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SUMMARY

In this research the authors evaluate a new method for
control using several prediction models and recognition of
movement series. In MOSAIC (MOdule Selection And
Identification for Control), which uses a prediction model
with several modules as proposed by Wolpert and Kawato
(1998), a module that pairs a prediction model which pre-
dicts the future state to be controlled and a controller are
switched and assembled based on the size of the prediction
error in the prediction model. The authors propose a method
using MOSAIC to divide continuous time patterns for
human or robot movement into their constituent parts as
several series of movement elements. Moreover, the authors
evaluate a method to recognize movement patterns of an-
other person using one’s own module and imitation learning
based on this method. From the results of simulations of
acrobot control, the authors show that symbolization of
movement patterns and imitation learning based on that are
possible. © 2006  Wiley Periodicals, Inc. Electron Comm
Jpn Pt 3, 89(9): 42–53, 2006; Published online in Wiley
InterScience (www.interscience.wiley.com). DOI
10.1002/ecjc.20267
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1. Introduction

In the real world there are several ways of achieving
a given goal (efficient ones, inefficient ones, and creative
ones), and not necessarily just one. There are multiple
patterns for achieving an upstream climb and other move-
ment. Different movement patterns are thought to exist
because there are several movement units, there are several
transition patterns for symbol series representing the move-
ment units (action elements), and there are different transi-
tion patterns. In human learning, the goal is first achieved
by repeated trial and error. However, movement patterns
that vary with individuals are created as a result of failures
along the way, or low levels of efficiency even when the
goal is achieved. 

On the other hand, if movement series performed by
others (teachers) are observed, and they are used as prior
information for one’s own movement learning, then more
efficient movement patterns can sometimes be acquired. In
other words, control of learning in a nonlinear system can
involve being trapped at a locally optimal solution, but by
imitating successful examples, a more efficient movement
series can be acquired.
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However, simple imitation by using the movement
trajectory of another is not straightforward. In general,
movement commands such as joint motion cannot be di-
rectly observed, and even if they could be, the same move-
ment trajectory cannot necessarily be generated based on
the same movement commands because of differences in
body parameters. In this type of learning process, first there
must be an awareness that the movement pattern being
observed (teacher) is substituted into one’s own move-
ments, and then a movement pattern matching one’s own
body must be generated using the results of this awareness.

The authors have previously proposed MOSAIC
(MOdule Selection And Identification for Control), a con-
trol method that uses several models [1–3]. When a target
trajectory is given in the MPFIM (Multiple Paired Forward-
Inverse Model), the learning edition and teacher for MO-
SAIC, by using modules for the “reverse model” which
generates the control output and the “forward model” which
predicts state changes based on the control output and the
current state, re-adaptation and de-adaptation for a noncon-
stant environment can be performed rapidly [2, 4].

In the Multiple Model-based Reinforcement Learn-
ing (MMRL), the reinforcement learning version of MO-
SAIC, a reward is given instead of a target trajectory.
Movement can be realized by training an evaluation func-
tion, the expected value for the reward in the future [5, 6].
MMRL can train and create an optimal controller efficiently
by creating a pairing using a reinforcement learning con-
troller and a prediction model. Moreover, because complex
environmental components are separated in terms of time
and space by combining simple prediction models, an ef-
fective number of modules can be determined automat-
ically based on the complexity of the environment [3].

Each module of MOSAIC is taken to represent sev-
eral different operating elements. In concrete terms, by
assigning a single symbol to each MOSAIC module, not
only can one’s own continuous movement be divided into
its constituent parts, but the movement of another can be
represented as symbols when replacing it with one’s own.

In this paper, using MOSAIC the authors propose
imitation learning in which movement patterns are acquired
more efficiently by (1) a series representation of symbols
for the movement pattern, (2) symbol recognition in which
the movement pattern of another is recognized as a series
of movement units using one’s own predictor and control-
ler, and (3) making use of the recognized movement series.
The authors demonstrate that this is possible using simula-
tions for control goals in an acrobot.

This paper is structured as follows. In Section 2, an
overview of MOSAIC is given, and evaluation of the sym-
bolization of movement patterns using MOSAIC is per-
formed. Next, the symbol series is estimated based on the
observed movement patterns, and a method for using the
results for imitation is proposed. In Section 3, the simula-

tion results for a swing-up task for the acrobot are given.
Section 4 discusses MOSAIC as a model for communica-
tion in the brain, and Section 5 provides a summary of the
paper.

2. Symbolization and Imitation Using
MOSAIC

2.1. An overview of MOSAIC

In MOdule Selection And Identification for Control,
MOSAIC [1–3], the pair consisting of a prediction model
which predicts what is to be controlled and the controller
which controls the trajectory are treated as one module, and
several such modules are used. First, based on the predic-
tion error of each prediction module, the “responsibility
signal” which represents the adaptability of each module
for the current environmental state or context is calculated.
Based on the responsibility signal, the control output, pre-
diction model, and the contribution ratio for learning in the
controller are determined. Moreover, when the responsibil-
ity signal can be predicted based on some form of context
information, module selection is performed using the pre-
dicted value for the responsibility signal as an a priori
probability.

As can be seen in Fig. 1, MOSAIC consists of n
prediction modules which create predictions for the dy-
namic characteristics to be controlled under given condi-
tions or using approximations of operating points and n
controllers for each. At each point in time, how to select or
combine the output of each module, and with what prob-
ability to perform learning in each module is determined by
the “responsibility signal” given by the soft-max function
for the magnitude of the prediction error in each prediction
model. 

Fig. 1. MOSAIC: Module selection and identification
for the control module.
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An overview of the operation of the system is given
below.

(1) Responsibility signal: The state changes to be
controlled are predicted using the n prediction models, and
then based on the prediction squares error Ei(t), the respon-
sibility signal λi for each module is given by

Here, σ is a parameter which indicates the size of the shared
range for each module. Ei(t) is given by 

which is the simplest instantaneous prediction error. Here,
x̂i represents the output value for the i-th prediction model,
and x(t) represents the real state. Moreover, for Ei(t), mod-
ule selection can be performed more stably by using a brief
average value for the prediction error to be described later.

(2) Determining the action output: Using a weight
proportional to the responsibility signal λi(t), the output
ui(t) = µi(x(t)) for each controller is added, and the action
output to be controlled

results. 
(3) Learning in each module: Using reinforcement

proportional to the responsibility signal λi(t), learning for
the state prediction model fi(x, u) and learning for the
controller are performed.

As a result, optimization is performed for different
operating points and different operating conditions to be
controlled in a form in which consistency is maintained in
switching and combining modules and in the prediction
model and controller in each module.

Moreover, when prior information is given for mod-
ule selection, the responsibility signal is given by

instead of Eq. (1) using the prediction value λ̂i(t) for the
responsibility signal based on the prior information and the
prediction squares error Ei(t) for the prediction model.

2.2. Symbolization and imitation

There is a close relationship between the operating
elements due to the mutual interactions between the module

structure in MOSAIC and the environment. For instance, in
an example using MMRL, the reinforcement learning ver-
sion of MOSAIC, for learning control of a nonlinear sys-
tem, each module approximates linear dynamics at stable
or unstable equilibrium points for the system, and a control
(reinforcement learning controller) which varies the stabil-
ity based on the objective is formed [3]. In other words, the
phrasing of the movement based on the environment is
formed by the responsibility signal. 

Given this, the time series for the responsibility signal
l which determines the burden for each module can be
thought of as providing a symbol representation which
abstracts the movement pattern. Moreover, if the movement
of another being observed can be recognized as a transition
pattern for the responsibility signal l, then by creating a
movement pattern that is in line with the recognized transi-
tion series, a movement pattern distinct from what one is
performing can be imitated. 

The symbolization of the movement pattern used here
with MOSAIC and the method for using it for imitation
learning are shown in a schematic diagram (Fig. 2). Below,
(1) a method for estimating the responsibility signal λ based
on the movement pattern xobs(t) being observed, and (2) a
method for using the series λ for imitation learning are
given. 

(1)

(2)

(3)

Fig. 2. Schematic diagrams of symbol recognition
process (upper diagram) and symbol imitation process

(lower diagram).

(4)
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2.2.1. Symbol recognition: Estimating the
responsibility signal series based on
observing movement patterns in another

Let the state being observed at the time t be xobs(t). If
this is input to each controller, then based on 

the output ui(t) for each controller is determined (refer to
Fig. 2). µi represents the control rules for the modules.
Moreover, if the control output ui(t) and the observed xobs(t)
are input into the paired prediction module fi, then based on

the changes in the state when the i-th module is selected can
be predicted. Based on the brief average for the error
between this predicted value and the state change x

. obs(t)
obtained from actual observations, that is,

the soft-max function is used, and based on 

the responsibility signal for xobs(t) can be estimated. Here,
0 < ε is a constant updated for the responsibility signal
predicted value.

2.2.2. Imitation learning using the series for
the responsibility signal λ

As described above, the responsibility signal λi
obs(t)

estimated based on the observed movement pattern xobs(t)
can be taken to be the responsibility signal predicted value
λ̂i(t) for the real movement, and is used as transcendental
information for the MOSAIC module selection using Eq.
(4).

3. Simulations

3.1. Acrobot swing-up task

An acrobot is a robot with two links and two joints,
as can be seen in Fig. 3. An actuator exists only at the second
joint in the waist; there is no actuator in the first joint at the
hand. The acrobot swing-up task is a very difficult task in
which a nonlinear objective is moved from a stable, dan-
gling state to an unstable standing state and then held there
[7–9].

The physical parameters in this experiment are listed
in Table 1, and the equations of motion are given in Appen-
dix 1. 

3.2. MOSAIC using a linear state prediction
model and quadratic form reward model

The linear model is characterized by learning speed
and highly generalized capacity. Thus, in MOSAIC, a linear
model was used for the prediction model and the controller.
Here, the linear model for control is 

and the reward function is 

both of which are assumed to be in quadratic form. The
evaluation function V(x), the time attenuation integration of
the reward function, is based on the matrix P, a solution to
the Riccati equation

(5)

(6)

(7)

(8)

Table 1. Parameters of the acrobot

link1 link2

Length: l 1 m 1 m

Distance to the center of gravity: r 0.5 m 0.5 m

Mass: m  1 kg 1 kg

Inertial moment: I  1 kg ⋅ m2 1 kg ⋅ m2

Fig. 3. An acrobot: two-link robot with an actuator only
at the second joint.

(10)

(9)

(11)
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and is given by

here [10]. Based on this evaluation function [Eq. (12)] and
the linear model [Eq. (9)] for control, the optimal feedback
control rule which maximizes the evaluation is given by

When using this type of linear quadratic controller
(LQC) in each controller, the local linear prediction module

and a local quadratic reward model

are prepared for each module. Here, xi is the center point
for local approximation. The Riccati equation 

is solved for these models, and the feedback gain matrix for
each module

can be found. The control output is assumed to be a weight-
ing of the output for each LQC using the responsibility
signal λi(t), that is,

3.2.1. Experimental methods

It has been shown that the prediction model can
acquire through learning a linear learning model that ap-
proximates dynamics when an acrobot learns the swing-up
[3]. Thus, in this research the authors prepare the coefficient
matrices Ai and Bi for the linear prediction model near
equilibrium points analytically and not through learning in
order to emphasize generation and recognition of move-
ment patterns.

Figure 4 represents the posture at four acrobot equi-
librium points: x1 = (0, 0, 0, 0)′, x2 = (0, π, 0, 0)′, x3 = (π,
π, 0, 0)′, and x4 = (π, 0, 0, 0)′. When there is no control input
at the four equilibrium points, the prediction model is
provided with the linear form in Eq. (14) of Eqs. (A.1) and
(A.2).

The reward r(t) is taken to be

that is the sum of the link position energy and the torque
squared, where R is varied. This equation can also be
represented in the form

when quadratic approximation is performed at the four
equilibrium points described above, representing a quad-
ratic form for the state x and the control input u. A coeffi-
cient matrix Qi for the reward near the four equilibrium
points xi was also found analytically as was done for Ai and
Bi.

In this fashion, based on the coefficients Ai and Bi

[refer to Eq. (14)] in the prediction model which has been
made linear using the four equilibrium points and on the
coefficients Qi and R for the reward function, a quadratic
form controller is created using the Riccati equation (16)
(refer to Appendix 2). Swing-up patterns are compared by
varying the coefficient Ri for the reward function and the
initial values for the acrobot. At this point, the parameter
for determining the shared range for each module is set to
σ = 1. 

3.2.2. Results

Figure 5 shows the trajectories for successful exam-
ples of the acrobot swing-up when R = 0.002. Figure 6
shows the different swing-up patterns that occur when R,
the cost coefficient for the input to the reward function, is
varied. 

For instance, if link 1 represents the upper body and
link 2 represents a foot, then when R is varied, a posture in
which the upper body is dangling (θ1 = 0, θ2 = 0) and a

(12)

(14)

(15)

(16)

(17)

(18)

Fig. 4. Postures of acrobot at four equilibrium points.
(13)

(19)

(20)
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Fig. 5. An example of a successful swing-up pattern (R = 0.002). Each panel shows consecutive postures in (a) 0 to 2.5 s,
(b) 2.5 to 5.0 s, (c) 5.0 to 7.5 s, (d) 7.5 to 10.0 s.

Fig. 6. Sample trajectories of the acrobot with three parameters (a, b) R = 0.0009, (c, d) R = 0.001, (e, f) R = 0.002. Left
column (a, c, e) shows the trajectories in the θ1–θ2 plane with dominant modules; ×: module1, ": module2, +: module3, and

! module4. Right column (b, d, f) shows the time course of the responsibility signal.
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posture in which only the foot is lifted (θ1 = 0, θ2 = π) are
alternated several times with R = 0.0009, 0.001, and then a
posture in which only the upper body is lifted (θ1 = π, θ2 =
π) is implemented [Figs. 6(a) to 6(d)], but when R = 0.002,
the limitations on torque are considerable, and as a result
there are several repetitions of transitioning between a
posture in which the upper body and foot are raised (θ1 =
0, θ2 = 0) and a posture in which only the foot is raised (θ1

= 0, θ2 = π). The former is more frequent compared to (R =
0.0009, 0.001) [Figs. 6(e) and 6(f)]. Moreover, as a result
of the difference in the direction of the swing-up and the
number of repetitions, variations in the arrival point on the
ground due to R are also seen.

Furthermore, with respect to the transition for the
responsibility signal λ, it is 1-2-1-2-1-3-4-1-3-4-3-4-3-4
when R = 0.0009 [Figs. 6(a) and 6(b)], 1-2-1-2-1-3-4-1-3-
4-3-4 when R = 0.001 [Figs. 6(c) and 6(d)], and 1-2-1-2-1-
2-1-3-4-1-3-4 when R = 0.002 [Figs. 6(e) and 6(f)].
Changes in the transitions for the responsibility signal λ are

also observed with respect to these different movement
patterns.

When the initial values of θ1 and θ2 are varied, various
different movement patterns are also acquired.

In this fashion, a nonlinear system like an acrobot can
be controlled precisely using MOSAIC, and the symboli-
zation of complex movement patterns can be achieved
using the responsibility signal λ.

3.3. Imitation learning using movement
pattern symbols

3.3.1. Experimental methods

The authors used the methods of symbolization and
imitation learning for the movement patterns given in Sec-
tion 2.2 for the acrobot swing-up task. The movement
pattern achieved by the acrobot at R = 0.002 is taken to be
the observed movement pattern, and the authors then had
the acrobot perform the swing-up task for R = 0.002

Fig. 7. Sample trajectories of the acrobot (R = 0.002) with (c, d) and without (e, f) the symbol imitation by observing
teacher trajectory (a, b). Left column (a, c, e) shows the trajectories in the θ1–θ2 plane with dominant modules; ×: module1,

": module2, +: module3, and ! module4. Right column (b, d, f) shows the time course of the responsibility signal.
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(equivalent) and R = 0.0035 (slightly different). In addition,
observations were made of when the movement pattern for
an initial value of θ1 = π/6 started from θ1 = π/12. σobs = 2,
which determines the shared range for each module, was
used. Because this value is relatively large, the estimation
of the responsibility signal in the module was relatively
smooth. Moreover, ε = 0.02, a small value, was used for the
parameter to average the error over a short time. As a result,
switching of the responsibility signal for the observed
movement pattern could be tracked.

3.3.2. Results

Figures 7(a) and 7(b) show the results for starting the
swing-up from an initial value of θ1 = π/6. Swing-up was
started from an initial value of θ1 = π/12 with this movement
pattern as an example. When started from an initial value
of θ1 = π/12 without using imitation, link 2 slowly de-
creased its speed while rotating and came to rest at the
inversion point after link 1 swung up [Figs. 7(e), 7(f)].
When observing and imitating the movement pattern with
an initial value of θ1 = π/6 [Figs. 7(a), 7(b)], link 2 came to
rest at the inversion point without rotating after link 1
swung up. This trajectory is qualitatively different from the
trajectory when imitation is not used [Figs. 7(e), 7(f)], and
is more efficient due to the elimination of useless rotation,
as is the case with the observed movement pattern trajecto-
ries [Figs. 7(a), 7(b)]. Given this, the new movement series
can be acquired via the responsibility signal λ. Moreover,
a comparison of the changes in the responsibility signal in
the observed movement pattern [Fig. 7(b)] and changes in
the responsibility signal predicted value [Fig. 7(d)] reveals
that the transition patterns are similar, and so shows that the
movement series can be recognized using the repre-
sentation of the responsibility signal λ by observing the
movement pattern.

Figure 8 uses as an example the swing-up trajectory
using the controller created using the cost coefficient R =
0.001 with respect to action output, and represents the
swing-up success rate when performing imitation using
seven types of controllers, R = {0.0001, 0.0002, 0.0005,
0.001, 0.002, 0.005, 0.01}, and the time (average for 50
trials) required for swing-up when successful. A success is
recognized when the swing-up region is reached within 30
seconds after the start of swing-up.

When R = 0.005 or 0.01, success is not achieved
unless imitation is performed, but when imitation is per-
formed by generating a responsibility signal from a differ-
ent movement pattern, success is achieved. The success rate
rises for any other parameter, meaning that imitation can
provide more robust swing-up. Moreover, swing-up is suc-
cessful in less time on average when imitation is performed.
When R = 0.0001, a considerable amount of time was

required for imitation, but this was because the success rate
rose even though time was required.

4. Discussion

Based on the acrobot swing-up simulations, it is clear
that one’s own movement pattern can be improved by
recognizing another’s movement pattern as a symbol series
using one’s own prediction model and controller, and then
performing “imitation” using the symbol series. In this
section, the authors discuss a computational model for the
brain using their proposed MOSAIC as a computational
model for communication.

4.1. A computational model for
communication

The process of communication is thought to be di-
vided into two processes: a process for recognizing com-
munication signals in which the internal state of another
person is estimated based on voice patterns and movement
patterns such as expressions and gestures provided by the
other person, and a control process using communication
signals in which a particular movement pattern is created
using movement control and the internal state of the other
person is controlled by presenting this pattern to the other
person.

The imitation learning using symbols in which move-
ment that is essentially the same as the movement pattern
of another person is executed for control is slightly different

Fig. 8. (a) Success rate and (b) average goal reaching
time of acrobot with (!) and without (") symbol

imitation.
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from that of the other person’s and includes the two proc-
esses given above for communication. In other words, the
process of recognizing another person’s movement pattern
as a responsibility signal series by simulating the control
output using one’s own prediction model is the same as the
process of recognizing a communication signal. Moreover,
“imitation using an estimated symbol” in which a respon-
sibility signal obtained artificially using a movement pat-
tern that succeeded for another person involves looking at
movements that are essentially close to the other person’s
as a result of having the movement patterns seen in another
person control one’s own internal state series. This is
thought to be a model for control using communication
signals.

When considering language, the process of recogni-
tion is a process in which a voice signal produced continu-
ously by another person is received through the sense of
hearing, and then symbolized meaningfully at the phoneme
and word level. The process of control represents a process
of generating symbol strings by combining the phonemes
and words above, and then generating spoken commands
using one’s own speech organs. Moreover, the authors
believe that a similar mechanism operates in series move-
ments for the purpose of generating/recognizing communi-
cation signals such as imitation and expression outside of
language.

In this paper a symbol series is estimated from an-
other’s movement patterns, this being “imitation,” and then
converted to one’s own movement pattern as is. This is a
model of only the most basic processes in communications.
The problem of hierarchical, precise action planning and
grammar in language requires consideration of hierarchical
symbolization and free interchange of symbol series. How
this can be represented is a topic for the future, but MO-
SAIC can provide an effective method for symbolization
which is a clue to the problems of grammar in language and
of complex, precise action planning.

4.2. MOSAIC as a computational model of the
brain

In MOSAIC, the prediction model and the controller
are used as a pair. The fundamental assumption behind this
computational model is that the process of generating com-
munication is used in the process of recognizing communi-
cation. In this sense, it is based on what cognitive science
calls a simulation theory [11]. Moreover, the discovery of
mirror neurons [12, 13] that act both when executing move-
ment and when observing another’s movement supports
MOSAIC as a computational model of the brain. 

The authors believe that the production of language
in people is achieved continuously based on communica-
tion using movement patterns that do not involve language,

and does not assume a discontinuous evolutionary process
for the basic neural structures or a computational theory for
them. This idea corresponds to Broca’s region, which is
used when comprehending human language [14], and to the
connections between the ventral premotor cortex, where
mirror neurons were discovered, and the lateral portion of
the cerebellum [15]. Kawato and co-workers have proposed
the theory that the models necessary to convert sensation
and movement in the external world in the lateral portion
of the cerebellum can be acquired. Moreover, in research
on brain activity using functional MRIs, the creation of a
model for new tools (required for a new sensation–move-
ment conversion) will be reported by Imamizu’s group [16].

5. Conclusion

This paper showed that MOSAIC can adapt to highly
nonlinear tasks as seen in the acrobot swing-up task. More-
over, movement patterns can be symbolized using the re-
sponsibility signal, and a new movement can be acquired
by estimating its series based on the current trajectory.

Future topics include acquiring more complex move-
ments through hierarchical combination in line with subdi-
vided modules. In the current experiment, the authors
showed that a symbol series can be estimated using the
responsibility signal λ based on a movement pattern and
can be used to acquire a new movement pattern. A more
autonomous hierarchical learning system could be created
by acquiring the dynamics of the symbol series through
learning. Moreover, if the symbolized movement series can
be interchanged, then the mechanisms behind human com-
munication and language activity may be clarified. 
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APPENDIX

1. Equations of Motion for the Acrobot

The equations of motion for the acrobot are given in
Eqs. (A.1) and (A.2):

Here, θ1 and θ2 represent the angles for link 1 and
link 2, θ

.
1 and θ

.
2 represent the angular velocities, θ

..
1 and

θ
..

2 represent the angular accelerations, and T represents the
torque applied to link 2. The state variable is x = (θ1, θ2,
θ
.

1, θ
.

2)′, and the control variable is u = T. Note that m1 and
m2 represent the mass of links 1 and 2, l1 and l2, the lengths,
r1 and r2, the distance from the joint to the center of mass
of each link, and I1 and I2, the inertial moment of each link.

For the output torque, simulations were performed
using the fixed Runge–Kutta fourth-order method, with the
noise N(0, dt) in a Gaussian distribution using pseudo-ran-
dom numbers at the final stage input at the time dt = 0.01
in each simulation.

2. Reward Model Coefficient Matrices and
LQC Creation

Qi at each equilibrium point used here is given by

(A.9)

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.10)

(A.11)

(A.12)

(A.13)
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Here, when the Riccati equation (16) is solved, a
stable answer is not obtained unless each element is a
positive number. Thus, when Q has negative elements, in

other words when the reward for a joint is rising with
respect to the direction of instability, first the sign for the
element in Q for the destabilizing joint (θ1 and θ2 for Q1,
θ2 for Q2, θ2 for Q3), and then the LQC gain is found. An
unstable controller is then created by inverting the sign for
each angle component and velocity component for the joint
which inverts Q from among the resulting components in
the gain K.
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