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The cerebellum and VOR/OKR learning models

Mitsuo Kawato and Hiroaki Gomi

Although one particular model of the cerebellum, as
proposed by Marr and Albus, provides a formal
framework for understanding how heterosynaptic
plasticity of Purkinge cells might be used for motor
learning, the physiological details remain largely an
enigma. Developments in computational neuroscience
and artificial neural networks applied to veal control
problems are essential to understand fully how work-
space errvors associated with movement performances
can be converted into motor-command erroys, and how
these errors can then be used as one kind of synaptic
mput by motor-learning algorithms that are based on
biologically plausible rules involving heterosynaptic
plasticity. These developments, as well as recent ad-
vances wn the study of cellular mechanisms of synaptic
Dlasticity, form the basis for the detailed computational
models of cerebellar motor learning that have been
proposed. These models provide hints toward resolving
a long-standing controversy in the oculomotor literature
regarding the sites of adaptive changes in the vestibulo-
ocular reflex (VOR) and the optokinetic eye movement
response (OKR), and suggest new experiments to
elucidate general mechanisms of semsory motor
learning.

The problem of controlling goal-directed limb move-
ments can be partitioned conceptually into a set
of information-processing subprocesses; trajectory
planning, coordinate transformation from extra-
corporal space to intrinsic body coordinates and motor
command generation. These subprocesses are
required to translate the spatial characteristics of the
target or goal of the movement into an appropriate
pattern of muscle activations*?. However, fast,
smooth and coordinated movements cannot be re-
alized by just feedback control alone because, in
biological motor control systems, the delays associ-
ated with feedback loops are long and the feedback
gains are low. Thus, internal predictive models of the
motor apparatus need to be utilized in the course of
these computations®. The internal models in the brain
must be acquired through motor learning in order to
accommodate the changes that occur with the growth
of controlled objects such as hands, legs and torso, as
well as with the unpredictable variability of the
external world.

Where in the brain are internal models of the motor
apparatus likely to be stored? First, the locus should
exhibit a remarkable adaptive capability, which is
essential for acquisition and continuous update of
internal models of the motor apparatus. A number of
physiological studies*® have suggested that the cer-
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ebellum may play important functional roles in motor
learning, and demonstrated remarkable synaptic
plasticity in the cerebellar cortex. Second, biological
objects of motor control by the brain, such as arms,
speech articulators and the torso, possess many
degrees of freedom and complicated nonlinear
dynamics. Correspondingly, the neural internal
models should receive a broad range of sensory inputs
and possess a capacity high enough to approximate
complex dynamics. Extensive sensory signals carried
by mossy fiber inputs and an enormous number of
granule cells in the cerebellar cortex seem to fulfill the
above prerequisites for internal models. Finally, the
cerebellar symptoms usually known as the ‘triad’ of
hypotonia, hypermetria and intention tremor® could
be understood as a degraded performance when
motor control is forced to rely solely on negative
feedback after the internal models are destroyed,
cannot be updated, or both. Precise, fast and co-
ordinated movements can be executed if accurate
internal models of the motor apparatus can be used
during trajectory planning, coordinate transformation
and motor control; a pure feedback control, involving
long feedback delays and small gains, can attain only a
poor performance in these computations and usually
leads to oscillatory instability for forced fast move-
ments. It is clear that internal models are essential for
normal motor coordination; the question that must
now be asked is how might these internal models be
acquired in the cerebellum through motor learning?

Supervised motor learning of internal models

Controlled objects in biological movement can
generally be described as multi-variable nonlinear
dynamic systems whose inputs are muscle tensions,
joint torques or firing rates of the nerve fibers that
innervate muscles, and whose outputs are muscle
lengths, joint angles or the position of the hand, for
example, in Cartesian coordinates. Thus, the di-
rection of information flow in the controlled objects
is from the motor commands to the movement tra-
jectory. Following robotics jargon, we state that this
direction of the information flow is forward, and the
opposite direction, inverse. Accordingly, internal
models of the motor system can be divided into two
types: forward models and inverse models. By
‘forward model’ we mean a neural representation of
the transformation from motor commands to the
resultant behavior of the controlled object. In other
words, a forward model is just a simple model of the
controlled object, and can be used as its substitute. If
the actual motor command given to the motor
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apparatus is also fed as an input to the forward mode],
the output of this model will predict the realized
trajectory. The neural computation time for this
prediction (say 30 ms) is expected to be much shorter

A

Motor o 7 Realized
Desired + command trajectory
e Feedback ne % Controlled
) b4 _ controller %/ object Z ’
/%,/////,//;/ Z
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Fig. 1. Forward (A) and inverse (B) neural models of the controlled object. The
engineering jargon ‘controlled object’ here means a concrete physical thing
which should be controlled by the CNS. Examples are industrial robotic
manipulators, airplanes, hands, legs and the torso. (C) The simplest learning
scheme for acquiring the inverse model when a perfect teacher exists. In these
figures, circles represent neurons and arrows represent synapses. In (C) the
efficacies of synapses shown by open arrows change in proportion to the
product of the synaptic input from the second layer and the error signal shown
by the broken line (see Box 1 for this Widrow—Hoff rule). The inverse model
box represents a connectionist feedforward network without feedback
connections from the higher layer to the lower layer, or without connections
within any one layer. It could be extended to more general networks with
these feedback connections as models of cortical layers. As the controlled
object, we have in mind a single joint articulated by agonist and antagonist
muscles. The three neurons in the first layer of the inverse model box represent
the desired joint angle, the desired joint angular velocity and the desired joint
angular acceleration as functions of time, respectively. The two output neurons
in the third layer represent muscle activation levels for the agonist and
antagonist pair. Both forward and inverse models can be considered to be the
cascades of transformations between motor command (e.g. joint torques,
muscle activations) and linkage motion (e.g. joint angular position, velocity,
acceleration) coordinates, and between linkage motion and controlled object
motion (e.g. spatial position, velocity and acceleration of the hand) coordi-
nates. Such transformations represent, respectively, system dynamics and
kinematics.
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than the external visual or proprioceptive feedback
delay (say from 100 to 200ms). Thus, if a forward
model is used in the internal feedback loop (Fig. 1A),
feedback control performance is improved signifi-
cantly since large external feedback delays can be
avoided’. On the other hand, more sophisticated
feedforward control can be achieved through an
inverse model of the controlled object®!°. By ‘inverse
model’ we mean a neural representation of the
transformation from the desired movement of the
controlled object to the motor commands required to
attain these movement goals. Because the inverse
model possesses input—output transfer characteristics
that are the inverse of those of the controlled object,
the cascade of the two systems gives an approximate
identity function (Fig. 1B). That is, if a desired
trajectory is given to the inverse model, then at the
end of the cascade the realized trajectory is fairly
close to the desired trajectory. Thus, accurate
inverse models could be used as ideal feedforward
controllers. Training of inverse models is therefore
crucial to the performance in feedforward control.

How can an internal inverse model be acquired!!? If
a computational ‘teacher’ can provide the correct
motor commands, motor learning can be done in the
framework of what is known as the Widrow--Hoff
rule'®!3) consistent with biologically demonstrable
heterosynaptic plasticity processes (Fig. 1C; and see
Box 1). In the context of motor learning, however, it
is unrealistic to assume the existence of a teacher
with access to the correct motor commands prior to
the learning of the movement pattern itself. Rather, it
is more realistic to assume that a teacher has access
only to the movement trajectory desired for the
controlled object. For example, parents teach their
children the correct pronunciation of words by pro-
viding speech samples in acoustic space, but cannot
directly communicate the neuronal firing patterns that
activate articulator muscles. Correspondingly, a
biologically plausible teacher for a neural network
would not have direct access to the correct pattern of
articulatory commands, but instead would only have
access to the desired ‘higher level’ trajectory and the
resultant discrepancies or errors between the desired
and currently produced trajectories. In order to train
the inverse model, such trajectory errors must first
be converted to motor command coordinates.

Box 1. Associative LTP and LTD and the
Widrow—Hoff rule

Associative long-term potentiation (LTP) and long-
term depression (LTD) could be formulated as follows:
the rate of change of the synaptic efficacy of a type 1
synapse (classical synapse, shown by open arrows in
Fig. 1C) is proportional to the product of the inputs to
the type 1 and type 2 (modulator synapse, shown by
filled arrows with broken lines in Fig. 1C) synapses. In
the Widrow—Hoff rule, the rate of change of the
efficacy of a type 1 synapse is proportional to the
product of the type 1 input and the error signal (the
difference between the teaching signal and the actual
output of the neuron). Thus, the Widrow—-Hoff rule
could be implemented by the associative LTP or LTD if
the type 2 synaptic input represents the error signal.
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Three learning schemes have been proposed to
address the error conversion issue. In the direct
inverse modeling approach (Fig. 2A), the inverse
model receives the realized trajectory as an input, and
outputs an estimated motor command. The difference
between the estimated motor command and the actual
motor command is used as the error signal for training
the inverse model® 4. Although this learning scheme
is simple, it has several drawbacks. For example, the
inverse model cannot be used for control during
training because in this case it is the desired trajectory
rather than the realized trajectory that needs to be
used as the input to the inverse model. Furthermore,
there is no mathematical guarantee that a desired
trajectory is rigorously realized after learning.
Another major problem with this approach is that it
cannot properly control a redundant object (i.e. a
controlled object whose degrees of freedom of motor
commands exceed the degrees of freedom of the state
variables, such as a primate limb). Because many sets
of motor commands correspond to a single movement
for redundant objects, a unique, invertible relationship
between the desired goal and the motor command
cannot exist. Thus, this learning scheme usually
generates a faulty motor command, as pointed out by
Jordan!®. A simple example of a kinematically
redundant controlled object (i.e. the degrees of
freedom of the mechanical linkage exceed the degrees
of freedom of the task space) is a three-joint arm
within a plane, for which the three joint angles (three
degrees of freedom) cannot be uniquely determined
even when the hand position is given in Cartesian
coordinates (two degrees of freedom). A simple
example of a dynamically redundant controlled object
(i.e. the number of actuators exceeds the degrees of
freedom of the mechanical linkage) is a single joint
with a pair of muscles, for which the agonist and
antagonist muscle tensions (two degrees of freedom)
cannot be uniquely determined even when the joint-
angle timecourse (single degree of freedom) is
specified.

In the forward-inverse modeling approach (see
Fig. 2B)!>16, the forward model of the controlled
object is first learned by monitoring both the input and
the output of the controlled object. Then, the desired
movement trajectory is fed to the inverse model to
calculate the feedforward motor command. The
resulting error in the trajectory space is back-
propagated!” through the forward model to calculate
the error in the motor command space (see Box 2),
which is then used as the error signal for training the
inverse model. This approach resoives several short-
comings inherent to the direct inverse method;
learning and motor control can be done simul-
taneously, the goal-directed properties of learning
are guaranteed and the scheme can be applied
to redundant controlled objects!”. Backpropagation
itself, however, is difficult to implement neuronally'®
since we do not know the fast retrograde physiological
mechanisms that carry information along the axons. It
is possible to avoid backpropagation in the forward-
inverse modeling approach, but the substitute pro-
cesses are generally complicated.

In the feedback-error-learning approach (Fig. 2C),
a summation of the feedback motor command and the
feedforward command generated by the inverse
model is fed to the controlled object, and the feedback
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Fig. 2. Three computational schemes for acquiring an inverse model through
learning. (A) Direct inverse modeling approach. (B) Forward and inverse
modeling approach. (C) Feedback-error-learning approach. The direction of
information flow is indicated by solid lines. Broken lines show information used
for training. Filled arrows attached to forward and inverse models show their
information-processing directions. The open arrow in (B) represents the
information-flow direction in the backpropagation calculation. Refer to the text

for more detailed descriptions.

Box 2. Backpropagation through forward model

For simplicity, let us suppose that a three-layer feedforward network, such
as that shown in the dashed rectangle of Fig. 1C provides a kinematic
forward model of a kinematically redundant arm. That is, the three neurons
in the first layer represent the three joint angles of the arm, and the two in
the third.layer represent Cartesian coordinates of the hand position. The
visual system can measure the positional error between the hand and the
desired location in Cartesian coordinates. This positional error, calculated
for each output neuron, is muitiplied by the individual synaptic weight from
the second layer to the third layer, and then is assigned to that synapse. For
each neuron in the second layer, all the above weighted errors are summed
to give the error for that neuron. Exactly the same procedure is repeated
between the first layer and the second layer. Then, for each neuron in the
first layer, the error in the joint space can be calculated.
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controller transforms the trajectory error into the
motor command error’. The inverse model is trained
during motor control using the feedback motor
command as the error signal. In this scheme, the
feedback controller plays the role of a linear approxi-
mation of the inverse model of the controlled object,
and converts the trajectory error into the motor
command error. The feedforward controller does not
mimic the feedback controller, but acquires the fully
nonlinear inverse model by trying to reduce the
feedback motor command.

This approach was applied to the learning control of
robots possessing kinematic or dynamic redundancy
and a 300 ms feedback loop delay'®2°. Because of the
feedback delay, the realized trajectory was compared
with the desired trajectory some time earlier in the
feedback controller. Although this seems quite diffi-

cult, this feedback error learning process was suc-
cessful in these situations.

Adaptive models of VOR/OKR

Cerebellar motor learning has been most inten-
sively studied in the vestibulocerebellum using the
vestibulo-ocular reflex (VOR). When the head is
turned, the VOR normally acts to stabilize retinal
images by generating smooth eye movements that are
equal and opposite to the rotary head movements.
Under experimental manipulations of retinal slips
using magnifying spectacles, inversion prisms or by
rotating a visual screen, the gain of the VOR (the ratio
of eye to head movement) changes. Such VOR
adaptation is abolished when the flocculus is de-
stroyed in cats, rabbits and monkeys, or when only
the visual climbing-fiber pathway is destroyed in
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Fig. 3. A neural circuit diagram and a block diagram for horizontal VOR and
OKR, and simulation results. (A) A schematic diagram of neural circuit for
horizontal VOR and OKR. (B) A block diagram of adaptive modification of
VOR and OKR by the flocculus. Information flow via the external world is
shown by broken lines. Neural pathways are shown by solid lines. The motor
command positive feedback pathway is shown by a chain line because
origins in the brain stem are not clear. (C) Simulation results for adaptive
modification of VOR and OKR. The model neural network was constructed
as shown in (B) while assuming a 10ms delay for the motor command
feedback to the flocculus, and a 20ms delay for the retinal slip feedback.
System performance during head rotation in the dark (VOR, upper panel)
and during visual screen rotation (OKR, lower panel) is compared between
before learning (broken curve) and after training (chained curve). Oscillation
of 0.3 Hz and 0.4 radian peak-to-peak was used both for VOR and for OKR.
During 1000 of training sessions shown in (A) the visual screen was rotated
sinusoidally at 0.2 Hz and 0.4 radians peak-to-peak. The head was rotated by
a stochastic process with a similar timecourse and amplitude. Parameters of
visual and vestibular stimuli close to those of rabbit experiments®>3¢ were
chosen. The VOR gain increased from 0.29 to 0.45 while the OKR gain
increased from 0.29 to 0.43 after 1000 s training. Gain changes of0.1t00.15

within one hour are usually observed in rabbits.

T inal image, and shares major neural
4 mechanisms with the VOR. In the
VOR the vestibular signal is used
in feedforward control, while in
the OKR the visual signal is used in
feedback control. A schematic dia-
gram of the neural circuitry for the
VOR and OKR is shown in Fig. 3A.
There it can be seen that when
the head is rotated leftward, the
semicircular canal sends the head
rotational velocity to the vestibular
nucleus and to the flocculus, and
the eye is rotated rightward. If the
VOR is not perfect, images move
on the retina, and the retinal slip
information is sent back both to the
vestibular nucleus and to the floc-
culus by the climbing fibers and the
mossy fibers. This retinal slip in-
formation is the sensory input used
in the OKR. Additionally, exam-
ination of eye velocity components

rabbits (see Ref. 21 for a review). The site of motor
learning in primates is still in dispute and will be
discussed later. Here we review the model for
rabbits.

Marr?? and Albus®® proposed a detailed model of
the cerebellum that can form associative memories
between particular patterns on parallel fiber inputs
and Purkinje cell outputs. The basic idea was that the
synapses between the parallel fibers and Purkinje
cells could be modified by inputs from the climbing
fibers. The presence of the putative heterosynaptic
plasticity of Purkinje cells was demonstrated as long-
term depression (LTD)** (see Box 3). Although
previous studies failed to detect plastic changes,
several laboratories recently confirmed the LTD
while using different preparations®®2%, Fujita®® ex-
panded the basic Marr-Albus model to incorporate
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in simple spikes of Purkinje cells
revealed that the corollary dis-
charge of the motor command forms a positive
feedback loop through the Purkinje cells and the
vestibular nucleus®*3°. Thus, the Purkinje cells of the
flocculus receive three kinds of synaptic inputs via
parallel fibers: the head velocity signal measured by
the vestibular organ, the retinal slip signal measured
by motion detectors in the retina and sent from the
nucleus reticularis tegmenti pontis, and the eye
velocity signal. The retinal slip velocity, conveyed by
the climbing fibers to the Purkinje cells, is the error
signal in the LTD, and is essential for adaptation of the
OKR as well as the VOR (Ref. 36).

Details of our neural network model are shown in
schematic form in Fig. 3B, where it can be seen that if
the external world is stationary, the retinal slip is the
summation of the head and eyeball velocities. The
eyeball velocity required to stabilize the retinal image
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Box 3. LTD of Purkinje cells

Associative LTD found in Purkinje cells could be
modeled using the following heterosynaptic plasticity
rule: the rate of change of the synaptic efficacy of a
single parallel fiber synapse is proportional to the
negative product of the firing rate of that synapse
input and the increment of the climbing fiber firing rate
from its spontaneous level®. This single rule reproduces
both LTD and LTP found in Purkinje cells. When the
climbing fiber and the parallel fiber are simultaneously
stimulated, the synaptic efficacy of the parallel fiber
decreases. In contrast, the parallel fiber synaptic
efficacy increases when only the parallel fiber is
stimulated (the climbing fiber firing frequency is lower
than its spontaneous level). Thus, the Widrow-Hoff
rule can be implemented for LTD in Purkinje cells if the
climbing fiber input represents the error signal. The
sign conversion should be noted because Purkinje cells
are inhibitory neurons.

Reference
a Fujita, M. (1982) Biol. Cybern. 45, 195-206

is then equal and opposite the head velocity. The time
derivative of the error between the desired and
realized eye velocity is sent to the vestibular nuclei
and to the flocculus via the visual climbing-fiber and
the OKR feedback pathways. Thus, the OKR closed
loop constitutes a negative, derivative-type feedback
controller, whose activity is monitored by the climbing
fibers as the error signal, and the VOR constitutes
purely a feedforward control. Consequently, the
adaptive function of the flocculus can be understood
on the basis of our feedback-error-learning scheme
(see Fig. 2C). In this scheme, the cerebellar flocculus
in combination with the basic three-neuron VOR arc
can be interpreted as a neural network that can
acquire the inverse dynamics model of the oculomotor
plant. In a closer comparison of Fig. 3B and Fig. 2C,
head movement, eye movement, the retina, retinal
slip velocity, the flocculus, climbing fibers and the eye
ball in Fig. 3B correspond to desired trajectory,
realized trajectory, feedback controller, feedback
motor command, inverse model, error and controlled
object in Fig. 2C, respectively. The dashed part of the
OKR negative feedback loop in Fig. 3B is physical
rather than neural. We note that feedback loops
always contain some physical part, irrespective of
sensory modality. The essential characteristic of
feedback error leaming in the VOR/OKR adaptation
system is that the error signal for training the
feedforward controller is generated by a negative
feedback controller.

We simulated a simultaneous adaptation of the
VOR/OKR based on the model illustrated in Fig. 3B to
examine whether the quantitative results from rabbit
experiments can be reproduced®. The vestibular
input to the flocculus was assumed to code the head
velocity signal as an analog firing rate. The visual input
to the flocculus was assumed to code the retinal-slip
velocity. The eye velocity signal to the flocculus was
assumed to code the motor command calculated by
the flocculus. The firing rate of the climbing fibers was
assumed to represent a linear combination of the
retinal-slip position, velocity and acceleration, but
experimental data showed that the velocity term was
dominant®!, and thus simulated. Both the turntable on

which the animal was fixed and the drum on which
visual stimuli were presented were independently
rotated during a training period of 1000s (Fig. 3A)
according to the experimental paradigm used by Ito
and Nagao?!, and their colleagues. The dynamics of
the eyeball were modeled by taking into account its
mass, viscosity and stiffness. Three kinds of parallel-
fiber synaptic efficacy changes were simulated, based
on the LTD rule illustrated in Box 3, while taking an
ensemble average of many Purkinje cells in the
flocculus. The VOR and OKR gains increased as
shown in Fig. 3C, due to increases in the synaptic
efficacies of all three kinds of parallel fiber inputs®’.
The magnitudes and timecourses of the gain changes
were comparable to the rabbit experimental data®'.

Computational constraints on the site of
adaptive changes

There has been a long-standing controversy about
the site of the adaptive change of the VOR in
primates. Lisberger and Miles®® proposed that the
sites of modification are the vestibular-input synapses
of flocculus target neurons (FTN) in the vestibular
nuclei receiving monosynaptic inhibition from the
flocculus (known as the FTN hypothesis). In contrast,
Watanabe® concluded that the site in monkeys, just
as in rabbits, is the flocculus. Anatomical and physio-
logical clues, which may resolve this controversy,
have been recently obtained. Gerrits and Voogd®’
demonstrated that the rostral half of the traditionally
defined monkey flocculus, from which the first group
of authors mainly recorded®*, was homologous to the
ventral paraflocculus, but not to the flocculus in the
rabbit. Then, Nagao*! found that activities of Purkinje
cells in the ventral paraflocculus and the flocculus per
se are different during VOR, smooth pursuit eye
movement and VOR suppression. The ventral para-
flocculus results are in agreement with reports of
Miles and Lisberger, while the flocculus results are in
agreement with reports by Watanabe. These new
findings seem to favor the site of adaptive change of
the VOR being localized to the flocculus for primates.

Results from recent computational studies may also
be used to address the issue of the adaptation site in
primates. Sejnowski and Lisberger®? developed a
dynamical neural network model of the VOR and
smooth pursuit eye movement. A recurrent back-
propagation algorithm was used simply as an opti-
mization procedure, not as a biological learning model,
to determine how the network would reduce the
amplitude of the VOR while maintaining accurate
pursuit. Reductions of VOR gain were achieved by
decreasing the connection weights in the vestibular
input to the FTN. The connection weights in the
vestibular input to the flocculus first increased and
then decreased. The authors interpreted these re-
sults as supporting the flocculus hypothesis. In the
context of the three schemes of supervised motor
learning shown in Fig. 2, it is clear that both the
vestibular inputs and the retinal slip signals must be
available at the site of modification. On the one hand,
the FTN hypothesis is most readily formulated as one
version of feedback error learning. On the other hand,
Lisberger®® suggested that the flocculus provides
error signal information to FTN neurons. However,
as their own data and those from others show>* 4!, the
activities of flocculus Purkinje cells reflect vestibular
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input and eye movement, as well as retinal slip. Thus,
it seems that if the FTN hypothesis is true, all three
supervised learning schemes must be modified in
order to accommodate the situations in which the
error signal is carried by the flocculus output. It is
quite probable that several different combinations of
adaptive site are involved in VOR learning. Compu-
tational constraints, however, demonstrate the dif-
ficulties in developing the model for all the possible
sites that rely solely on local learning rules such as
LTP or LTD, and on the required error signal in the
appropriate coordinates.

Models of sensory motor learning in the
cerebellum

Several research groups have found that different
regions of the cerebellum play important roles in the
learning of different motor behaviors, such as arm
movement, locomotion, posture control and classical
conditioning of eye-blink responses (see for example
Ref. 33 for a review). Although the input and output,
and the functional roles of different regions of the
cerebellum are vastly different, the neural circuit in
the cerebellar cortex is rather uniform. Given this
histological uniformity, several authors have extended
the basic LTD-based oculo-motor reflex models in a
search for a computational framework in which motor
learning in different cerebellar regions is coherently
understood.

Houk and Barto®, and colleagues proposed an
adjustable pattern generator (APG) model of the
cerebellum. Temporal patterns of movements are
acquired through motor learning, based on the LTD of
Purkinje cells in combination with positive feedback
loops formed between cerebellar deep nuclei and
brain-stem nuclei, such as the cerebellar reverber-
ating circuit*!. Artificial neural network models with
recurrent connections that can learn and generate arm
trajectories'>*® were used, along with a learning
scheme that is mathematically based on associative
reward-penalty learning®®, One of its attractive
features is that, in their scheme, a motor pattern is
selected and generated, which is impossible with a
simple internal forward or inverse model. Corre-
spondingly, however, learning is more difficult.

Miall et al.*” proposed that the cerebellum forms
two types of internal models. One model is a forward
model of the motor apparatus like that in Fig. 1B.
The second is a model of the transport time de-
lays.in the control loop (due to receptor and effector
delays, axonal conductances and cognitive processing
delays). The second model delays a copy of prediction
made by the first model, so that it can be compared in
temporal registration with actual sensory feedback
from the movement. The second model resolves the
difficulty of temporal mismatching between the
sensory signal delayed by the feedback loop and the
output calculated by internal models. In manual
tracking of visual targets by humans and primates, the
control performance became noisier and more un-
stable when an extra time delay was inserted before
presenting the visual target. Several experimental
phenomena like this were reproduced by their model.

We proposed a coherent model of cerebellar motor
learning shown in Fig. 4, based on the feedback-error-
learning scheme®%-3"48  Premotor networks, the
cerebellar cortex, climbing fiber inputs, and the
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Fig. 4. A schematic diagram showing how cerebellar motor learning might be
incorporated in sensory—motor control. Premotor networks are motor control
networks that are located upstream of the motor neurons, and range in
complexity from simple spinal reflexes (bottom of large rectangle) to motor
cortical circuits controlling voluntary movement (top of large rectangle). Thus
the top rectangle is assumed to contain the motor cortex. Some of the
premotor networks are under the inhibitory influences of the cerebellar cortex.
Parallel fibers to Purkinje cells carry vast amounts of information, both from
the sensory receptors and from the cerebrum, which is necessary for
coordinative and predictive control. Some of the parallel fibers represent
desired motor pattern information and some represent current state infor-
mation of the motor apparatus regardless of whether they originate from the
sensory association cortex (solid curves) or from the sensory receptors (dotted
line curves). The climbing fiber input is assumed to carry motor error signals
represented in motor-command coordinates. This is realized by the closed-loop
and one-to-one anatomical correspondence between each premotor network,
the small region in the inferior olive and the microzone of the cerebellar cortex
(shaded regions).

combination of motor units, the environment and
sensory receptors in Fig. 4 correspond to feedback
controller, inverse model, error and the controlled
object in Fig. 2C, respectively. Parallel fiber inputs
are assumed to carry the desired motor pattern
information, in addition to the current states of the
motor apparatus. We assume that climbing fiber
responses represent motor commands generated by
some of the premotor networks, i.e. networks that
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are upstream of the motor neurons that include
feedback controllers at the levels of the spine, the
brain stem and the cerebral cortex (including the
motor cortex). We do not necessarily assume that
every premotor network literally compares a ‘desired
trajectory’ with an ‘actual trajectory’. It is, however,
required that the premotor network calculate the
motor error in the motor-command coordinates,
which vanishes when the resultant movement is
desirable. Based on the LTD in Purkinje cells, each
longitudinal microzone in the cerebellar cortex, of
200 um in width and more than 50mm in length, in
conjunction with a small portion of the deep cerebellar
nucleus that is connected to the microzone?3, learns
to execute predictive and coordinative control of
different types of movements. This is realized by a
closed-loop and one-to-one anatomical correspon-
dence between each premotor network, a small
region in the inferior olive, and a microzone of the
cerebellar cortex®33, If one premotor network is
regulated by one microzone of the cerebellar cortex,
then the latter must receive climbing fiber inputs from
the specific part of the inferior olive that receives
inputs from the earlier part of the same premotor
network. With this anatomical organization, the cer-
ebellar microzone is trained by the feedback error
that represents the copy of the motor-error command
generated by the corresponding premotor network.
Ultimately, each microzone acquires an inverse model
of a specific controlled object, and complements the
relatively crude feedback control provided by the
premotor networks. Thus, the activity of the corre-
sponding earlier part of the premotor network
decreases as cerebellar learning proceeds. However,
the later part of the premotor circuit is quite active.
Moreover, it must be noted that other premotor
networks which are not connected to the cerebellum
(see Fig. 4 for such independent premotor networks)
may be active even after learning.

However, despite the crude nature of the signals
from the premotor feedback networks, the premotor
commands are the only source of motor coordinate
information for training the cerebellum. There are two
reasons why the relatively crude premotor command
can serve as training information for the correct
cerebellar command. First, the premotor command is
not the teaching signal, but is instead the error signal.
Second, although the premotor command is faulty, it,
at least roughly, indicates the directions and magni-
tudes of cerebellar command modification. This latter
point is actually controversial, since the range of firing
frequencies of the climbing fibers is unusually low,
and, hence, it has seemed difficult to understand how
climbing fiber activity could convey directional or
amplitude information. Rather, their apparent all-or-
nothing firing characteristics may be useful for
detection of somatic events?®, providing information
to the Purkinje cells about the occurrence of undesir-
able movements (penalty signal)*>*. However, be-
cause the LTD has a time constant of about one
hour, even a low firing frequency can be integrated to
give analog information. If the firing frequency is
lower than the spontaneous level, it can give direction
(negative) information. In the feedback-error-learning
framework, the climbing fibers must be able to convey
amplitude as well as directional information regarding
the error. This prerequisite is supported in the

vestibulo-cerebellum®, but the problem is still un-
resolved for other regions. Based on an experimental
design by Wang, Kim and Ebner®, we proposed a
critical experimental test of our theory in which
climbing fiber responses are measured in monkeys
during a target change experiment in order to clarify
this point*®, By changing the direction and magnitude
of the difference between the second target and the
hand cursor presented on a video screen, our model
predicts the direction and magnitude dependence of
climbing fiber responses. Furthermore, such an
experiment could be used to answer the basic
question of whether movement errors are rep-
resented in sensory coordinates or in motor co-
ordinates, by dissociating the trajectory error dis-
played on the video screen from the motor-command
error. It could be accomplished, for example, by
inverting one coordinate axis between the monkey’s
measured hand position and the displayed hand cursor
position. Our theory requires that the climbing fiber
responses be represented in motor coordinates
(muscle activations) rather than in video screen
coordinates.

Concluding remarks

Computational models have not completely solved
the puzzle of how and where cerebellar motor learning
is conducted. These models have, however, intro-
duced the notions of heterosynaptic plasticity for
motor learning, acquisition of internal neural models of
the motor apparatus, and necessary transformation of
the error signals from the trajectory space to the
motor-command space. With these concepts, neuro-
physiologists now have a framework on which to
explore further the hardware responsible for the
cerebellar motor learning.
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Rallpacks: a set of benchmarks for neuronal simulators

Upinder S. Bhalla, David H. Bilitch and James M. Bower

The field of computational neurobiology has advanced
fo the point where there are several gemeral-purpose
stmulators to choose from. These cater to various niches
n the world of realistic neuronal models, which range
from the molecular level to descriptions of entive sensory
modalities. In addition, there are numerous custom-
designed simulations, adaptations of electrical circuit
stmulators, and other specific implementations of neuro-
biological models. As a first step towards evaluating this
disparate set of simulators and simulations, and
towards establishing standards for comparisons of speed
and accuracy, we describe a set of benchmarks. These
have been given the name ‘Rallpacks’ i honor of
Wilfrid Rall, who pioneered the study of neuronal
systems through analytical and numerical techniques.

Numerical methods for computing the properties of
neuronal models have existed at least since the 19th
century, when Lord Kelvin first studied the equations
describing signal propagation for the first undersea
cables. This problem is mathematically identical to the
description of the passive properties of cellular
membranes, and the ‘cable equations’ underlie all
realistic neuronal models. The description of the active
properties of membranes by Hodgkin and Huxley' in
the 1950s was the second major conceptual advance in
the field. Even the most sophisticated simulations
carried out today are essentially implementations, in
greater and greater detail, of the formulation of
neurons in terms of these passive and active proper-
ties. The application of these equations to neuronal
systems has been undertaken from the 1950s onward,
notably by Wilfrid Rall®.

Levels of description

Neuronal systems have features of interest and
functional significance at all the levels of detail that
have been studied®, from the molecular to the
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systems level. An especially keenly studied section
of this field has been at the level of the single
neuron, which has consequently seen a proliferation of
simulations and simulators*°, The present set of
‘Rallpacks’ are intended to provide a standard for
evaluating the basic numerical capabilities of this
disparate variety of simulators at the single neuron
level, and to provide a degree of confidence in the
reproducibility of simulations carried out on them.

What simulators do

As alluded to above, realistic single neuron simu-
lators must at least solve the equations describing the
passive and active properties of neurons. A brief
overview of this process follows.

Passive properties. The passive cable equations are
partial differential equations, and may be expressed
as:

() -v-+(3) =

where A is the cable length constant and 7 is the time
constant.

Several methods may be employed in solving these
equations®, including Laplace transforms and dis-
cretization in space and time. The latter is the method
of choice for almost all neuronal simulators. Briefly, it
may be thought of as a process of subdividing the
description of the model in space and in time, so that
values calculated for discrete positions and times may
be used to approximate the real, smoothly varying
system. The process of spatial discretization is
accomplished by dividing the neuronal model into
compartments, which are simply short cylindrical
lengths of cell membrane of uniform diameter and
electrical properties. The problem is then reduced to
a system of coupled ordinary differential equations
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