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Abstract 

Obsessive-compulsive disorder (OCD) is a common psychiatric disorder with a lifetime 

prevalence of 2–3%. Recently, brain activity in the resting state is gathering attention as a 

new means of exploring altered functional connectivity in psychiatric disorders. Although 

previous resting-state functional magnetic resonance imaging studies investigated 

neurobiological abnormalities of patients with OCD, there are concerns that should be 

addressed. One concern is the validity of the hypothesis employed. Most studies used 

seed-based analysis of the fronto-striatal circuit, despite the potential for abnormalities in 

other regions. A hypothesis-free study is a promising approach in such a case, while it 

requires researchers to handle a dataset with large dimensions. Another concern is the 

reliability of biomarkers derived from a single dataset, which may be influenced by 

cohort-specific features. Here, by employing a recently developed machine-learning 

algorithm to avoid these concerns, we identified the first OCD biomarker that is generalized 

to an external dataset. We also demonstrated that the functional connectivities that 

contributed to the classification were widely distributed rather than locally constrained. Our 
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generalizable classifier has the potential not only to deepen our understanding of the 

abnormal neural substrates of OCD but also to find use in clinical applications. 
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Introduction 

Obsessive-compulsive disorder (OCD) is a common psychiatric disorder with a lifetime 

prevalence of 2–3%1 that is characterized by obsessions (recurrent intrusive thoughts with 

excessive anxiety) and compulsions (excessive repetitive actions for reducing 

obsession-induced anxiety). Previous neuroimaging studies using structural and task-based 

functional magnetic resonance imaging (fMRI) have revealed neurobiological dysfunctions 

in OCD, most notably in the fronto-striatal circuit2–6. A meta-analysis of task-based fMRI 

studies using the symptom provocation paradigm revealed consistent increased activation 

within fronto-striatal regions7. Likewise, a multicenter voxel-based morphometric study 

revealed altered front-striatal gray and white matter volumes in patients with OCD8. 

Structural- or functional-MRI OCD classifiers constructed based on these findings have 

been reported9–12. Furthermore, methods for modulating the neural activity of the brain 

regions within the fronto-striatal circuit, such as deep brain stimulation (DBS), have been 

applied as clinical therapy for OCD13. 
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Besides structural and task-based fMRI studies, resting-state fMRI (rs-fMRI) is gathering 

attention as a new means of exploring altered functional connectivity in OCD14. Several 

studies have reported that rs-fMRI can detect differences in functional connectivity (FC) 

between healthy controls (HCs) and patients with OCD15–17, or find correlations with 

treatment response to medication18 and behavioral therapy19,20. Furthermore, DBS reduced 

excessive FC within the fronto-striatal circuit, and the DBS-induced changes in FC and 

changes in symptom severity were correlated21. 

There are two types of rs-fMRI studies in OCD: hypothesis-driven, seed-based analyses 

and hypothesis-free, data-driven analyses. Many of the OCD rs-fMRI studies have used 

seed-based FC analyses with a focus on the hypothesis of local abnormalities, especially 

within the fronto-striatal circuit15,16. Recently, other data-driven studies have revealed more 

global abnormalities, involving a more complex combination of activity throughout the 

brain22,23. The latter approach does not require an a priori hypothesis; therefore, it has the 

potential to quantitatively evaluate the contribution of the fronto-striatal circuit relative to 

other brain regions2. 
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Although previous rs-fMRI studies revealed neurobiological abnormalities in patients with 

OCD, the generalizability of these findings is still elusive. In fact, even for the most 

promising fronto-striatal circuit hypothesis, the findings were inconsistent15,16,23–25; that is, 

the fronto-striatal circuit in OCD is hypoconnected in some studies24,25 and hyperconnected 

in others15,16,23. Furthermore, other studies have suggested that there were abnormalities in 

addition to the fronto-striatal circuit, including the fronto-parietal and default mode 

networks5,26,27. No study has quantitatively evaluated the relative importance of the 

fronto-striatal circuit relative to the whole brain. Thus, it is necessary to construct a reliable 

biomarker using a fully data-driven approach, which consists of the most essential FCs to 

discriminate patients with OCD and HCs, and to evaluate the previous findings 

comprehensively. However, to our knowledge, no data-driven study of OCD has 

investigated the generalizability of its findings using an external dataset. Although only one 

rs-fMRI study22 has predicted the diagnosis of OCD in a data-driven and cross-validated 

manner, the generalizability of the observations was not verified with an external dataset. 

Indeed, it is very difficult to construct a classifier with sufficient generalizability because of 
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two major difficulties28. First, the number of subjects in an rs-fMRI dataset is usually small 

relative to the high dimensionality of FCs. It is a well-known problem that applying a naïve 

machine-leaning classifier to such a dataset leads to over-fitting29. Second, findings 

obtained from a single dataset are heavily influenced by cohort-specific features, that is, 

nuisance variables (NVs), which may lead to catastrophic over-fitting. Gruner et al. also 

mentioned that they were concerned about the effect of medicine as an NV22; therefore, we 

should confirm whether we can predict patients regardless of the presence/absence of 

medication. 

Here, we aimed to construct a reliable whole-brain rs-fMRI biomarker using a data-driven 

approach with recently developed machine-learning algorithms29 that can overcome the 

above issues. We employed a cascade of two algorithms: L1-Sparse Canonical Correlation 

Analysis (SCCA) and Sparse Logistic Regression (SLR)30,31. By adopting a cascade of the 

sparse estimation method, our procedure leads to sparse parameters with higher 

generalizability, while at the same time excluding features correlating with NVs. We 

hypothesized that our method could be used to distinguish patients with OCD from HCs, 
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even in an external dataset. Furthermore, its predictions were unaffected by NVs such as 

the usage of medicine. Finally, we quantitatively evaluated the contribution of the 

fronto-striatal circuit relative to other brain regions for classification. 
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Results 

Constructing an rs-FC-based classifier 

All rs-fMRI data (N = 108) were collected at Kyoto Prefectural University of Medicine 

(KPUM), Kyoto, Japan. Fifty-two patients with OCD and 56 HC participants were included. 

Table 1 summarizes the demographic data of the participants. There were 16 participants 

using medication (16 participants using antidepressants, 4 using antipsychotics, and 2 using 

anxiolytics). All patients were surveyed for obsessive symptoms using the Yale-Brown 

Obsessive-Compulsive Scale (Y-BOCS)32. 

Figure 1 shows the overview of the analysis. Pairwise, interregional FC was evaluated for 

each participant after standard preprocessing among 140 regions of interests (ROIs) 

covering the entire brain. The time courses of the voxels in each ROI were averaged to 

extract its time course. Then, for each participant, a matrix of FC between all ROIs was 

calculated by evaluating pairwise temporal Pearson correlations of the time course of blood 

oxygenation level-dependent signals. Further, to avoid multicollinearity between the input 

features, we used principal component analysis (PCA) and kept all obtained principal 



 10 

components (PCs). This procedure enabled us to reduce the dimensionality of the input 

feature space from nearly 10,000 to the number of participants, thereby allowing the 

classifier to learn more stably. It should be noted that PCA was conducted using the whole 

training dataset; that is, an external dataset was not used to obtain the transformation 

matrix. 

To avoid problems of over-fitting due to small sample size or irrelevant NVs, we applied 

the method developed in our previous study (see Methods)29. We constructed the classifier 

by combing two machine-learning algorithms: L1-SCCA and SLR30,31. Our method can 

avoid the problem of over-fitting by adopting a cascade of the sparse estimation method, a 

well-known approach for handling small sample sizes. Furthermore, it also avoids 

extracting cohort-specific OCD irrelevant features or NVs. 

Reliable classifier for OCD in the training set 

Leave-one-out cross-validation (LOOCV) was used to assess classification accuracy (see 

Methods). Participants with OCD could be separated from HCs with 73% accuracy and an 

area under the curve (AUC) of 0.81 (1,000-repetition permutation test, P < 0.001). Thus, 
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the discriminatory ability of the classifier was high. The weighted linear summation (WLS 

or linear discriminant function) of the identified PC values of the classifier predicted the 

diagnostic label of each participant. Participants with a positive WLS were classified as 

OCD patients and those with a negative WLS as HC. Figure 2a shows that the WLS 

distributions of the OCD and HC participants were separated to the right (OCD) and left 

(HC). 

Generalization of the classifier for the external dataset 

The generalizability of the classifier was tested by using an external dataset collected on a 

different MRI scanner from that used to collect the training dataset (see Methods). We used 

the same dataset as Sakai et al.16 The patients were recruited at KPUM. None of the 

participants had been taking any kind of psychotropic medication for at least 8 weeks. 

Fifteen participants were entered into both experiments. In such a case, we used them in the 

training dataset and excluded them from the external dataset. Finally, 28 participants, 

including 18 patients with OCD, were used as the external dataset. Thus, there was no 

overlap between the training and external datasets. For this external dataset, the present 
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classifier, trained with a different MRI scanner, performed well, with an AUC of 0.70 

(1,000 repetitions permutation test, P = 0.049) (Fig. 2b). Notably, this performance was 

achieved when we applied the classifier to the external dataset for the first time without any 

adjustment of the machine-learning procedure. Thus, this external dataset was the final 

validation dataset. 

Effects of NVs 

Next, we investigated the effects of medication on classification accuracy. For the training 

set, the accuracy of LOOCV was 75% (12 of 16) for patients with medication, and 67.5% 

for patients without medication (27 of 40). The classification accuracies were not 

significantly different between the two populations (chi-squared test, P = 0.581). None of 

the patients in the external cohort were medicated. 

Contribution to the WLSs of each FC 

To understand how each FC contributed individually to the WLSs, for each FC, its 

contribution to the WLSs through the selected PCs was calculated. As both PCA and the 

classifier are linear methods, the contribution of each FC could be calculated by examining 
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the transformation matrix of PCA and the weight of the classifier. We considered 200 FCs 

that contributed the most to the WLSs. Figure 3a shows the spatial distribution of these 200 

FCs that were identified from the dataset for the reliable classification of OCD and HC 

participants. 

Next, to interpret their contributions in macroscale regions, all ROIs were grouped into 18 

macroscale brain regions that were defined functionally in a previous study33 (e.g., the 

default mode network34) and examined the number of FCs between each pair of regions in 

each network. Figure 3b shows the matrices for the 200 FCs in the macroscale regions. 

Diagonal and non-diagonal elements show within- and between-network FCs, respectively. 

Figure 3c shows a circle plot of the 200 FCs in the macroscale regions. The number of FCs 

in each of the two macroscale regions is presented as the thickness of the connection lines. 

Some trends were observed, for example, the right-lateral fronto-parietal network 

contributed strongly relative to the other regions. However, the FCs were distributed widely 

rather than locally constrained. As for the FCs between the bilateral basal ganglia-thalamus 

and orbitofrontal cortex, only 2 FCs between the thalamus and orbitofrontal cortex were 
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included among the 200 most contributing FCs (highlighted by the blue box in Fig. 3b). It 

is noteworthy that no FC between the orbitofrontal cortex and striatum was included in the 

200 most contributing FCs.  
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Discussion 

A reliable neuroimaging-based classifier for OCD was developed in this study by 

investigating whole-brain FC patterns using rs-fMRI data. This classifier incorporated the 

PCs of FCs distributed across the brain, and achieved a high AUC of 0.81 with an accuracy 

of 73%. Further, the classifier was generalized to an external dataset (AUC of 0.70). To our 

knowledge, no neuroimaging-based classifier for OCD has been shown to be generalizable 

using an external dataset. Furthermore, by interpreting the classifier, we first evaluated the 

relative contribution of the fronto-striatal circuit to the classification of OCD quantitatively. 

We found that the FCs contributing to the classification were distributed widely rather than 

locally constrained. Specifically, many of them were involved in the fronto-parietal or 

default mode network. It is noteworthy that there are not as many studies investigating the 

fronto-parietal and default mode networks compared to those targeting the fronto-striatal 

circuit, both seed-based17,26,27 and data-driven studies20,22,35 have reported abnormalities of 

these networks besides the fronto-striatal circuit. Although a previous study found 

DBS-induced changes in the fronto-striatal circuit, our result suggests that we may also find 
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broad changes in whole brain FC patterns induced by DBS. 

Although successful construction of a structural- or functional-MRI OCD classifier has 

been reported previously9–12, the present study is the first to successfully classify OCD 

across internal and external datasets. This was achieved because our analysis pipeline was 

fully data-driven and cross-validated, instead of using the seed-based analysis employed in 

most of the previous studies. Furthermore, we employed a cascade of sparse estimation 

methods by using L1-SCCA and SLR29. We were able to avoid the over-fitting problem by 

extracting optimal PCs that were relevant only to the core OCD characteristics. At the same 

time, we could eliminate the effects of NVs such as age, sex, and medication by feature 

selection. Specifically, we did not observe a clear difference in classification accuracy 

between patients with and without medication. Medication reportedly significantly affects 

rs-FC patterns36, and a naïve algorithm might over-fit the difference induced by the use of 

medicine, which leads to a reduction of generalization accuracy for non-medicated OCD 

patients in the validated data. 

The output of the OCD classifier might provide a reliable measure of an individual’s 
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‘OCD-ness’ along one of the biological dimensions in psychiatric disorders, because our 

OCD classifier was successfully generalized to an external dataset for the first time. In the 

field of psychiatry, we have been unable to find any neuroscientific evidence to support the 

breakdown of complex psychiatric disorders into separate categories. Therefore, the 

hypothesis of a multiple psychiatric disorder spectrum is gaining attention37. According to 

this view, psychiatric disorders are the product of shared risk factors, or dimensions, that 

lead to abnormalities. Although the findings from brain imaging29,38 and genetic studies39 

support this idea, this hypothesis is still premature because of the scarcity of reliable 

dimensions. We believe our OCD classifier may provide an objective, reliable dimension 

for the spectrum. Further studies evaluating the relationship between the classifiers of 

multiple psychiatric disorders are needed for a deeper understanding of psychiatric 

disorders and for clinical application. 

A limitation of the present study is that we cannot directly compare our finding with 

previous studies investigating local brain regions15,16. This is because we employed the PCs 

of FCs, and they represent a linear combination of whole brain FCs. This is the 
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conventional approach in the field of machine learning to avoid the over-fitting problem 

when using a dataset with a small sample size and high dimensionality. In addition, unlike 

our previous study that employed a multi-site dataset29, all participants in the training 

dataset were scanned in the same site. It might also lead to difficulties with generalization 

at another site without PCA because of the presence of uncontrolled site-specific NVs. A 

future study with a much larger sample size assessed at multiple sites will investigate the 

contribution of each FC independently. 

In summary, we have developed the first generalizable rs-fMRI-based classifier for OCD. It 

distinguished participants with OCD from HCs even in an external validation dataset. We 

believe that our whole-brain biomarker will shed light on the abnormality of whole-brain 

FCs as a neural substrate of OCD.  
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Methods 

Training dataset used for the construction of the OCD classifier 

Participants: All resting state fMRI data (N = 108) were collected at KPUM; 69 of these 

participants were also included in the study of Abe et al.40 The demographic data for all 

experiments are shown in Table 1. Patients with OCD were recruited at KPUM. Trained, 

experienced clinical psychiatrists and psychologists assessed all participants. All patients 

were primarily diagnosed using the Structured Clinical Interview for DSM-IV Axis I 

Disorders-Patient Edition (SCID)41. Exclusion criteria were 1) cardiac pacemaker or other 

metallic implants or artifacts; 2) significant disease, including neurological diseases, 

disorders of the pulmonary, cardiac, renal, hepatic, or endocrine systems, or metabolic 

disorders; 3) prior psychosurgery; 4) DSM-IV diagnosis of mental retardation and 

pervasive developmental disorders based on a clinical interview and psychosocial history; 

and 4) pregnancy. We excluded patients with current DSM-IV Axis I diagnosis of any 

significant psychiatric illness except OCD as much as possible and only 4 patients 

with trichotillomania, 1 patients with tic disorder, 1 patients with tic disorder and specific 
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phobia, and 1 patients with bulimia nervosa were included as patients with comorbidity. 

There was no history of psychiatric illness in the control group as determined by the 

SCID-Non-Patient Edition42. In addition, they reported no history of psychiatric treatment 

in any of their first-degree relatives. Handedness was classified based on a modified 

25-item version of the Edinburgh Inventory. The Medical Committee on Human Studies at 

KPUM approved all procedures in this study. All participants gave written, informed 

consent after receiving a complete description of the study. All methods were carried out in 

accordance with the approved guidelines and regulations. 

Image acquisition: A whole-body 3-T MR system (Achieva 3.0T Quasar Gyroscan Intera; 

Philips Medical Systems, Best, The Netherlands) with an 8-channel phased-array head coil 

at the Kajiicho Medical Imaging Center was used to generate magnetic resonance images. 

Functional data were collected using gradient Echo Planar Imaging (EPI) sequences (echo 

time/repetition time, 30/2000 ms; flip angle, 80°; field of view, 192 mm2; imaging matrix, 

64 × 64, 39 slices; slice thickness, 3.0 mm, no gaps). High-resolution (1.0 × 1.0 × 1.0 mm) 

T1-weighted magnetization-prepared rapid gradient echo images were also acquired before 
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scanning the functional data. The first 6 (additional) images were discarded to allow 

magnetization to reach equilibrium. All participants underwent an approximately 6 min and 

40 s resting-state scan, resulting in a total of 200 volumes. They were instructed simply to 

keep their eyes closed, not to think of anything, and not to fall asleep. 

External validation dataset 

Participants: We used the same dataset as Sakai et al.16 Fifteen participants were also 

included in the training dataset; therefore, they were excluded from the validation dataset. 

Finally, 28 participants were used as external validation data. Thus, there was no overlap 

between the training and external validation datasets. Patients with current DSM-IV Axis I 

diagnosis of any significant psychiatric illness except OCD were excluded. The other 

settings were the same as for the training dataset. The Medical Committee on Human 

Studies at KPUM approved all procedures in the study. All participants gave written, 

informed consent after receiving a complete description of the study. All methods were 

carried out in accordance with the approved guidelines and regulations. 
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Image acquisition: A whole-body 1.5-T MR system (Gyroscan Intera; Philips Medical 

Systems, Best, The Netherlands) with a 6-channel phased-array head coil was used to 

generate MR images. Foam pads were used to reduce head motion and scanner noise. 

Functional data were collected using gradient EPI sequences (echo time/repetition time, 

40/2411 ms; flip angle, 80°; field of view, 192 mm2; imaging matrix, 64 × 64, 35 slices; 

slice thickness, 3.6 mm, no gaps). High-resolution (1 × 1 × 1.5 mm) T1-weighted 

magnetization-prepared rapid gradient echo images were acquired before each resting 

image. All participants underwent an approximately 8 min resting-state scan, resulting in a 

total of 200 volumes. The experimental settings for the resting-state scan were the same as 

for the training dataset. 

Preprocessing 

We used a preprocessing method similar to that of Yahata et al.29 for both the training and 

external datasets. We used Statistical Parametric Mapping 8 (Wellcome Trust Centre for 

Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm/software/) in MATLAB (The 

MathWorks, Inc., Natick, MA) for preprocessing and statistical analyses. First, head motion 
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was compensated for by collecting raw functional images for slice-timing and realigning 

them to the mean image of that sequence. Second, the structural images were co-registered 

to the mean functional image and segmented into 3 tissue classes in the Montreal 

Neurological Institute (MNI) space. Using associated parameters, we normalized the 

functional images and resampled them in a 2 × 2 × 2 mm grid. Third, the images were 

smoothed by a Gaussian function with a full width at half-maximum of 6 mm. To avoid the 

effects of motion artifacts, the pre-processed sequence of functional images was examined 

as follows. First, the mean relative displacement in each of the 6 motion parameters 

(translation along and rotation with respect to the x, y, and z axes) was evaluated by 

calculating the mean of the absolute frame-to-frame relative changes in each parameter 

through a given time series (namely, the mean of |Δp(i)| = |pi + 1 − pi| across the time series, 

where p is one of the 6 motion parameters and i specifies the time point). In both the 

training and external datasets, no statistically significant difference between the groups 

were noted in this measure for the 6 motion parameters (two-sample t-test, P > 0.05 for all 

parameters in both datasets). Next, the frame displacement (FD) was calculated for each 
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participant at each time point by summing all 6 parameters. Using this FD, we used the 

“scrubbing” procedure to identify and exclude any frame affected by excessive head 

motion43. Specifically, a frame was flagged and removed, along with the previous and two 

subsequent frames, from correlation analysis, if the associated FD exceeded 0.5 mm. For 

both datasets, there was no difference in the number of frames that passed this procedure 

between the HC and OCD populations (two-sample t-test, P > 0.05). 

Interregional correlation analysis 

A pairwise, interregional FC was evaluated for each participant among 140 ROIs covering 

the entire brain. Each region’s spatial extent was defined anatomically according to the 

digital atlas of the BrainVISA Sulci Atlas (BSA)44. As this atlas does not include the 

cerebellum, the 3 subregions of the cerebellum were appended to it based on the anatomical 

automatic labeling (AAL) package45. This BSA-AAL composite atlas was resampled in the 

2 × 2 × 2 mm grid MNI space. The time course of the voxels in each region was averaged 

to extract its representative time course. Further, we excluded the ROIs with zero-variance 

in at least 1 participant. The time course sets were band-pass filtered (0.008–0.1 Hz) prior 
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to the following regression procedure. The filtered time courses were linearly regressed by 

the temporal fluctuations of the white matter, cerebrospinal fluid, and entire brain as well as 

the 6 head motion parameters. The fluctuation in each tissue class was determined from the 

average time course of the voxels within a mask created by the segmentation procedure of 

the T1 image. The mask for the white matter was eroded by 1 voxel to consider a partial 

volume effect. These extracted time courses were band-pass filtered (0.008–0.1 Hz) before 

linear regression, as was performed for the regional time courses. Then, for each participant, 

a matrix of FCs between all ROIs was calculated while discarding flagged frames, if any, in 

the previous procedure (scrubbing). The scrubbing procedure removed any frames 

exhibiting abrupt head movements that could be the source of high-frequency fluctuations 

in the filtered time course46. The FC matrices are symmetric, so values on only one side of 

the diagonal were kept, resulting in the number of samples × number of FC matrices. 

Further, to reduce the dimensionality of the matrix from nearly 10,000 to the number of 

participants, we used PCA and kept all obtained PCs for the following classification 

analyses, resulting in the number of samples × number of PC matrices. This procedure 
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allowed the classifier to avoid multicollinearity between the input features and to learn in a 

stable manner. PCA was conducted using the whole training dataset. 

Selecting FCs as the OCD classifier 

To avoid the problems of over-fitting because of the small sample size or irrelevant NVs, 

we applied the method developed by Yahata et al.29 The procedure for selecting relevant 

PCs, training the predictive model, and assessing its generalization ability was performed as 

a sequential process of nested feature-selection and LOOCV. In each LOOCV fold, 

all-but-one participant was used to train the SLR classifier, while the remaining participants 

were used for evaluation. SLR can train a logistic regression model while objectively 

pruning PCs that are not useful for classifying OCD. Before training SLR, the input 

dimension must be reduced to some extent and, at the same time, the effects of NVs that 

may lead to over-fitting must be reduced. Therefore, before LOOCV, nested feature 

selection was performed using L1-SCCA. L1-SCCA identifies the latent relationships 

between PCs and various attributes of each participant, including the diagnostic label and 

available demographic information. By selecting PCs connected to a canonical variable 
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related to only the “Diagnosis” label and not to NVs, we aimed to reduce the interferential 

effects of NVs. Here, we defined age, sex, handedness, and drug use (anxiolytics, 

antidepressants, or antipsychotics) as NVs. 

Prediction of the diagnostic label 

Logistic regression analysis was used as the classifier to diagnostically label from the 

identified PCs. A logistic function is used to define the probability of a participant 

belonging to the OCD class: 

)ˆexp(1
1);ˆ|1(

zw
wz T-+

==yP  

Here y is the diagnosis class label (OCD, y = 1; HC, y = 0). ẑ =[zT,1]T∈ℝ m+1 is a feature 

vector with an augmented input, where the feature vector z is the PCs of a participant’s 

rs-fMRI sample. Using the augmented input “1” is a standard approach to introduce 

constant (bias) input for the classifier. w∈ℝ m+1 is the weight vector of the logistic function. 

To decrease the dimension of the feature vector further, which was already reduced by 

L1-SCCA according to the equation, we used an SLR method. SLR automatically selects 

OCD-classification-related features as input for the logistic function. In SLR, the 
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probability distribution of the parameter vector is estimated by the hierarchical Bayesian 

estimation approach, in which the prior distribution of each element of the parameter vector 

is represented as a Gaussian distribution. Due to the automatic relevance determination 

property of the hierarchical Bayesian estimation method, some of the Gaussian distributions 

have a sharp peak at zero so that irrelevant features are not used in the classification. 
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Figure /Table Legends 

Figure 1: Schematic diagram of the procedure for selecting FCs as an OCD biomarker 

and assessing their predictive power.  

A sketch map of prediction analysis. Resting sate functional connectivity (rs-FC) matrices 

were processed through the cascading feature selection procedure. Left-out participants and 

all participants in the external validation dataset were classified based on the classifier 

derived from the rs-FC matrix from other participants. 

 

Figure 2: Distribution of weighted linear summations (WLS) of functional connections 

used for the classification of the OCD and HC populations.  

(a) The number of HC (white) and OCD (black) participants in the internal dataset in a 

specific WLS interval of width 5 is shown as a histogram. (b) WLS for the validation 

dataset in a specific WLS interval of width 2 is shown as a histogram. 
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Figure 3: Functional connections used in the classification of the OCD and HC 

populations.  

(a) The 200 most contributing FCs from the left (left top), posterior (left bottom), and top 

(right) to the WLSs are visualized. (b) Matrices for the most contributing 200 FCs in 18 

macroscale regions that were functionally defined in a previous study33. Diagonal and 

non-diagonal elements show within- and between-network FCs, respectively. The blue box 

highlights the corresponding area in the matrix discussed in the main text, i.e., FC between 

the orbitofrontal and basal ganglia-thalamus networks. (c) Circle plot of the 200 most 

contributing 200 FCs in 18 macroscale regions. The number of FCs in each of the 2 

macroscale regions are presented as the thickness of the connection lines (edges). 

 

Table 1: Demographic information of the participants used to construct the classifier 

for the OCD and HC populations (mean ± standard deviation). All demographic 

distributions are matched between the OCD and HC populations in the internal and external 

datasets (P > 0.05). 
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NR, not recorded. 

NA, not applicable. 
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Table 1 
 

 Internal  External  

OCD HC OCD HC 

Male/Female 23/33 26/26 4/6 6/12 

Age (years) 32.64 ± 9.63 29.40 ± 7.46 31.50 ± 10.31 29.89 ± 8.69 

Handedness (R/L) 51/5 50/2 9/1 15/3 

Y-BOCS 21.26 ± 6.65 NR 23.8 ± 5.77 NR 

Medication 

(with medication/without 

medication) 

16/40 NA 0/10 NA 
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Figure 1 
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Figure 2 
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Figure 3 

 


