (vertical, horizontal,
two diagonals) and one of two visual cue conditions (full cue or re-
moved cue) were randomly selected.

For the drawing task, the subjects made a drawing motion from
a start point through an intermediate point to an end point (all points
were displayed on the virtual surface). The intermediate point,
which we will call the via point, was used to help further constrain
the drawing movement. The start and the end of the movements
were prompted by tones generated by the computer. At the first beep,
a surface and three points were presented. Points were colored to
distinguish each other: Start and end points were green, and the via
point was red. The via point was always located at the tip of a sur-
face [(x,y) = (0.0, 0.0)]. For the start and end points projected on the
front parallel plane, four possible locations existed: vertically
[(x,y) = (0.0, 9.0), (0.0, �9.0)], horizontally [(9.0, 0.0), (�9.0,
0.0)], and diagonally [(x,y) = (6.36, 6.36), (�6.36, �6.36); (6.36,
�6.36), (�6.36, 6.36)] (units in centimeters). The subject could
choose either of the green points as the start point. Since these points
were simulated without horizontal disparity, they only informed the
subject of direction, not depth.1 The second beep cue was generated
when the subject placed the stylus on the surface whose x and y po-

sitions agreed with the start point and the IRED was detected to be
still. Then, the three probe points disappeared from the screen, and
the subject began drawing. The subject had to arrive at the end point
within 2 sec after the second beep (the third beep informed the sub-
ject of this temporal constraint). When the subject finished draw-
ing before the third beep, he/she was asked to keep the stylus at the
end point. During each trial, the subject’s hand and the IRED (the
tip of the stylus) were always visible. One session consisted of 240
trials (30 surfaces � 2 visual cue conditions � 4 directions), and all
subjects completed three sessions. Before the collection of data
began, the subjects practiced several trials until they were comfort-
able with the response method.

Data analysis. In this section, we introduce two different tech-
niques for estimating the curvature of the perceived surface from
the drawing responses at via points. The general procedure con-
sisted of three steps: extracting drawing trajectories around a via
point, alignment of the extracted data, and estimating of the princi-
pal curvatures and their directions. For the final step, we applied
two different methods, DFF and CFC, to the same drawing data ex-
tracted around a via point. Each dealt with data from different as-
pects: as a set of depths and as a set of curvatures, respectively. As
mentioned in the introduction, our primary purpose in this study was
to find how surface curvature is processed in the human vision sys-
tem and what kind of surface geometry drawing data represents. If
subjects report surface depth every time during a drawing motion,
the trajectory data could be considered as a set of depths and the
surface curvature should be calculated by differentiation from the
“depth map.” On the other hand, if subjects report the curvature (ra-
dius of curvature) every time during a drawing motion, the trajec-
tory data contain curvature information and the surface curvature
can be directly calculated from the drawing data using a combina-
tion of differential geometrical techniques.

Extracting data around a via point. The marker positions were
sampled for 2 sec at a rate of 800 Hz, resulting in 1,600 sample points
for each trajectory. Actual movement time, however, was typically
about 1 sec, so not all of the movement data were usable. Since the
DFF method needed sufficient data points for reliable parameter
estimation, we used only raw data that satisfied the following crite-
rion: A trajectory must contain more than 201 sampling points
around the maximum or minimum point of depth (at this point, the
sign of the rate of depth change reverses) nearest to the via point.
When this criterion was violated (the drawing motion was too fast
or too slow), a trial was redone.

Table 1
Surface Parameters in Experiment 1A

Elliptic Surface Hyperbolic Surface

Principal Position of Principal Position of
Curvature (1/cm) Probe Point (cm) Curvature (1/cm) Probe Point (cm)

No. Max. Min. Hori. Diag. Ver. Max. Min. Hori. Diag. Ver.

1 �0.178 �0.095 4.29 5.628 6.966 �0.275 0.15 1.191 7.995 14.8
2 �0.182 �0.098 4.186 5.521 6.855 �0.241 0.147 2.292 8.491 14.69
3 �0.207 �0.116 3.361 4.832 6.303 �0.204 0.143 3.488 9.034 14.579
4 �0.188 �0.119 3.969 5.081 6.193 �0.277 0.14 1.125 7.797 14.469
5 �0.227 �0.126 2.741 4.357 5.972 �0.232 0.136 2.579 8.469 14.359
6 �0.221 �0.133 2.926 4.339 5.752 �0.176 0.133 4.37 9.309 14.248
7 �0.212 �0.14 3.206 4.368 5.531 �0.163 0.126 4.78 9.404 14.028
8 �0.217 �0.153 3.05 4.07 5.09 �0.236 0.122 2.439 8.178 13.917
9 �0.217 �0.16 3.062 3.965 4.869 �0.158 0.116 4.958 9.327 13.697

10 �0.27 �0.171 1.347 2.943 4.538 �0.189 0.112 3.944 8.765 13.586
11 �0.235 �0.174 2.475 3.451 4.428 �0.204 0.109 3.478 8.477 13.476
12 �0.265 �0.178 1.528 2.922 4.317 �0.21 0.105 3.272 8.319 13.366
13 �0.282 �0.181 0.992 2.599 4.207 �0.17 0.102 4.563 8.909 13.255
14 �0.253 �0.184 1.915 3.006 4.097 �0.162 0.095 4.819 8.927 13.034
15 �0.27 �0.188 1.356 2.671 3.986 �0.139 0.091 5.56 9.242 12.924

Note—Position of probe point indicates the distance (in centimeters) between display and probe point.
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Alignment of the extracted data. As mentioned above, we used
the maximum or the minimum point nearest to the via point for ex-
tracting data. However, the simulated position of the via point did
not always equal the position of the maximum or the minimum point
of the drawing movement. For the DFF method, we assumed agree-
ment between via point and maximum or minimum point, so all of the
extracted data were translated as passing the actual via point.

Two different methods for estimating of the surface curvature
from drawing data. Two different methods for estimating curvature
were applied to the same data extracted from around a via point and
obtained by the above procedure. Here, we introduce the intuitive
concepts of these two methods and the mathematical description is

presented in the Appendix. The DFF method dealt with data as a set
of depths. In this method, we found the best-fitted second-order poly-
nomial surface to the drawing trajectories by a least mean square
error criterion. The maximum and the minimum principal curvature
and their directions were calculated by the differentiation the best-
fitted surface. The CFC method dealt with data as a set of curvatures.
In this method, first of all, we fitted circles to each drawing data.
The curvature of drawing trajectory were calculated from the radii
of the fitted circle, and the slant of the fitted circle in the 3-D space
was obtained. From the curvature of drawing trajectory and the
angle of the fitted circle, the normal curvature could be calculated
(Meusnier’s lemma; see Appendix). Using a kind of optimization

Figure 3. An example of stimuli (left pairs are divergent, right pairs are crossed). In the figure, the
upper two rows indicate elliptic surfaces and the lower two rows indicate hyperbolic surfaces. Both of
the surfaces were nonrotated and have the same principal curvatures in the upper and lower two rows.
Top and second from the bottom stimuli are full cue condition surfaces with cues of texture, horizon-
tal disparity and shading. Second from the top and bottom stimuli are removed cue condition surfaces
(i.e., the texture cue was removed from the full cue condition surfaces). In Experiments 1 and 3, we did
not control surface edges. In Experiment 2, we placed an aperture in front of the screen and limited the
field of view (see text).
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technique, the same surface geometrical properties as in the DFF
method were obtained from all drawing data for each surface.

Results and Discussion
We estimated two sets of maximum and minimum prin-

cipal curvatures and their directions by using the DFF
and CFC methods. The change in curvature of curves be-
tween principal curvatures (Euler’s formula, Equation A4)
could be reconstructed using the three estimated param-
eters.

To address the effects of surface shape and visual cue
conditions, we discuss the following two points using the
estimated parameters and the reconstructed Euler’s for-
mula: (1) How well do subject data fit the prediction of
Euler’s formula? (2) How different is simulated and re-
ported curvature for the normal sections?

To discuss the first problem, the coefficient of deter-
mination R2 of Euler’s formula fitted to the raw data was
calculated.2 Each subject generated 12 blocks of data (4
directions � 3 repetitions) for each of 60 surfaces (2 vi-
sual cue conditions � 30 surfaces [15 elliptic + 15 hyper-
bolic]), and we fitted Euler’s formula into a linear expres-
sion (Equation A6). This fitting process was a multiple

regression analysis; thus, we could obtain 60 R2s. Let us
consider the above issues from the viewpoint of surface
umbilicity. When all normal curvatures are equal at a point
on a surface, such a point is called an umbilical point. For
example, all points on a sphere are umbilical. Figure 5
plots R2 as a function of the difference between principal
curvatures (Figure 5 shows results for only the full cue
condition. Results for the removed cue condition were
similar). Points scattered more than (κ max � κ min ) =
0.2/centimeter were R2 obtained with a hyperbolic sur-
face, and the others were R2 obtained with an elliptic sur-
face. For a large difference between principal curvatures,
R2 increases in many cases. In this experiment, however,
we did not control the difference between maximum and
minimum principal curvatures of the stimuli for the shape,
so the effect of shape type was unclear.

To discuss the second point, the mean squared differ-
ence between simulated and reported curvatures of nor-
mal sections was calculated. Since curvatures of curves
drawn with the probe were not constant, the amount of dif-
ference was normalized by using the variance of the sim-
ulated curvature. Figure 6 plots the normalized squared
difference as a function of the difference between prin-

Figure 4. Experimental setup (left), and the wand as held by subjects to trace on the surface (right). In the actual
experimental condition, the room light was turned off.
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cipal curvatures. As the difference between principal cur-
vatures increased, the normalized squared difference de-
creased in all cases.

Taken together, the overall pattern of results suggest
that the subjects could have been sensitive to the change
in curvature of curves, as would be predicted by Euler’s
formula when the difference between principal curvatures
was sufficient (i.e., the surface was not umbilical). How-
ever, a statistical test for the estimated parameters A, B,
and C in Equation A6 (null hypothesis H0 was A, B, C =
0) showed that only parameter A was significant for the
elliptic surface, and few parameters were significant for
the hyperbolic surface. In our experiment, the maximum
principal directions always agreed with horizontal axis

(�M = 0) and, thus, ideally C = 0 by Equation A7. Such
findings suggest that these parameters hardly contributed
to predicting the data. Three possible reasons could be
considered: (1) The subjects were not sensitive to probe
curves with small curvatures. (2) Although the subjects
attempted to correctly report a small curvature, the esti-
mated parameters were not significant. (3) The amount
of data was insufficient for reliably estimating three pa-
rameters with data from four directions. Furthermore,
the effect of shape is still unclear because the principal
curvatures were not strictly controlled for the elliptic and
hyperbolic surfaces. To clarify these questions and to look
at the sensitivity of the subject to a change in the curva-
ture of curves, we conducted Experiment 1B.
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Experiment 1B
Sixteen-Direction Drawings for

a Common Difference in Principal Curvatures

The results of the Experiment 1A suggested that the
R2 of Euler’s formula used for fitting and the normalized
difference from a simulated value appeared to be explained
by the difference between principal curvatures (surface
umbilicity), not by the surface shape (as indicated by the
sign of Gaussian curvature). However, such a conclusion
would be premature since the relation between surface
shape and the difference of principal curvatures was not
strictly controlled. In Experiment 1B, we held constant
the difference between principal curvatures for both an
elliptic and an hyperbolic surface. The same drawing task
was used, with an increased number of directions on the
surface.

Method
Subjects. The subjects were 3 naive subjects (C.Y., N.A., and

T.T.), who were paid for their participation, and 1 of the authors
(H.W.). All subjects had normal or corrected-to-normal vision.

Apparatus. The same equipment used in Experiment 1A was
used in Experiment 1B.

Stimuli and Procedure. We generated two quadratic surfaces,
one elliptic and one hyperbolic, by using Equation 2. Table 2 shows
the maximum and minimum principal curvatures employed in this
experiment. It should be noted that we selected the common differ-
ence principal curvatures for the elliptic and hyperbolic surfaces in
this experiment (i.e., 0.25/centimeter). The stimulus of an elliptic
surface approximately subtended a width of 16.1º and a height of
22.6º of visual arc, and that of a hyperbolic surface subtended a
width of 18.9º and a height of 24.5º of visual arc. The same visual
cue conditions were used as in the previous experiment: a full cue
condition and a removed cue condition. For each trial, the surface
was randomly rotated along the view direction. 

The task was identical to that in Experiment 1A: The subjects
made drawing movements on the surface from the start point to end
point through the via point by following the beep cues. The design
followed that of Experiment 1A, but two points were modified: the
number of directions and the visualization of probe points during
drawing. The subjects made 16 separate drawing motions between
principal directions, and the three probe points were kept visible on
the surface during drawing to ensure that the subjects understood the
directions. One session consisted of 64 trials (2 surfaces � 2 visual
cue conditions � 16 directions), and all of the subjects completed six
sessions.

Results and Discussion
The same criterion as in Experiment 1A was used for

extracting data from around a via point for each trajectory
generated by the subjects. Extracted data were aligned at
a via point, and the DFF and CFC methods were used to

estimate the principal curvatures and principal directions.
Figure 7 summarizes the results of Subject T.T. The left
column of Figure 7 indicates the simulated curvature of
curves (cross marks), reported curvature of normal sec-
tions (circles), and the reconstructed curvature of curves
estimated with the DFF method (dash-dotted line) and
the CFC method (solid line). Note that, for the elliptic sur-
face, the curvature is always positive; for the hyperbolic
surface, the curvature changes signs with maximum and
minimum principal curvatures at 0º and 90º, respectively.
The right column of Figure 7 indicates the standard devi-
ation of repetitions in each direction (solid lines) and the
mean squared difference for simulated and responded cur-
vature of curves in each direction (dash-dotted lines).
Table 3 shows results of statistical significance with re-
spect to parameter estimation.

The results can be summarized as follows: (1) For the
full cue condition and the hyperbolic surface, all subjects
overestimated the minimum principal curvature. Thus,
they perceived and/or reported a more curved surface
than the one presented (left column of Figure 7). (2) For
the removed cue condition and both surfaces, the sub-
jects had trouble reporting the change in curvature. Data
suggest that they sometimes misperceived even the
global surface shape when the texture cue was removed.
For example, Subject T.T.’s reconstructed curves for a
saddle shape indicate that she always reported the surface
as being convex elliptic (estimated maximum and mini-
mum principal curvatures were always positive). To the
contrary, Subject N.A. always reported the surface as con-
cave elliptic (estimated maximum and minimum princi-
pal curvatures were always negative; left column of Fig-
ure 7). (3) Generally, both indices of variability shown in
the right column of Figure 7 match each other. This sug-
gests that the average of data reported for a normal sec-
tion and a given direction matches the average of that for
the simulated one. (4) The coefficients of determination
(R2) of Euler’s formula used for fitting (Table 3) were
higher for the hyperbolic surface than for the elliptic sur-
face [F(1,3) = 29.971, p � .05] and were also higher for
the full cue condition than for the removed cue condition
[F(1,3) = 10.145, p � .05]. (5) A signed rank sum test re-
vealed that the R2 of Euler’s formula used for fitting ob-
tained with the CFC method was significantly higher
than that obtained with the DFF method (p � .05). This
suggests that the subjects’ drawing performance could be
predicted better when data were treated as a set of cur-
vatures rather than as a set of depths. (6) The multiple re-
gression analysis included calculation of t statistics and the
corresponding significance probabilities to test whether
each parameter was significantly different from zero.
These results revealed that, in general, parameters A and
B were significantly estimated for the elliptic surface, but
only B was for the hyperbolic surface (Table 3).

Previous researchers have pointed out the effect of sur-
face shape on surface perception (de Vries, 1993; Kap-
pers et al., 1994; Phillips & Todd, 1996) by reporting the

Table 2
Principal Curvatures (1/Centimeter)

of the Surfaces Simulated in Experiment 1B

Principal Curvature

Surface Maximum Minimum

Elliptic 0.3 0.05
Hyperbolic 0.15 �0.10 



1126 WATANABE, POLLICK, KOENDERINK, AND KAWATO

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Subject: TT

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Ellipse, Full cue

O: Raw data

X: Simulated

Solid: CFC

Dashdotted: DFF

Solid: SD of Raw data

Dashdotted: SD of (Raw data  Sim)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Ellipse, Removed cue

0 20 40 60 80 100
0.4

0.2

0

0.2

0.4

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Saddle, Full cue

0 20 40 60 80 100
0.4

0.2

0

0.2

0.4

Angle (deg.)

C
ur

va
tu

re
 o

f a
 C

ur
ve

 (
1/

cm
)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Saddle, Removed cue

Angle (deg.)

S
td

 D
ev

. (
1/

cm
)

Figure 7. Results from Experiment 1B showing raw data, simulated and reconstructed curvature of curves, and er-
rors for Subject T.T. (left column). The standard deviation of repetition and the mean squared error are also indicated
(right column).
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poor performance of subjects for hyperbolic surfaces. A
plausible and ecological explanation might be that a hy-
perbolic surface lacks a kind of “familiarity” in daily life
(Kappers et al., 1994). We examined our data to see
whether they provided a result consistent with this find-
ing. A t test for the elliptic and hyperbolic surfaces showed
no significant difference in the averaged standard devia-
tion of six repetitions in each direction (for elliptic and hy-
perbolic, average = 0.08/centimeter and 0.09/centimeter,
respectively), but it showed a significant difference be-
tween the averaged squared difference and the simulated
value for elliptic and hyperbolic surfaces [average = 0.11/
centimeter, and 0.15/centimeter, respectively; t (254) =
4.52, p � .001]. Although the variance of repetition
within subjects was constant regardless of the surface
shape, the subjects could better report surface curvature
for the elliptic surface than for the hyperbolic surface.
On the other hand, the R2 of Euler’s formula used for fit-
ting (Table 3) was higher for the hyperbolic surface than
for the elliptic surface (the averaged values across subjects
and visual cue conditions = .49 and .67, for elliptic and
hyperbolic, respectively).

A similar trend is also suggested for the estimated 
principal curvatures across the surface type. Figure 8
shows the estimated principal curvatures for all subjects
and a linear regression fit to these data. As indicated, the
estimated principal curvatures of an elliptic surface seem
to match those of the simulated surface: Consistently,
slopes are around 1.0, and intercepts are around 0.0. The
differences in principal curvatures for a hyperbolic sur-
face, on the other hand, were always overestimated;
under the full cue condition, the subjects overestimated the
difference by about twice as much. The amount of vari-
ability accounted for by the linear regression, however,
was greater for the hyperbolic surface than for the ellip-
tic surface. These results suggest a tradeoff between ac-
curacy and variability. The addition of visual information
had a substantial effect for the hyperbolic surface, but not
for the elliptic surface.

In addition to these findings, it is interesting to note the
performance around zero curvature of curves lying on the

surfaces. A hyperbolic or parabolic surface always has zero
curvature lines passing at the tip of the surface (Figure 2),
and this can be shown by Euler’s formula (Equation 1).
When κ i

S is 0, the following equation is derived:

cos2α i = � . (3)

When κ max � 0 and κmin � 0, the solution of Equation 3 is

(4)

Thus, hyperbolic (κmin � 0) and parabolic (κmin = 0) sur-
faces contain a zero curvature line in the direction given by
Equation 4.

The naive subjects were not told about the existence of
the zero curvature line on the hyperbolic surface before
the experiment, and their introspections seemed to show
that they were not aware of them. In data for the hyper-
bolic surface, the curvatures of trajectories had unstable
signs around the asymptotic direction (direction of the zero
curvature line; � = 50.8º). It is unclear which factor was
dominant, perceptual sensitivity or motor error for the
small curvature? How sensitive is human perception to the
zero curvature lying on a hyperbolic surface? This prob-
lem relates to curvature coding: Is the absolute value of
the curvature coded, or is the relative change of the cur-
vature coded? To address this issue, in Experiment 2, we
focused on the sensitivity of each subject to the direc-
tions that corresponded to the principal and asymptotic
directions on the hyperbolic surface.

EXPERIMENT 2
Reporting the Principal and

Asymptotic Directions by Using a Pointing Task

In Experiment 2, subjects reported the principal di-
rections and asymptotic (zero curvature line) directions
on the virtual hyperbolic surface by using a pointing task.
As we have pointed out, in Experiment 1, the subjects’
sensitivity to surface curvature seemed to depend on the

α
κ

κ κ
i = ± −

−
arccos ( ).min

max min

κmin��
κ max � κmin

Table 3
Summary of Multiple Regression Analysis

Full Cue Condition Removed Cue Condition

CFC DFF CFC DFF

Subject R2 A B C R2 A B C R2 A B C R2 A B C

Elliptic

H.W. .59 ** * – .56 ** ** – .55 * * – .38 * * –
C.Y. .37 * * – .27 * * – .42 * * – .36 * * –
N.A. .44 ** * – .0 † † – .56 ** * – .0 – † –
T.T. .49 * * – .42 * * – .52 * * † .42 * * –

Hyperbolic

H.W. .92 � *** † .91 � *** � .76 † ** � .72 † ** �
C.Y. .65 � ** � .56 � * � .57 � * � .56 � * �
N.A. .83 † ** † .75 † ** � .34 * * � .16 † † �
T.T. .84 � ** † .49 � ** � .43 * * � .41 * * �

*p � .05. **p � .01.  ***p � .001.  †p � .1.
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value of curvature. However, it was still unclear whether
the coded curvature was an absolute or a relative one.
The principal curvatures and the zero curvature are sin-
gular points where the curvature of a curve changes, and
they correspond to the extreme points of change and zero
change, respectively, for the curvature of curves. If subjects
cannot perceive the zero curvature, they are partially in-
sensitive to the absolute value of the curvature of curves.
Otherwise, they are able to perceive a reliable represen-
tation for the value of curvature. To clarify this issue, we
asked subjects to indicate the principal directions and the
directions of zero curvature on the hyperbolic surface.

Method
Subjects. The subjects were 3 naive subjects (K.T., M.Y., and

H.M.), who were paid for their participation, and 1 of the authors
(H.W.). All subjects had normal or corrected-to-normal vision.

Apparatus and Stimuli. Except for the presence of a response
device and an aperture, the same equipment used in Experiment 1
was used in Experiment 2. The subjects responded to the principal
and asymptotic directions by using a 3-D digitizing wand (OPTO-
TRAK 25-marker digitizing probe, Design 2, Northern Digital).
The wand was instrumented with 25 infrared light-emitting diodes,
whose positions were measured by an OPTOTRAK, and the ab-
solute orientation of the wand was calculated by using a technique
based on quarternions (Horn, 1987; Pollick et al., 1996). In a study
on structure from motion, Pollick and colleagues used this device
for reporting the axis of rotation (Pollick, Nishida, Koike, &
Kawato, 1994), and they also used it in a study on shape from shad-
ing to report the local surface orientation (Pollick et al., 1996). The
precision and reliability of this method were confirmed, and it was
considered a good method for reporting surface geometry.

An aperture was placed in front of the screen, limiting the field
of view to 6.4º � 18.9º. As such, the edges of the surface displayed
were not visible. Because the surface was viewed through a rectan-
gular aperture and the surface was rotated randomly around the z-
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Figure 8. Estimated principal curvatures for all subjects, along with linear regres-

sions. The two lines (solid and broken) to the left in each panel indicate the estimated
maximum and minimum principal curvatures for the hyperbolic surface. The two
lines to the right indicate the estimated maximum and minimum principal curvatures
for the elliptic surface.
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axis (viewing direction) for each trial, depth at aperture did not in-
dicate the principal directions. Thus, a strategy based solely on
maximum and minimum depth in the region of the aperture would
not reliably indicate the direction of the principal curvatures (Fig-
ure 9). 

We generated 10 hyperbolic surfaces by using Equation 2. Table 4
shows the maximum and minimum principal curvatures employed
in this experiment. Two visual cue conditions, the same as in the Ex-
periment 1, were employed.

Procedure. The subjects’ task was to orient the digitizing wand
in a direction parallel to the perceived maximum and minimum
principal curvatures and the zero curvature line at the tip of the hy-
perbolic surface. We defined positive curvature to be convex and
negative curvature to be concave, relative to the subjects. A com-
puter generated “beep” cues for each trial, informing the subjects
about which direction should be reported (maximum, minimum, or
zero curvature line). Before the beginning of the experiment, the
subjects were given an intuitive explanation of the task as follows:

Your task is to find the most curved direction and a straight line direc-
tion of the object, then place the long axis of the 3-D digitizing wand in
that direction. You report the most convex curved direction when the
beep sounds once, and you report the most concave curved direction
when the beep sounds twice. Furthermore, there are two straight lines
passing at the tip of the surface. You can report either one of the direc-
tions when the beep sounds three times.

Except for H.W., the subjects were not told that the two principal
directions were always orthogonal. They practiced several trials
until they were comfortable with the response method. In each ses-
sion, the subjects performed 60 trials (10 surfaces � 2 visual cue
conditions � 3 directions), and all subjects completed six sessions.
Stimuli and directions were presented in random order.

Results and Discussion
We defined two errors: constant error is the absolute

angular difference between the responded and the simu-
lated direction, and variable error is the standard devia-
tion of repetition. For each of the three directions and the

two visual cue conditions, constant errors were averaged
across individual sessions to obtain an average error for
each surface and were averaged across surfaces to obtain
an overall average. Figure 10 shows the averaged constant
error for the 4 subjects in each direction under the two
visual cue conditions.

An analysis of variance was conducted using the factors
of direction and visual cue. The results revealed a signif-
icant main effect of visual cue condition [F(1,3) = 24.38,
p � .05] and a significant interaction [F(2,6) = 44.39,
p � .001]. Inspection of Figure 10 shows that, under the
removed cue condition, the subjects’ performance did not
change much across the probe directions (maximum, min-
imum, and asymptotic directions); however, for the full
cue condition, error for the asymptotic direction was five
to six times greater than error for the principal directions.
Tukey’s honestly significant difference (HSD) multiple
comparisons were carried out among the probe directions.
Results showed that, for the full visual cue condition, there
were significant differences between the asymptotic direc-
tion and the principal directions (p � .01).

Using a similar experimental paradigm, de Vries (1993)
studied perception of the principal directions, but with
two major methodological differences: response manner
and the global shape of stimulus. First, our subjects re-
ported the maximum and minimum principal directions
separately, whereas de Vries subjects matched the cross
marker, which was superimposed on the surface, to the
principal direction at the probe points. Thus, the subjects
were told in advance that the principal curvatures are or-
thogonal, and they simultaneously reported both of them.
Data around umbilical areas ( | S | � 0.85) and with a low
value of curvedness (C � 0.3/centimeter) were discarded
(de Vries, 1993). The curvedness at probe points simu-
lated in our experiment were 0.197/centimeter at most
and 0.038/centimeter at least. Although we simulated
surfaces with low values of curvedness that satisfied
de Vries’s criterion for omission, our subjects performed
as well as or better than his. The best and worst constant
errors were 3.27º and 10.05º, and those of de Vries were
4º and 12º.

Second, de Vries (1993) presented rather globally
complex surfaces (third-order asymmetric surface) using
only horizontal disparity as a visual cue. More consistent

Table 4
Principal Curvatures (1/Centimeter)

of the Surfaces Simulated in Experiment 2 

Principal Curvature

Surface Maximum Minimum

1 0.115 �0.254
2 0.130 �0.160
3 0.099 �0.162
4 0.053 �0.158
5 0.010 �0.159
6 0.016 �0.147
7 0.026 �0.109
8 0.016 �0.098
9 0.003 �0.088

10 0.039 �0.037

Figure 9. Example of the surface region visible through the
aperture for Experiment 2. We placed a rectangular aperture in
front of the surface so that the subjects could see only a limited
surface region (within the dotted line area). For each trial, fur-
thermore, the surface was randomly rotated around the viewing
direction (z-axis), so the principal directions (open circle lines)
did not agree with the nearest and farthest point at the edge.
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and multiple visual cues may increase accuracy of surface
representation. Our subjects did well in reporting the
principal directions, and this could have been the result
of a common visual integration processing, such as ac-
cumulation, cooperation, and disambiguation (Bülthoff
& Mallot, 1988). Regarding the global shape, de Vries
used an asymmetric surface, but we used a symmetric one.
He suggested that it is easy to find the principal directions
of a quadratic surface because of its symmetry, but there
seems to be room for argument on this point. In our exper-
iment, the visual field was limited by a rectangle aperture,
and the surfaces were randomly rotated along the view-
ing direction. This operation made the edge of a surface
random, and the effect of a projected shape on the mon-
itor screen and the effect of depth at the edges were elim-
inated. Therefore, depending on its quantitative coding, it
seems reasonable to suppose that our subjects could im-
plicitly interpret the directions of principal curvature.

Our results suggest that the existence of a texture cue
influenced performance for the principal directions. This
result is reasonable considering that most studies on per-
ception of shape from shading conclude that shading is a
weak cue, is unable to reliably convey local shape, and is
easily dominated by other sources of visual information
(Bülthoff & Mallot, 1988; Erens et al., 1993; Mingolla &
Todd, 1986; Pollick et al., 1996; Todd & Reichel, 1989).
In our experiment, the viewing angle for some surfaces
was too small to sufficiently change the intensity of a sur-
face. In such a case, subjects might not perform “intensity-
based stereo” (Bülthoff & Mallot, 1988). Mingolla and
Todd (1986) presented cylindrical surfaces by only using
a shading cue and had their subjects estimate the curva-
tures. The results showed a remarkable underestimation
of surface curvature. Erens et al. (1993) studied the per-
ception of shape from shading and found that subjects
sometimes misperceived even concave and convex shapes
from shaded images of a Gaussian hill. On debriefing, our

subjects reported that they could not clearly perceive the
removed cue surface shape. Their performance, however,
was not always random. The subjects’ raw data indicate
that they sometimes made a 90º error for the principal di-
rections. The reversed perception of concaveness and con-
vexness helps account for this result. Assuming this pos-
sibility, we recalculated constant error in the following
manner: We took the direction of response and found the
absolute value of its angular difference with both the max-
imum and the minimum direction of curvature. These
two absolute values were then compared, and the smaller
of the two was defined to be the constant error.

Table 5 compares the original constant error and the
recalculated constant error. For the latter case, a decrease
of about less than 50% is indicated for the removed cue
condition. It can be seen that, for the full cue condition,
there is little change when recalculating the error, but, for
the removed cue condition, error is substantially reduced. 

Our results showed an opposite data trend for the as-
ymptotic direction. Regardless of visual cue conditions,
performance for the zero curvature line was poor. Both
constant error and variable error were much larger than
those for principal curvatures, and existence of the tex-
ture cue did not have a significant effect (t = �2.438, p =
.051). It seemed to be difficult for the subjects to perceive
the zero curvature line on the hyperbolic surface even

Table 5
Comparison of Original Error and Recalculated Error

Direction of Principal Curvature Full Cue Removed Cue

Original Error

Maximum 10.06º 57.78º
Minimum 9.70º 44.92º

Recalculated Error

Maximum 7.25º 16.98º
Minimum 7.29º 16.72º

Figure 10. Averaged constant and variable errors plotted under the two
visual cue conditions.
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though their reporting of principal curvatures was accu-
rate and stable. Even when the texture cue was removed,
the subjects seemed to behave as if they knew the direc-
tion that corresponded to the maximum change of the cur-
vature of curves. Let us consider the phenomena corre-
sponding to a changing in the curvature.

The curvature κ of curves lying on the surface is de-
scribed as a function of the principal curvatures and the
direction α from κ max (Euler’s formula, Equation 1). The
next equation can be derived from the derivative of Equa-
tion 1:

= (κ max � κmin )sin2α . (5)

When α = 0 and π/2, δκ /δα becomes zero, and Equa-
tion 1 provides the extreme values that correspond to the
principal curvatures. Assuming that subjects use relative
change of line curvature to detect the principal curva-
ture, they find the principal directions when Equation 5
is zero and has a tolerance of 	ε. Equation 5 can be ap-
proximated by the straight line whose slope is (κ max �
κmin ) at α = 0 and π/2. The α that gives 0	ε in Equa-
tion 5 is denoted by the following:

α = 	 . (6)

Thus, the range of reported principal direction (con-
stant error) can be defined by this function as the inverse
of the difference between principal curvatures. The aver-
aged constant and variable error for the 4 subjects under
the full cue condition plotted against the inverse of the
difference between principal curvatures along with cor-
responding values of the linear regression are shown in
Figure 11. Positive linear relationships are shown be-
tween the constant error and the inverse of the difference
between the principal curvatures (R2 = .63) and between
the variable error and the inverse of the difference between
principal curvatures (R2 = .49). These results suggest
that a relative change of curvature could have contributed
to the precision with which principal directions were re-
ported.

The findings in Experiment 2 were not entirely consis-
tent with the findings in Experiment 1, where both con-
stant and variable error were homogeneous regardless of
curve direction. In Experiment 2, however, responses were
worse under the full cue condition for the asymptotic di-
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rection than for the principal directions. Therefore, per-
formance depended on the curve direction. How did the
subjects report the principal and asymptotic directions
during the pointing task? One possibility is that the sub-
jects performed the pointing task on the basis of what
value the curvature of curves had in the drawing task.
Within this framework, the subjects were assumed to find
the direction of probe curvature by comparing the curva-
tures of curves in various directions.

Such a possibility seems incapable of explaining per-
formance for the principal directions both qualitatively and
quantitatively. As Figure 12 shows, regardless of curve
direction, the variability of perceived direction should be
inversely proportional to the slope of curvature change
with respect to direction when the variability of perceived
curvature is constant. Thus, if pointing performance for
the principal direction task was based on the curvature
value indicated by the drawing task, then the error should
have been larger for the principal directions than for the
asymptotic direction. Direct calculation from the average
drawing data of Experiment 1B indicates that variability
in pointing should have increased from 28º for the asymp-
totic direction to 35º for the principal directions. In Ex-
periment 2, however, the variability of pointing perfor-
mance for the principal directions was much smaller (5º)
than for the asymptotic direction (22º).

For the asymptotic direction, the variability in point-
ing performance almost agreed with the prediction from
the curvature of curves obtained during the drawing ex-
periment. For the principal directions, however, it is not
conceivable that the subjects compared the curvature of

curves to find the principal directions. One possible in-
terpretation is that the subjects utilized some global sym-
metry property of quadratic surfaces. In this experiment,
random rotation of the surface and the rectangular aper-
ture eliminated systematic depth information of the edges
at the aperture; thus, we think such an interpretation is un-
likely. Another interpretation is that the subjects utilized
the zero crossing at the change in curvature of curves (de-
rivative with respect to angle α, Equation 5); this can be
roughly calculated by the third derivative of depth repre-
sentation. Subjects might possess such a higher order rep-
resentation of a surface to find the principal direction, and
the analysis shown in Figure 11 strongly supports this lat-
ter interpretation.

At a minimum, the results of Experiments 1 and 2 sug-
gest that the representation of a surface is different, de-
pending on the task (drawing or pointing), even for the
same quadratic surfaces. Our subjects seemed to have
utilized the curvature of curves in Experiment 1 and its
derivative for principal curvature direction specifically
in Experiment 2, while they seemed to have utilized the
same representation for the asymptotic direction in Ex-
periment 2.

In Experiment 3, we attempted to directly investigate
the existence of task specific representation of a surface.
We compared simple perceptual judgments concerning
the sign of curvatures and motor responses for the same
low curvature of curves by using a psychometric function
paradigm. We discuss the difference in the threshold and
sensitivity for the same stimuli that are provided by the
perceptual and motor tasks.
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ymptotic direction (see text).
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EXPERIMENT 3
Judging the Sign Associated
With Curvature of Curves

In Experiment 3, two issues were addressed. First, we
compared sensitivity to the sign of low curvatures for
simple perceptual judgments and the motor responses by
using a psychometric function paradigm. Second, to
demonstrate that our experimental paradigm not only ad-
dresses the curvature of curves but also surface curvature,
we compared performance for curves embedded in a sur-
face and for the same curves alone.

Method
Subjects. The subjects were 3 naive subjects (A.K., M.E., and

C.Y.), who were paid for their participation, and 1 of the authors
(H.W.). All subjects had normal or corrected-to-normal vision.

Apparatus. The same equipment used in Experiment 1 was used
in Experiment 3. Additionally, the subjects used a keyboard for re-
sponding to the perceptual judgment task.

Stimuli and Conditions. We generated 130 hyperbolic surfaces
defined by Equation 2 using the following procedure.

Step 1. Thirteen probe curves were produced with curvatures
around and including the zero curvature. These were �0.05, �0.04,
�0.032, �0.024, �0.016, �0.008, 0, 0.008, 0.016, 0.024, 0.032,
0.04, and 0.05 (1/centimeter).

Step 2. Thirteen surfaces were randomly calculated, and each
contained a single probe curve. The tip of the probe curve always
agreed with the tip of a surface. This procedure was repeated 10
times, so 130 different surfaces were generated.

As visual cue conditions, a full cue condition, a removed cue
condition, and a no-surface condition were employed in this exper-
iment. The full cue and removed cue conditions were the same as in
Experiments 1 and 2, and the surface stimuli subtended a width of
18.9º and a length of 24.5º (degrees of visual arc). A probe curve
without disparity was embedded in a surface under the full cue and
removed cue conditions. Under the no-surface condition, the sur-
face stimulus was removed, and only a probe curve was presented
with disparity. Under all visual cue conditions, a probe curve was
simulated by a dimmed and homogeneous red line and a perspec-
tive projection. This probe line subtended a width of 0.2º and a
length of 18.5º, and it occupied 0.5% of the entire display. No shad-
ing and texture cues were given for the probe curve.

Tasks. In the perceptual task, the subjects judged the sign asso-
ciated with the curvature of a probe curve (i.e., convex or concave)
and gave their response (“+” or “�”) by using a keyboard. Re-
sponse time was not limited, but the subjects were asked to respond
as soon as possible. As a result, the response times for each trial

were approximately within 1 sec. In the motor task, similar to in Ex-
periment 1, the subjects drew their response on a probe curve fol-
lowing the beep cues generated by the computer. In both tasks, the
probe curves did not disappear during a trial.

Design. Each task consisted of 390 trials (130 probe curvatures
� 3 visual cue conditions). The subjects performed both tasks in
random order.

Data analysis. In this experiment, we compared data of the two
tasks as a ratio of positive responses. From the nominal data for the
perceptual task, we calculated the probability with which the sub-
ject judged each probe curvature positive. From the data for motor
tasks, we extracted drawing trajectory data around the tip of a sur-
face (corresponding to a via point in Experiment 1) by using the
same criteria as in Experiment 1. Then the curvatures of extracted
trajectories were calculated by using the moving average for best-
fitted circles (see the Method section of Experiment 1), and the sign
of the curvature was counted for each trajectory.

These converted data were analyzed using a probit-style proce-
dure to obtain the best-fitting cumulative normal distribution for
each condition.

Results and Discussion
Figure 13 shows the estimated psychometric functions

for all subjects. A Kolmogorov–Smirnov two-sample test
was conducted to look at how a fitted psychometric func-
tion can predict raw data obtained under other conditions.
Table 6 shows the results of a statistical test for examin-
ing whether a given psychometric function is consistent
with a particular set of data. From the estimated psycho-
metric function, we calculated the slope at a 50% thresh-
old and the curvature that corresponds to a 50% thresh-
old of judgment. We defined sensitivity as the slope value
at the 50% threshold, and we defined accuracy as the in-
verse of the absolute curvature at the 50% threshold. In
Table 6, a lowercase m indicates that the result of the motor
task was more sensitive, and an uppercase M or P indicates
the more accurate task for judging the sign of curvature.

We found the following: Under the full cue condition,
only Subject M.E. showed a significant difference between
motor and perceptual tasks. The slope value for M.E. at
the 50% threshold of motor tasks was steeper than that of
the perceptual task, and the curvature at the 50% thresh-
old of motor tasks was closer to zero than that of the per-
ceptual task. This result suggests that she was more ac-
curate and sensitive to the sign of curvature during the
motor task than during the perceptual task. 

Figure 13 shows that psychometric functions of the
subjects were generally flat under the removed cue con-
dition, suggesting that performance was unstable. How-
ever, the fitted psychometric functions of motor responses
were more sensitive than those of perceptual judgments.
Under the no-surface condition, the slope of psychome-
tric functions were steep, and the subjects could sensi-
tively judge the sign of curvature. Subjects A.K. and C.Y.
could make a more sensitive and accurate judgment dur-
ing the motor task under the no-surface condition.

Table 7 summarizes the results of a statistical test that
compared the psychometric functions and raw data for
possible combinations of visual cue conditions during each
task.

Table 6
Results of a Kolmogorov–Smirnov Two-Sample Test

Comparing the Psychometric Functions and Raw Data
of Perceptual and Motor Tasks

Subject Full Removed No Surface

H.W. – mP* –
A.K. – mM** mM**
M.E. mM** mM*** –
C.Y. – mP† mM*

Note—A lowercase m indicates that the result of the motor task was
more sensitive. An uppercase M (for motor) or an uppercase P (for per-
ceptual) indicates the more accurate task for judging the sign of the cur-
vature.  *p � .05. **p � .01.  ***p � .001.  †p � .1.
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chometric function fitted for the data from the motor task and the perceptual task, respectively. Left, middle, and right
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Although the statistical tests showed differences in the
pattern of results between subjects, there were some com-
mon features among subjects, summarized as follows: In
the motor task, the subjects appeared more sensitive to
the curvature of curves for the no-surface condition than
for the removed cue condition. Also in the motor task, the
subjects appeared more sensitive to the curvature of curves
for the full cue condition than for the removed cue con-
dition. In the perceptual judgment task, the subjects ap-
peared more sensitive to the curvature of curves for the
no-surface condition than for the removed cue condition.

Our data indicate that the perceived sign of curvature
does not always agree with the sign of curvature reported
through the use of a motor tasks. When the probe curves
were presented alone, the subjects performed differently
than in the other visual cue conditions. The fitted psy-
chometric functions had slopes and 50% thresholds that
were more sensitive for the change of curvature. These
functions were distinct from those that fit performance
in the presence of surfaces. This result suggests that the
representations of curves and curves embedded in a sur-
face are different, and this result is consistent with the ef-
forts to understand surface curvature representation, as
pursued in this paper.

A final issue in comparisons between the two tasks in-
volves the possible interaction between task and spatial
extent. For example, if the motion of the stylus was con-
trolled strictly by matching the local disparity between the
stylus and the surface, then the difference between the
tasks could be predicted by the fact that the precision of
depth order judgments decrease with increasing spatial
separation. While this is possible, it is also possible that
local motion on the drawing task was dominated by mech-
anisms related to haptic perception of curvature. Currently
though, the literature on haptic discrimination of curvature
does not provide precise details as to its spatial sensitivity.

CONCLUSION

In this paper, we discussed human beings’ sensitivity
to the amount of surface curvature by using differential
geometric techniques and psychophysical experiments.
We obtained the following results: (1) Subjects could re-
port principal curvature through a drawing task (Exper-
iment 1B) and could report principal direction through a
pointing task (Experiment 2). (2) To a certain extent,

subjects could report relative changes in the curvature of
curves lying on a surface with the drawing task (Exper-
iment 1B). (3) When the data obtained from drawing mo-
tions were dealt with as a set of curvatures rather than as
a set of depths, Euler’s formula was advantageous for pre-
dicting data trends (Experiment 1B). (4) The accuracy of
reporting surface curvature depends on the difference in
principal curvature (umbilicity; Experiments 1A and 2.
(5) Surface curvature might be dissociated between per-
ceptual processing and motor processing, and the repre-
sentations associated with the curvature of curves alone
and that for curves embedded in a surface are different (Ex-
periment 3). (6) A texture cue influences curvature rep-
resentation (Experiments 1, 2, and 3).

Interestingly, our results showed that subjects’ perfor-
mance was different depending on the task. For example,
sensitivity to the curvature of curves lying on the surface
(Experiment 1) could not be predicted by performance in
the pointing task (Experiment 2). In addition, Experi-
ment 3 showed that the perceived sign of curvature did not
always agree with the sign of curvature reported through
the use of a motor task. Different patterns of results for
the different types of tasks employed in the present series
of experiments could have arisen from several possible
reasons. One possibility, consistent with neuropsycholog-
ical data (Goodale & Milner, 1992; Goodale, Milner,
Jakobson, & Carey, 1991), is that visual processing for
visual perceptual tasks and visual processing for visuo-
motor tasks might involve different streams of processing.
On the basis of this, we could expect differences between
tasks involving a visual perceptual response and a visuo-
motor response. Besides differences based on visual and
visuomotor processing, it is possible that differences could
arise from different task demands on the visual input. For
example, it has been suggested from visual perception
studies that depth, orientation, and curvature are indepen-
dently represented (Johnston & Passmore, 1993; Koen-
derink et al., 1992). Thus, since each one of these repre-
sentations can be used to represent a surface, we could
expect differences between tasks that stressed different
kinds of surface representation.

Given this view that different tasks might stress differ-
ent perceptual representations and different streams of
processing, we can examine the tasks used in the present
set of experiments. The tasks used were pointing a direc-
tion of curvature, judging the sign of curvature, and draw-

Table 7
Results of a Kolmogorov–Smirnov Two-Sample Test

Comparing Psychometric Functions

Full vs. Removed Full vs. No-Surface Removed vs. No-Surface

Subject Motor Perceptual Motor Perceptual Motor Perceptual

H.W. * n.s * n.s. *** *
A.K. * *** n.s. ** ** ***
M.E. ** n.s. n.s. ** ** ***
C.Y. *** n.s. n.s. ** ** †

Note—n.s., nonsignificant.  *p � .05. **p � .01.  ***p � .001.  †p � .1.
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ing on the surface of a virtual object. Of these tasks, only
the task of drawing should be considered an action task.
Although pointing is, strictly speaking, a visuomotor task,
there was sufficient time for the use of visual feedback,
so that the final response was likely determined more by
the comparison of two visually perceived directions than
the output of any potential action-mediated process. Be-
sides this difference between perception and perception
for action, there are no strong reasons to believe that any
one of the tasks was intrinsically more or less difficult to
perform. Thus, the differences found among the different
tasks are probably best considered in terms of the task in
conjunction with the visual representation(s) used to per-
form it.

One could postulate that surface representation may be
either qualitative or quantitative (Todd & Reichel, 1989).
Both types of representations have their own strengths and
weaknesses. For example, a quantitative representation can
produce a description with arbitrary precision but gener-
ally requires exhaustive computations and is sensitive to
both noise and small changes in viewpoint. A qualitative
representation can provide an intrinsic measure of surface
structure that is robust to noise and small changes in view-
point but lacks precision (Todd & Reichel, 1989). There-
fore, we should not conclude that there is only one primary
quantitative representation. Humans, however, should
have the ability to form the quantitative representation nec-
essary for accomplishing motor behavior requiring ac-
curacy and stability. Furthermore, whether various motor
behaviors utilize a general-purpose representation or a
task-specific representation is debatable. Depth, surface
orientation, and curvature could be transformed into each
other by using symbolic manipulation (Johnston & Pass-
more, 1993). The possible relationships between visual
representation and a task can be summarized as follows:
(1) Every task utilizes a common quantitative represen-
tation. (2) Depending on the task, the necessary represen-
tation is computed by operating on another representation
(Carman & Welch, 1992). (3) The necessary representa-
tion is directly encoded from the image intensities (Rogers
& Cagenello, 1989) task specifically.

Our finding in this study suggests a metric coding sys-
tem for the curvature of curves and relative changes in the
curvature of curves. In addition, we have shown the ex-
istence of a dissociation between representations of a 3-D
surface and a curved line in the 3-D space. This evidence,
which suggests the existence of a higher order quantita-
tive surface geometry coded in the human visual system,
could be considered as meaningful. As shown in Exper-
iment 1, the drawing data produced by the subjects could
be better predicted when they were treated as a set of cur-
vatures (CFC) rather than as a set of depths (DFF). More-
over, as shown in the Experiment 3, response patterns for
the same low curvature were different for a pure percep-
tual judgment and the drawing task. These results sug-
gest that a specific representation of curvature possibly ex-
ists. The issue of the coding process for such a higher

order surface geometry still remains unclear. An experi-
mental paradigm that makes it possible to discuss an inde-
pendent system for curvature representation is necessary.
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NOTES 

1. The three probe points do not have disparity, but the surface sur-
rounding them has disparity information. Therefore, subjects could use
the depth information in the vicinity of those points.

2. The coefficient of determination (R2) is defined as the square of
the multiple correlation coefficient between the reported curvature of
normal section and the predicted curvature of normal section recon-
structed by Euler’s formula.

APPENDIX
Calculating the Perceived Surface
Curvature From the Drawing Data

General Knowledge About Curvature
From Curves Lying on a Surface

The normal section of a surface is the intersection of a smooth
surface S and the plane containing the surface normal N at any
given point P0 (see Figure 1). The maximum and minimum cur-
vatures of a normal section are called the maximum principal
curvature (κ max ) and the minimum principal curvature (κmin ).
The corresponding directions of these principal curvatures are
called the principal directions, and these two principal directions
are always orthogonal.

For any curve passing through the common point P0 (via
point) and lying on the surface, let κ i denote the curvature of
C i at P0 (in our analysis, we had three repetitions of four di-
rections, resulting in 12 curves [C i, i = 1,. . .,12]). It is known
that the curvature κ i

S of the slanted section, which is the inter-

Figure A1. Surface, tangent plane of the curve, and slanted section. When the curve passing through P0
on the surface is drawn freely, the curvature of the curve at P0 is equal to the curvature of the slanted sec-
tion. The relationship between the normal curvature and the curvature of the tangent plane of the curve con-
taining the slanted section can be described as a function of the angle between normal plane and tangent
plane of the curve (Meusnier’s lemma).
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section of the surface and the tangent plane of the curve, is
equal to the curvature κ i of the curve at P0:

κ i
S = κ i. (A1)

Let θ denote the angle between the normal vector N of the
surface at P0 and the tangent plane of the curve C i. Then, be-
tween the curvature κ i

S of curves and the curvature κ i
N of a nor-

mal section, the following equation holds (Meusnier’s lemma;
Figure A1):

κ i
N = κ i

S cos θ. (A2)

For each normal section, the curvature κ i
N is given by Euler’s

formula (Equation 1). A combination of Euler’s formula and
Meusnier’s lemma (Equation A2), produces

κ i
S cos θ = κ max cos 2α i + κ min sin 2α i. (A3)

Angles of direction of maximum curvature (principal direc-
tion) and the tangent line of curve C i are measured by an arbi-
trary 2-D coordinate system attached to the tangent plane of the
surface at P0. θ M and α denote the principal direction and the
angle of the tangent line of the curve, respectively. Therefore,
the following equation holds:

κ i
S cos θ = κ max cos 2 (α i � θM ) + κminsin 2 (α i � θM ).

(A4)

Curvature From Curves (CFC) Method
Here, we assume that there exists a plane and a circle con-

tained in it that well approximates a set of data points lying on

each curve C i. This plane approximates to a tangent plane of the
curve that contains the slanted section.

The equation for the circle in the plane in 3-D space can be
written in vector notation as follows:

||ec || = 1

(r � rc )ec = 0

|| r � rc || = Rad. (A5)

Here, ec, r, rc, and Rad are the normal vector of the plane, the
position on the circle, the position of the center of the circle,
and the radius of the circle, respectively. Let rj , ( j = 1, 2, . . . ,
201) be a set of discrete data points on a single curve trajectory
generated by a subject. We pick three points at 50-point inter-
vals from a single curve trajectory and have 101 sets of three
points. Then, we fit a circle that satisfies criteria (Equation A5)
for each set of three points. The curvature of C i (= 1 /Rad), the
two angles γ i (between the surface normal N and the tangent
plane containing curve C i ) and θ i (between the direction of
maximum curvature and the tangent line of the i th curve) are
obtained by averaging 101 fitted circles (Figure A2). From
Meusnier’s lemma (Equation A2), we can calculate the curvature
of the i th normal section, κ i

N. 
From Equation A4 (the general version combining Meusnier’s

lemma and Euler’s formula), we obtain the following:

κ i
S cos γ = A + B cos 2α i + C sin 2α i. (A6)

Here, A, B, and C are

A = ,
κ max + κ min��

2

Drawing data

p1 p2

p3

O1

R1

q1

q2
q3

O2

R2

Figure A2. Moving average of fitted circle. To calculate the curvature of each
drawing trajectory, which consists of 201 sampling points, three points at 50-
point intervals are picked (p1, p2, p3), and the circle with a radius of R1 is fit-
ted for those three points (O1). The same procedure is applied for the other set
of three points (q1, q2, q3), and the circle O2 with a radius of R2 is found. Thus,
we have a set of 101 fitted circles, and their average radius is defined as the ra-
dius of curvature of the drawing trajectory.
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B = cos2θ M,

C = sin2θ M. (A7)

From the three repetitions in four directions, we can obtain
12 equations involving A, B, and C. The solution to such a sys-
tem of equations can be recovered by, for example, the Moore-
Penrose pseudo-inverse matrix. From this, the principal curva-
tures and angle are obtained as follows:

κ max = A + �B�2�+� C�2�

κ min = A � �B 2� +� C�2�

θM = arctan (A8)

Differentiation From
Best-Fitted Surface (DFF) Method

In this section, we introduce another method for estimating
surface curvature from curves lying on a surface. We can cal-
culate the same differential geometrical surface properties as
with the CFC method, but now we assume that subjects are re-
porting surface depth with their drawing motions, and we can
fit the following second-order polynomial surface to the draw-
ing trajectories by a least mean square error criterion:

f (x,y) = ax 2 + by 2 + cxy + dx + ey + f. (A9)

It is known that, for a surface expressed in its explicit form, the
principal curvature κ max and κmin can be obtained as the inverse
solutions of the following quadratic equation:

(uw � υ 2)ρ2 + h [2stv � (1 + s 2)w � (1 + t 2 u)] ρ + h 4 = 0.

(A10)

Here,

s = fx, t = fy ,u = fxx ,

v = fx y , w = fy y , h = �1� +� s�2�+� t�2�. (A11)

The solutions ρ of Equation A10 are called the radii of prin-
cipal curvatures. The principal directions are obtained from the
solution dy/dx of the following equation:

(A12)
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