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Abstract
Subdural electrode arrays provide stable, less invasive electrocorticogram (ECoG) recordings
of neural signals than multichannel needle electrodes. Accurate reconstruction of intracortical
local field potentials (LFPs) from ECoG signals would provide a critical step for the
development of a less invasive, high-performance brain–machine interface; however, neural
signals from individual ECoG channels are generally coarse and have limitations in estimating
deep layer LFPs. Here, we developed a high-density, 32-channel, micro-ECoG array and
applied a sparse linear regression algorithm to reconstruct the LFPs at various depths of
primary motor cortex (M1) in a monkey performing a reach-and-grasp task. At 0.2 mm
beneath the cortical surface, the real and estimated LFPs were significantly correlated
(correlation coefficient (r); 0.66 ± 0.11), and the r at 3.2 mm was still as high as 0.55 ± 0.04.
A time-frequency analysis of the reconstructed LFP showed clear transition between resting
and movements by the monkey. These methods would be a powerful tool with wide-ranging
applicability in neuroscience studies.

(Some figures may appear in colour only in the online journal)

Introduction

Multichannel spike signals recorded from the motor cortex
provide rich information about kinematic parameters of

8 Author to whom any correspondence should be addressed.

movements, such as the trajectory and velocity of the hand
and arm, which are useful in the control of brain–machine
interfaces (BMIs) (Georgopoulos et al 1982, Moran and
Schwartz 1999, Hochberg et al 2006, Velliste et al 2008).
Although the spike signals carry rich information about neural
processing, recordings from multi-neuron spike discharges
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with intracortical microelectrodes have limitations for long-
term use in the control of BMIs (Schwartz et al 2006,
Wolpaw 2007, Nicolelis and Lebedev 2009, Hatsopoulos and
Donoghue 2009, Chase et al 2010, Andersen et al 2010).
On the other hand, intracortical local field potentials (LFPs)
are thought to include both synaptic potentials and spiking
activities of a large number of neurons around the recording
electrode (Mitzdorf 1985, Katzner et al 2011, 2009, Lindén
et al 2011), and recent studies showed that the LFPs include
substantial information about movements (Pesaran et al 2002,
Mehring et al 2003, 2004, Rickert et al 2005, Scherberger et al
2005).

The electrocorticogram (ECoG), as one of approaches to
record neural activity, might be useful for long-term use in a
BMI-application, if reasonable decoding performance could
be obtained, because ECoG electrodes do not penetrate the
cortical surface, thereby reducing the potential risk for brain
tissue damage and increasing long-term stability for recordings
in real-life (Chao et al 2010). In general, the ECoG involves the
use of subdural, low-impedance, surface electrodes, typically
spaced 1.0 cm apart, which are in common use for less
invasive monitoring in human patients with epilepsy. These
electrodes measure not only single or multiunit activities, but
also synaptic inputs to a large population of neurons in the
underlying cortical circuits and are thus considered to carry
signals that are too coarse to pick up accurate signals decoding
motor outputs. Recent studies have shown that ECoG signals
carry rich information sufficient for decoding a limited set of
discrete arm movements (Leuthardt et al 2004, Mehring et al
2004, Yanagisawa et al 2012). The potential advantages of
the ECoG recordings over other less or non-invasive recording
techniques might be that higher frequency signals are available
in ECoG than in scalp EEG, because of their closer proximity
to the surface of the brain, and that ECoG signals pick up
neuronal signals from a large population of neurons in a
wide area compared to the intracortical LFP that is recorded
by electrodes with higher impedance. Thus, ECoG signals
would be the transformed representations of intracortical
LFPs across various depths of the cortex. Understanding the
mechanism by which ECoG signals are generated is required
not only to collect rich information from the brain for BMI-
application, but also as an essential and important subject of
neuroscience studies with a wide range of applicability. The
relationship between ECoG signals and intracortical LFPs,
however, remains largely unknown.

The present study aimed to reconstruct intracortical LFPs
from ECoG signals recorded at the cortical surface. To
compare the real and reconstructed LFPs, we simultaneously
recorded subdural 32-channel ECoG signals and 64-channel
intracortical LFPs from the primary motor cortex (M1) of
a monkey performing reach-and-grasp movements. For the
present study, we developed a novel electrode assembly, which
enabled simultaneous recordings of neural signals from the
cortical surface and various depths beneath the surface. The
ECoG array is one module of the electrode assembly (Toda et al
2011b). A high-density electrode array with a regular grid was
designed to enable detection of neural signals with sufficient
information redundancy. Increasing information redundancy

in the ECoG signals by overlapping with nearby ECoG
electrodes was expected to lower the risk of poor construction
of LFPs during the calculation process. Such high-density
organization of the electrodes required smaller electrode-tips
(50 μm × 50 μm) than the ECoG arrays usually used for
clinical purposes.

Sparse estimation methods are expected to be useful
for extracting significant information from redundant and
numerous data in linear regressions for BMIs for brain
activities (Ting et al 2008, Ganesh et al 2008, Nambu
et al 2009, Toda et al 2011a). We used a sparse linear
regression (SLiR) algorithm, which has a generalization
capability for unknown datasets due to its ability to remove
irrelevant features, avoid over-fitting of the datasets, and
reduce calculation times, for the LFP construction.

Methods

All experimental procedures were performed in accordance
with the Guidelines for Proper Conduct of Animal
Experiments of the Science Council of Japan and approved
by the Committee for Animal Experiment at the National
Institutes of Natural Sciences. The data presented for all
experimental sessions were obtained from a male Japanese
monkey (Macaca fuscata; body weight of 7.4 kg).

Task

The monkey was trained to perform a single-handed reach-
and-grasp task to capture a piece of food (∼5 mm3 apple
cube) presented repeatedly in front of him by an experimenter.
Over the entire experimental session, the food pieces were
supplied around one position in a 3D workspace (figure 1(A)).
The monkey reached for and grasped the food, brought his
hand to his mouth, and ate the food. The monkey then placed
his hand at the home position again and waited for several
seconds. A piece of food was again presented in front of him
and he reacted by reaching for it again. Such arm movements
exhibited various trajectories across trials (figure 1(B)). The
start times of reaching were not fixed in our experiments. There
was no clear action epochs defined, such as reach–start–end or
hand-rest, which were triggered by a go cue. However, roughly
similar movements were repeated with about 8 s intervals
(figures 1(C) and (D)). In each trial, we defined the ‘reaching
end point’ as the spatial location where the hand reached
the most distant point from the body axis (negative peaks in
figure 1(C), middle panel). We defined ‘reaching offset’ as the
time when the monkey reached the ‘reaching end point’. An
individual ‘trial period’ was defined as the period between 4 s
before and 4 s after the ‘reaching offset’ (i.e. a total of 8 s/trial).
For the selection of optimal LFP-channel subsets, movement-
and rest-phases were defined as the periods between 1 s before
and 1 s after the reaching offset, and the period between 3 s and
1 s before the reaching offset, respectively. The signals during
these periods were used for checking whether the electrode
picked up proper signals related to movement and rest (see
below).
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Figure 1. Free reach-and-grasp task. (A) A monkey performed reach-and-grasp movements to capture food pieces (open box close to
fingertips) in a 3D free-workspace. A motion capture system recorded hand positions (measured at the wrist; red circle). (B) Superimposed
trajectories of hand positions (black lines) in the 3D space over an entire single session (red line: averaged trajectory). The x, y and z axes
are those indicated in panel (A). (C) Hand trajectories along each axis are shown for an entire single session containing 23 trials. The start
timings of reaching were not fixed. (D) Superimposed trajectories of the hand along each axis during individual trials, aligned at the time of
the ‘reaching offset’ (0 s), when the hand reached the most distant point from the body.

Recording of movement trajectories

The 3D position of the hand (measured at the wrist) across the
reaching-space of the arm around the monkey was recorded
using reflective markers tracked by an optical motion capture
system (Eagle digital system; Motion Analysis Corporation,
Santa Rosa, CA). The signals were synchronized with neural
recordings through the hardware. The system used 12 infrared

cameras operating at 200 frames/s to track the positions of
multiple reflective markers (4-mm-diameter spheroids) with
submillimeter accuracy. A total of nine markers were attached
to the right forelimb of the monkey from the shoulder to the
fingers. A kinematic model of the arm and hand was matched
with the observed marker data using the system’s software
package (EVaRT 5.0.4) before analyzing the movement data.
Sequential data of hand position in the orthogonal coordinate
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Figure 2. Electrode locations in the left primary motor cortex (M1) of the monkey and voltage traces recorded from the ECoG or
intracortical electrodes. (A) A needle probe with linearly arranged 16-channel electrodes (open circles). The probes (400 μm diameter at the
shaft) were inserted perpendicularly to the cortical surface into locations @ and the three other filled circles indicated in panel (B). (B) A
schematic diagram of the electrode contact locations in M1 (open circle, regular-grid organization of the poly ECoG array; @ and three filled
circles indicate the location of needle probes). CS, central sulcus; AS, arcuate sulcus in left hemisphere. (Inset figure) A schematic diagram
of the 3D formation of the implantable electrode array. (C) Electrode indices of the ECoG array with the locations of each of the four
electrodes shown in (B). (D) Examples of voltage traces of an ECoG signal (channel #27, top) and LFPs at various depths (0.2, 1.0, 2.0 and
3.0 mm) from the cortical surface recorded at probe @. Time zero corresponds to the ‘reaching offset’ (see (E)). (E) Averaged trajectories of
the hand reaching along each axis. The most distant point of the hand from the monkey body (see the middle panel, along the Y-axis) was
defined as ‘reaching offset’ point and set to time 0, when the hand reached the most distant point from the body. (F) Examples of averaged
time-frequency analyses of an ECoG signal (upper panel) and an LFP (lower panel). The ECoG and LFPs were recorded from the cortical
surface and at 0.2 mm from the surface, averaged over 23 trials in a single block, respectively. Time zero corresponds to ‘reaching offset’.

system (figure 1(B)) were linearly interpolated and then filtered
(low pass with cutoff edge at 10Hz) in each orthogonal
coordinate axis. In addition to the optical data, the motion
capture system also recorded the analog signals from the
external stimulator (SEN-8203; Nihon Kohden Corporation,
Tokyo, Japan) as the synchronized time-stamped data with
neural recordings. The motion data were then up-sampled to
500 samples per second to match the neural data.

Implantable 3D electrode array

We designed a novel probe for chronic cortical recordings.
This probe was an assembly constructed with two modules, a
micro-ECoG array and multi-channel needle probes (inset of
figure 2(B)).

Micro-ECoG electrode array

Multichannel electrode arrays for ECoG recordings made
of poly (chloro-para-xylylene, Parylene-C) were developed

(Toda et al 2011b). A parylene-gold-parylene sandwich
structure achieved flexibility of the electrode array. The
32-channel electrode array was arranged in regular grids
(50 μm × 50 μm with a 1 mm inter-electrode distance,
figures 2(B) and (C)). A platinum-black coating of individual
electrodes yielded an impedance of ∼10 k� in saline at 1 kHz.
The array consisted of a mesh-like structure; 5 × 5 square
holes (800 × 800 μm for each) were open in the space between
electrodes. The size of the entire 6 × 6 micro-ECoG electrode
array was 5 × 5 mm square. Four silver-wires (300 μm in
diameter; over 5 cm length) were used as reference electrodes
(see below).

Multi-channel needle probe

Sixteen-channel platinum electrodes (Unique Medical
Corporation ltd, Tokyo, Japan) were linearly mounted on a
needle probe (400 μm in diameter; 4.5 mm length from apical
to basal tip). The diameter and electrochemical impedance
of each individual electrode-tip was about 30 μm and
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400 k� in saline at 1 kHz, respectively. Inter-electrode distance
was 200 μm and the terminal electrode in the single linear
arrangement of electrodes was located 200 μm from the
proximal tip of the probe (figure 2(A)). Each needle probe
was vertically inserted through one of the holes of the micro-
ECoG electrode array (figure 2(B)). Basal tips of the needle
probes were bound to the micro-ECoG electrode array with
a silicon membrane (200 μm thick). In other words, the
deepest electrodes were located 3.2 mm from the cortical
surface when the electrode assembly was implanted into
the subdural space overlying the cerebral cortex. Because
the superstructure segment of the electrode assembly was made
of silicon membrane and flattened, the pressure from the dura
was uniformly distributed, and we could avoid extra pressure
impinging on the electrode assembly being transmitted to the
brain parenchyma after the surgery. The electrode assembly, as
an implantable probe array, enabled chronic neural recording
from intracortical locations at various depths and from the
cortical surface.

Surgery for implanting the electrode assembly

The electrode assembly was chronically implanted in the
monkey’s left primary motor cortex (M1) under anesthesia.
As premedication, dexamethasone (0.20 mg kg−1), atropine
sulfate (33 × 103 μg kg−1) and penicillin potassium
(2.5 × 103 units kg−1) were injected intramuscularly.
Anesthesia was introduced with intramuscular injections of
ketamine (1.0 mg kg−1) and xylazine (0.5 mg kg−1). During the
surgery, anesthesia was maintained with inhalation of 1–2%
isoflurane, and electrocardiogram, PCO2, and arterial O2 levels
were continuously monitored. Cerebral edema was prevented
by Mannitol (20w/v%) application through the venous line. A
craniotomy was performed above M1, and the dura was incised
and reflected. The electrode array was positioned on the rostral
bank of the central sulcus, the hand/arm area of M1. The
dura was closed using 6.0 synthetic absorbable suture threads
within surgical glue composed of gelatin after two silver-wires
as reference electrodes were inserted to the subdural space.
A piece of artificial dura mater was applied over the dura and
two reference electrodes were inserted into supradural space
between the dura and the skull. The craniotomy was closed
with a piece of dental acrylic. Head holders were attached
to the skull. Finally the skull was coated with dental acrylic.
After termination of the surgery, diclofenac sodium (25 mg;
Voltaren, Novartis Pharma K.K., Tokyo, Japan) was applied
anally for analgesia.

Neural recording

Recording sessions were initiated 11 days after the surgery.
Neural data were collected using an acquisition processor
system (Plexon, Inc., Dallas, USA). The head of the monkey
was fixed to the monkey chair during recording. The LFPs
were originally filtered on-line with 0.7 Hz high-pass and
8 kHz low-pass analog filters and sampled at 20 000 samples
per second. Both the hand position data from the motion
capture system and the data of the neural activity received
synchronized signals for post hoc matching of the time-lines

between them. A band-pass filter (1–250 Hz) was applied
off-line to the measured data before it was down-sampled to
500 samples per second to match the movement data.

Data analysis

All data analyses were performed using Matlab (The
Mathworks, Inc., Natick, MA, USA). We primarily used the
MATLAB functions ‘anovan’ and ‘anova1’ in analysis of
variance (ANOVA). Additionally, three-way mixed ANOVA
was performed in SPSS for Windows (SPSS Inc., Chicago,
Il, USA). Comparisons among groups were conducted by
applying the Tukey–Kramer test. The statistical significance
was assessed at a 5% or 1% confidence level by using the
F test. We evaluated the quality of fit from the correlation
coefficient (r) in regression analysis. All data are expressed as
the mean and standard deviation (SD) in sample data number,
unless otherwise noted.

Selection of optimal channel subsets for the LFP recordings

We made simultaneous recordings of LFPs from
64-channel intracortical electrodes and ECoGs from 32-
channel electrodes. Motion-related signals in all of the
96-channel recording signals were analyzed. Some channels
appeared to pick up movement-related signals properly,
while others did not. To select appropriate channels
related to the reaching movements for analysis and to
exclude others, we focused on modulations of the β band
(10–35 Hz) and high-γ band (80–170 Hz) components
relative to the movements. As shown in figures 2(E) and (F),
the β band component was dominant during the preparatory
period, and then ceased at the time to move. In contrast, the
high-γ component was dominant during the dynamic phase of
movement (Ohara et al 2001, Marsden et al 2000, Crone et al
1998 with human ECoG). Signals of all channels were first
examined by time-frequency analysis (see the following
section, Spectral analysis) and then those recorded signals
whose power-variances in the β and high-γ band components
were significantly modulated by arm movements were defined
as recorded from the ‘intact’ channel and used for further
analysis. The statistical differences were determined by paired
t-test, with P < 0.01 considered significant. Forty-two of the
64 intracortical electrodes exhibited significant increases in
the power-variances of the high-γ band signals between the
resting and movement phases. Among them, 41 channels
exhibited significant decreases in the power-variances of the
β band signals between the resting and movement phases. Of
the two anterior probes (two filled circles on the left side in
figure 2(B)), physiologically relevant signals deeper than
2 mm were recorded from only five channels. Signals recorded
from all of the 32 ECoG channels showed modulation of
both the β and high-γ bands. Therefore, we used the 41
intracortical LFPs (five channels from each of the rostral
two probes, 16 channels from the medial caudal probe,
and 15 channels from the @ caudal probes) and 32 ECoG
signals for analysis of movement-related signals. A one-way
ANOVA with multiple comparison test between the medial
caudal probe and the @ caudal probes revealed that the
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power-variances of the high-γ band signals of LFPs of probe
@ were significantly larger than those of the other probes
(P < 0.01), while there was no significant difference in the β

band signals (P > 0.5).

Reconstruction of the LFP from the ECoG signals

To reconstruct the intracortical LFP from the 32-channel
ECoG signals, we applied a SLiR algorithm, which has a
generalization capability for unknown datasets due to its ability
to remove irrelevant features (Nambu et al 2009, Toda et al
2011a). The reconstructed LFP, u, at time t is described as

u(t) =
N∑

i=1

M∑

j=0

wi jxi(t − j�),

where xi(t) is the ECoG signal of channel i at time t, and
� is a discrete-time step-size of 10 ms. wij is a weight
for the ith ECoG electrode at the time lag j�, a so-called
weighting coefficient. LFP signals were computed from all of
the preceding ECoG signals (N = 32) at a time point within
a temporal window corresponding to the whole of the time
lag (M = 99). The regression process was performed at each
time point, t, of the data. The interval of time points in our
neural data for the regression was 2 ms and the reconstructed
signals allowed the temporal resolution as with the real signals
(500 Hz). In general, the lags in the linear summation process
can be either negative (in the past) or positive (in the future)
with respect to the present time t. Here, we considered only
the lags of the past (−1 to 0 s).

The accuracy of the LFP reconstructed from the ECoG
was evaluated using the cross-validation scheme. The SLiR
algorithm determined the weighting coefficients from the
training dataset, and the performance of the reconstruction was
examined on the test data not used for the training to estimate
the weights (22 trials for the training data and one trial for
the test data in each session). To assess the reconstruction
performance of the SLiR with the three frequency ranges
as motion-related signals—the broadband (1–250 Hz), the
β band (10–35 Hz) and the high-γ band (80–170 Hz)—we
determined weighting coefficients from a filtered dataset for
each frequency range.

To evaluate the accuracy of the reconstructed LFP, the
correlation coefficient (r) was calculated between the real and
reconstructed LFPs and a repeated 23-fold cross-validation
was used to evaluate the accuracy. Moreover, the SLiR model
determined from all the data within the session was then
applied to another dataset (novel dataset), and the correlation
coefficients of the novel dataset were used to evaluate the
accuracy of the reconstructed LFP. This double assessment
of the generalization capability of the SLiR algorithm was
performed because possible applications of the proposed
method to decode the motor output will require learning
generalization across different experimental sessions.

The effect of sparseness for reconstructing the LFP with
SLiR was evaluated by comparison with the ordinary linear
regression method, which omitted sparse function from SLiR.
Accuracy of the reconstructed LFP using ordinary linear
regression method was calculated in a similar manner as the
SLiR mentioned above.

Spectral analysis

The time-frequency analysis enabled us to identify the
temporal dynamic features of the LFP signals. The analysis
was performed on a session using the discrete multitaper
method, using non-overlapping, sliding windows of 300 ms.
The power variability at each frequency was assessed across
the non-overlapping time windows during a given session,
using a relative quantity of variability given by the power,
p, for a channel i at each frequency, f (frequency resolution
1 Hz), in dB, defined as 10 log10{p i, f /mean(p i, f )}, because
the LFP power values across different frequencies can differ
by orders of magnitude. The spectral regions over 250 Hz were
outside of the Nyquist frequency range of data sampling.

Exponential curve-fitting to temporal structure of weight
values

To evaluate the temporal structure of weight values for
the reconstructed LFP, the profile of the magnitude was
represented as the root-mean-square (RMS) of their values,
and fitted to a single exponential curve (y = Ae−t/τ )
by the least-squares method. Parameter values, amplitude
(A) and decay constant (τ ) were provided by fitting with
a single exponential curve. Ratio of the power for the
earlier weight RMS values from −1 under 0 s (t =
(−1 0)) versus all weight RMS values from −1 to 0 s,
which included current RMS value just at 0 s (t =
(−1 0]), was calculated from the fitting exponential curve.
The power ratio of the past RMS gives a comprehensive
explanation of the temporal structure of weight values. Higher
ratio of the power indicated stronger contribution of the past
(t = (−1 0)) information than the current (t = 0) information
to reconstruction of the LFPs.

Results

ECoG signals and LFP profiles at various depths in the
motor cortex

We focus here on the LFP signals of the probe @
(figures 2(A)–(C)), because this probe included the largest
number of the ‘intact’ LFP channels as judged by the power-
variances of high-γ band signals at the deepest position
among the four probes (see the methods section). Results
of simultaneous recordings from representative channels of
ECoG and LFPs at various depths during a single trial of
the arm movement are exemplified in figure 2(D). The results
indicated that the ECoG signal recorded close to the surface
point of the needle probe was similar to the LFPs recorded just
below (0.2 mm) the ECoG electrode (figure 2(F)). However, as
the depth increased, the LFPs appeared to become increasingly
different from the ECoG signals recorded above them.

Figure 2(F) shows the averaged spectrograms of
movement-related neural activity from ECoG #27 (upper
panel) and the LFP probe @ at a depth of 0.2 mm (lower
panel). While the monkey kept his hand at the home position,
the β band component (10–35 Hz) was high and then exhibited
a negative deflection at −2 to −1 s. Movements typically
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Figure 3. Correlations between the voltage profile of LFPs and the ECoG signals recorded just above them in different frequency ranges.
LFPs were recorded from the needle probe @ (see figures 2(B) and (C)). (A) Correlation coefficients (r) between the LFPs at different
depths of the probe @ and the #27 ECoG signal (one of the closest channels to the needle probe) at different frequency ranges: broadband
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started 1.5 s before the reaching offset, and were associated
with decreases in lower-frequency components and increases
in higher frequency components, including the high-γ (80–
170 Hz). The increase in the high-frequency components
and decrease in the low-frequency components occurred for
the duration of the arm-movement, and were subsequently
followed by an increase in the low-frequency component at
∼3 s, when the monkey put his hand back at the home position.

Figure 3(A) shows average correlation coefficients
between LFPs of the probe @ and the signal from the #27

ECoG channel at different frequency-band components as a
function of the LFP channel-depth. At 0.2 mm, the β band
signal exhibited a relatively high correlation with the ECoG
signals recorded in the nearby proximity (probe @ with ECoG
channel #27; r = 0.73 ± 0.03 for 23 trials in a single session).
In contrast, the correlation coefficients of the high-γ band
signals at the same recording sites were very low (r = 0.27 ±
0.03). As the depth increased, correlations of the ECoG signals
with the LFP signals from probe @ decreased, especially in
the high frequency component. At 3.2 mm below the cortical
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surface, the correlation coefficient of the β band component
was still 0.33 ± 0.08, while that of the high-γ component
was nearly 0 below a depth of 0.8 mm. Similar results were
obtained with other proximal ECoG channels, including #26,
#20 and #21 (data not shown). These were low correlations
even between the closest pairs of ECoG channels and LFPs.

Spatial profiles of correlation coefficients between a
LFP signal and ECoG on the cortical surface were non-
uniform (figures 3(B)–(G)). The correlation coefficients
of the β band component were higher than those of
the high-γ component; the ECoG signals at the high-γ
frequency range were only poorly correlated with LFPs
at all positions (figures 3(C), (D), (F) and (G)). The β-
frequency component of the ECoG signals recorded from the
lateral area of the array showed a positive correlation with
superficial LFPs (figure 3(C)). We analyzed the correlation
coefficients with a three-way mixed ANOVA (the three
frequency bands × depths of LFP channels × horizontal
distances between the LFP probe and ECoG channels) to
examine possible interactions among these main effects.
Although there were significant two-way interactions
(frequency × depth: εGG = 0.793, F(14, 21 840) =
37.21, P < 0.001; εGG = 0.793, frequency × distance:
F(14, 21 840) = 75.06, P < 0.001; distance × depth: F(98,
10 920) = 2.40, P < 0.001), there was no significant three-way
interaction (F(196, 21 840) = 0.13, P = 1). Thus, the spatial
distribution of correlations between the ECoG (broadband (1–
250 Hz) and β band) and LFP signals was non-uniform. The
high-γ band component of the ECoG signals exhibited a weak
or virtually no correlation with the LFPs for all recording sites.

Reconstruction of LFPs with SLiR

To reconstruct the intracortical LFPs from the 32 ECoG
signals, we applied a SLiR algorithm. In this reconstruction
process, we tested both spatial and spatiotemporal weighted
summations (table 1). The former used the ECoG signals
without introducing a time lag, and the latter used the ECoG
signals in the time window (−1 to 0 s). Then, a three-
way ANOVA (frequency bands, depths of LFP channels, and
type of weighted summation) revealed a significant three-
way interaction (frequency × depth × summation: F(30,
124 380) = 107.7, P < 0.01) and all possible three-way
interactions (frequency × depth: F(30, 124 445) = 287.1,
P < 0.01; frequency × summation: F(2, 124 473) = 1015.4,
P < 0.01; summation × depth: F(15, 124 460) = 345.4, P <

0.01). Furthermore, the spatiotemporal weighted summations
provided better reconstructions across the 41 LFPs than the
spatial weighted summations (P < 0.01). Multiple comparison
tests identified differences among the broadband, β band, and
high-γ component signals in each of the spatiotemporal and
spatial weighted summations (P < 0.01). Figure 4 shows
the results of reconstructing LFPs recorded at various depths
of probe @ (figures 2(B) and (C)). The SLiR resulted in a
fairly good reconstruction of the intracortical LFPs from the
32-channel ECoG signals, with a correlation coefficient of
0.7 at a depth of 0.2 mm when the spatiotemporal weighted
summations were used. Surprisingly, when we focused on the

LFP signals of probe @, the reduction in the reconstruction
accuracy was moderate even though the depth increased (r =
0.59 at a depth of 3.2 mm; figure 4(B)). When we used just
the spatial weighted summation, the reconstruction accuracy
was significantly lower (P < 0.01). The correlation coefficient
was 0.72 for the depth 0.2 mm and 0.49 for the depth 3.2 mm
(blue traces in figures 4(A) and (B)).

When different frequency components were analyzed
separately, both the β band and the high-γ components of
the LFP signals were fairy well reconstructed from the ECoG
signals (figures 4(C)–(E)). The highest correlation coefficients
were at the most superficial channel (at 0.2 mm, r = 0.77 ±
0.02, 0.79 ± 0.02 and 0.41 ± 0.02 for the broadband range,
β band and high-γ band components, respectively). The values
did not decline much at the deeper electrodes in the broadband
and β band range (at 3.2 mm, r = 0.56 ± 0.03, 0.57 ± 0.04
and 0.15 ± 0.03 for the broadband range, β band and high-γ
band components, respectively). As shown in figures 4(C)–(E),
the spatiotemporal weighted summation obtained by the SLiR
with multiple ECoG signals contributed to a higher quality of
reconstruction accuracy on LFP profiles at all depths along the
probe for the broadband, β band and high-γ band components.

Weighting coefficients for the LFP reconstruction

With the spatiotemporal weighted summation, the LFP signals
at various depths in the cortex were reconstructed from the
32-channel ECoG signals obtained in the 1 s time window
(figures 5(A) and (B)). Through the calculation process to
reconstruct the LFPs with the SLiR algorithm, ineffective
ECoG channels were identified as null-weights over the entire
time window. Figures 5(A) and (B) show the weights of
the signals from the individual ECoG channels; many of the
channels were judged to be ineffective for reconstructing LFPs
during the calculation process. ECoG channels close to the
LFP probe (close to the top of figures 5(A) and (B)) tended
to be judged as effective. In figures 5(E)–(G), remote ECoG
channels located more than 2.5 mm away from probe @
are indicated in blue. Figure 5(E) shows that mainly ECoG
channels close to probe @ were used for reconstructing
LFP signals at a depth of 0.2 mm. In contrast, as shown
in figure 5(F), not only the close channels, but also remote
channels were effective for reconstructing LFP signals at
3.2 mm. To quantify how much the remote ECoG channels
contributed to reconstructing the LFPs at various depths, the
data were analyzed by one-way ANOVA followed by multiple
comparison tests. There were significant differences in the
numbers of effective ECoG channels (among all the channels
and among only the remote channels) required to successfully
reconstruct LFPs at different depths (P < 0.01, ANOVA);
the number of effective-ECoG channels used at 3.2 mm was
significantly larger than that at 0.2 mm (P < 0.01) from
among all channels and from among only the remote channels
(figure 5(G)). Thus, reconstructions of deeper LFPs tended to
require a larger number of the ECoG channels.

To evaluate the temporal structure of weight values, the
profile of their magnitudes was fitted by a single exponential
curve (figures 5(C) and (D)). The exponential curve-fitting
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Table 1. Summary of reconstruction accuracies in the 41 LFP channels.

Depth (mm) (number of
intact channels) 0.2 (3) 0.4 (4) 0.6 (3) 0.8 (3) 1.0 (4) 1.2 (2) 1.4 (3) 1.6 (2) 1.8 (2) 2.0 (2) 2.2 (3) 2.4 (2) 2.6 (2) 2.8 (2) 3.0 (2) 3.2 (2) All (41)

Spatiotemporal Broadband 0.66 ± 0.11 0.60 ± 0.05 0.68 ± 0.05 0.58 ± 0.04 0.60 ± 0.06 0.56 ± 0.06 0.52 ± 0.05 0.54 ± 0.04 0.49 ± 0.08 0.50 ± 0.09 0.53 ± 0.05 0.44 ± 0.08 0.56 ± 0.04 0.56 ± 0.04 0.45 ± 0.09 0.55 ± 0.04 0.56 ± 0.09
weighted β band 0.76 ± 0.04 0.70 ± 0.04 0.72 ± 0.05 0.64 ± 0.05 0.62 ± 0.07 0.60 ± 0.06 0.59 ± 0.07 0.57 ± 0.04 0.53 ± 0.05 0.55 ± 0.05 0.54 ± 0.06 0.47 ± 0.11 0.57 ± 0.05 0.56 ± 0.05 0.48 ± 0.09 0.55 ± 0.04 0.60 ± 0.10
summation High-γ 0.32 ± 0.07 0.24 ± 0.04 0.25 ± 0.03 0.22 ± 0.08 0.18 ± 0.05 0.15 ± 0.04 0.17 ± 0.06 0.13 ± 0.02 0.13 ± 0.04 0.12 ± 0.03 0.12 ± 0.04 0.15 ± 0.02 0.15 ± 0.04 0.15 ± 0.04 0.11 ± 0.04 0.14 ± 0.03 0.18 ± 0.07

band
Spatial Broadband 0.58 ± 0.14 0.54 ± 0.06 0.61 ± 0.06 0.50 ± 0.04 0.51 ± 0.06 0.46 ± 0.07 0.39 ± 0.06 0.42 ± 0.04 0.37 ± 0.08 0.37 ± 0.07 0.41 ± 0.05 0.30 ± 0.09 0.43 ± 0.04 0.43 ± 0.04 0.33 ± 0.07 0.42 ± 0.04 0.46 ± 0.11
weighted β band 0.73 ± 0.04 0.66 ± 0.04 0.67 ± 0.05 0.57 ± 0.05 0.53 ± 0.07 0.50 ± 0.07 0.47 ± 0.06 0.44 ± 0.05 0.41 ± 0.05 0.42 ± 0.06 0.40 ± 0.07 0.36 ± 0.11 0.43 ± 0.06 0.43 ± 0.07 0.36 ± 0.10 0.41 ± 0.07 0.51 ± 0.13
summation High-γ 0.25 ± 0.05 0.18 ± 0.04 0.18 ± 0.03 0.13 ± 0.05 0.12 ± 0.04 0.09 ± 0.03 0.10 ± 0.04 0.08 ± 0.02 0.08 ± 0.03 0.08 ± 0.02 0.08 ± 0.03 0.06 ± 0.05 0.09 ± 0.03 0.09 ± 0.03 0.07 ± 0.03 0.09 ± 0.02 0.12 ± 0.06

band

Values are the mean correlation coefficients between real and reconstructed LFP across the 23-fold cross-validation trials ( ± SD).
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Figure 4. Performance of the LFPs reconstructed from the multi-channel ECoG signals using the SLiR. (A and B) Examples of the
reconstructed LFPs recorded at the depths 0.2 mm (A) and 3.2 mm (B). Broadband (1–250 Hz) LFP signals were reconstructed by weighted
summations of the 32 ECoG signals. Correlation coefficients between the real (black) and reconstructed voltage profiles using
spatiotemporal weighted summations (red) were lower than those reconstructed using spatial-weighted summations (blue). (C–E) Depth
profiles of the performances for reconstruction. Correlation coefficients between the real and reconstructed LFPs at various frequency
ranges: broadband (C), β band (D) and high-γ band (E) in probe @ were averaged over 23-fold cross-validation trials (error bars indicate
SD). There are significant differences in the correlation coefficients obtained by predictions with spatiotemporal (black lines) and spatial
(tone lines) weighted summations at each depth and for all frequency ranges.
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Figure 5. Spatiotemporal weighted summations for reconstructing LFPs with the SLiR. (A and B) Temporal profiles of regression weights
for ECoG signals at each of the 32 channels at depths of 0.2 mm (A) and 3.2 mm (B). (Left panels) Amplitude of the LFP at time zero was
reconstructed by the 32 weighted ECoG signals during the preceding 1 s. The order of the channel index of ECoG signals is associated with
their distances to needle probe @ (the closest ones are indicated at the top, see figure 2(C)). Multiple lines at each trace indicate variations in
the weighted summation with 23-fold cross-validation. The vertical scale bar indicates 1.0 arbitrary unit (a.u.) for calculation of the real LFP
signal scale. (Right panels) The average selection count (SC) of effective channels determined by the SLiR for reconstructing LFPs across
the 23-fold cross-validation trials is defined as the SC ratio and plotted on the horizontal axis for each ECoG channel. Ineffective ECoG
channels were assigned a null regression weight in the entire time window. An SC ratio of 1.0 indicates that the corresponding ECoG
channel was used for reconstructing LFPs in all of the 23 cross-validation trials. Error bars indicate SD. (C and D) Time courses of weight
values. Root mean squares (RMS) of the weight values across the 23 cross-validation trials are indicated along the vertical axis. Red lines
correspond to fitting with exponential functions (y = Ae−t/τ ). Parameter values of the functions, amplitude (A) and the decay constant (τ ),
were estimated from the time courses of weight values in each cross-validation trial. (E and F) Distributions of effective ECoG channels.
The results of the right panels in (A) and (B) were replotted two-dimensionally to better illustrate the relationship between the locations of
effective ECoG channels and that of probe @. The SC ratios are grayscale-coded corresponding to the ratios in (A) and (B). Channel
numbers with blue fonts indicate remote ECoG channels. (G) The number of effective ECoG channels for reconstructing LFPs at different
depths of probe @, taking into consideration all channels (black line) and only remote channels (blue line) in the ECoG array. (H and I)
Values of parameters A and τ for reconstructing the LFPs at different depths. (J) Contribution of past information for reconstructing LFPs.
The ratio of the power for the earlier RMS values versus all RMS values is plotted for reconstructing LFPs at individual depths. (Inset panel)
Ratio of the power for earlier RMS values (black area; the weighted summations from −1 under 0 s) and current RMS value (gray area;
weight amplitude just at 0 s). Error bars indicate SD (n = 23).
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demonstrated that more recent ECoG signals tended to
contribute more to the reconstruction of LFP signals (depth
0.2 mm, A = 0.15 ± 0.05, τ = 0.21 ± 0.01, MSE =
0.06 ± 0.001; depth 3.2 mm, A = 0.23 ± 0.05, τ = 0.51 ±
0.02, MSE = 0.08 ± 0.02). There were significant differences
in both the amplitude (A) and the decay constant (τ ) of the
exponentially fitted curves (P < 0.01, ANOVA) between the
LFP records at 0.2 mm and those at 3.2 mm. Both of these
parameters exhibited an increasing trend along with the depth
of the reconstructed LFPs (figures 5(H) and (I)). The past RMS
powers also increased significantly in proportion to the depths
from the cortical surface (figure 5(J)). This indicated that older
information from the ECoG signals tended to have a larger
contribution to reconstructions of deeper layer LFPs. Mean
square error of the exponentially fitted curve also increased
with the depth of the reconstructed LFPs (∼0.06–0.08).

Reconstruction of brain activity during arm movements

Throughout the reconstruction process, the question arose
as to whether the LFP signals reconstructed with the SLiR
carried meaningful information related to the arm movements
of the monkey. To address this question directly, the weighted
summations obtained from the training dataset were then
applied to novel datasets that were obtained through a session
of sequential reach-and-grasp trials as well as from training and
test datasets that were not used for calculating the weighted
summations. In the novel data, the monkey’s arm movements
and the time at which to start reaching were also not fixed
in our experiments (figures 6(A) and (B)). A time-frequency
analysis revealed that the reconstructed LFP signals from
the weighted summations represent the neural activity that
is associated with the monkey’s arm movements in the novel
datasets. Similar to the time-frequency analysis data of the
real LFP recordings at 0.2 mm (figure 6(C)), the high-γ
band activities and β band activities appeared alternately in
the reconstructed LFP during the action-phases for reaching

and during rest-phases when the hand was kept at the home
position, respectively (figure 6(D)). Similar alternations of β

and high-γ band signals relative to arm movements were also
represented in the LFPs reconstructed from the electrodes
at 3.2 mm (figures 6(E) and (F)). Correlation coefficients
between the real and reconstructed time-frequency analyses
(figures 6(G) and (H)) revealed that the linear regression
method accurately reconstructed the LFP signal components
with frequencies lower than 150 Hz. In particular, the power
of reconstructed LFP at 15–30 Hz (belonging to β band)
and 110–140 Hz (belonging to high-γ band) appeared to
accurately represent the real LFP signals. It raises possibility
that the frequency components within the β and high-γ ranges
of the reconstructed LFPs were useful for identifying the
arm-movement phase in our experiments. The time-frequency
analysis appeared to clearly discriminate the individual phases
of the arm movements. Moreover, the accuracy of the SLiR was
significantly higher than that of an ordinary linear regression
method (P < 0.01, paired t-test), suggesting that the SLiR
algorithm might be useful for a real-time BMI application.

Discussion

In this study, we found that the waveforms of single ECoG
signals on the surface of the cerebral cortex are similar to
the intracortical LFPs close to the surface, especially for
the lower frequency component (β band); however, they
did not resemble the deeper layer LFPs. The correlation
coefficient of the higher frequency component (high-γ band)
declined sharply as the depth increased. However, multi-
channel micro-ECoG array allowed us to reconstruct LFPs
with high accuracy even at a depth of 3.2 mm by applying
the SLiR algorithm. Estimating intracortical activity from
surface recordings is an important subject in contemporary
neuroscience studies (Whittingstall and Logothetis 2009).
Detection of high-γ band component with subdural ECoG
array is important for estimation of intracortical neural activity
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Figure 6. Time-frequency analysis of reconstructed LFP signals in novel sessions. (A and B) Hand trajectories along the Y (A) and Z (B)
axes in an entire single session consisting of 23 trials. (C and E) Time-frequency analyses of real LFP signals at depths of 0.2 mm and
3.2 mm from the cortical surface, respectively. (D and F) Time-frequency analyses of reconstructed LFP signals at depths 0.2 mm and
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23 trials was used. Correlation coefficients between the real LFP signal and reconstructed LFP signal at 0.2 mm and 3.2 mm were 0.71 and
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from brain surfaces, because the high-γ band component
of the LFP reflects the spiking activity (Ray et al 2008).
Although there is no correlation between ECoG and LFPs
under 2 mm depth in these high-γ band signals, the frequency
signals could be reconstructed with slight correlation by
SLiR. Our reconstruction of the deep layer neuronal signal
from the ECoG signals surely presents a novel way of less
invasively estimating the output from the deeper cortical
layers. Moreover, analysis of the weights for reconstruction of
LFP reveal the spatiotemporal contribution of ECoG signals
to reconstructions of LFPs according to their depths. Our
results provide not only a new methodology to be used for
less invasive BMIs, but also information offering insights into
the relationship between LFP and ECoG signals.

Development of multi-channel electrode arrays from
Parylene-C for ECoG recordings

Recently, multi-channel ECoG electrodes were introduced to
record the neural activity from wide cortical areas (Rubehn

et al 2009). Performance of the electrode array was studied
relative to inter-electrode distances; the optimal inter-electrode
spacing of subdual electrodes was 0.7 mm in awake rats
and ∼1.7 mm in the human model (Slutzky et al 2010).
Use of the same type of ECoG array that was customized
for the current experiments has already been reported in
rats (Toda et al 2011b), where its ability to decode visually
evoked activity in the occipital cortex was examined. However,
an appropriate algorithm to use the micro-ECoG array to
estimate the intracortical activity needed to be developed.
As a relatively simple experimental model system, we first
tested the ECoG array in electrophysiological experiments to
characterize its performance in detecting event-related signals
in the barrel cortex of urethane-anesthetized rats (Sakatani et al
unpublished observation). In the present study, we used a
similar method to estimate intracortical activity in a more
complex situation, the activity of M1 in an awake behaving
monkey.

13



J. Neural Eng. 9 (2012) 036006 H Watanabe et al

The thin, flexible structure of the ECoG array allowed
us to detected motor-related cortical signals for six months
after the surgery (data not shown). During the implantation
surgery, we observed that the ECoG arrays were well fitted
to the surface of the brain. The thin structure of the ECoG
array (20 μm thick) also protected the brain parenchyma from
excessive tension of the dura after the suture.

The high density ECoG electrode array required a small
electrode-tip. Higher impedance electrodes measure signals
originating from smaller areas around the tip of the electrode.
For detecting signals with rich information from the ECoG, a
higher impedance electrode is not suitable, and the platinum-
black coating on the electrode-tip provided low electronic
impedance. The platinum coating was made by evaporating the
substrate of the ECoG electrode and made the array resistant
to breaking during its implantation. The platinum coating was
not broken up to six months after implantation surgery in the
case of another test subject.

Sparse linear regression

We applied the sparse linear regression (SLiR) to
simultaneously recorded, multichannel measures of neural
activity from the brain. The SLiR enabled reconstructions
of finger-movements, finger-forces and arm-EMG patterns
from near-infrared spectroscopy signals (Nambu et al 2009),
cortical current dipoles (Toda et al 2011a), blood oxygen level-
dependent signals (Ganesh et al 2008) and neural firing (Ting
et al 2008). The spiking activity of a population of neurons
was modeled by LFPs/EEG in the monkey visual cortex using
a general linear regression (Whittingstall et al 2009, and its
supplemental figure 4). In this study, we used the SLiR for the
first time to estimate intracortical LFPs from ECoG signals
during arm movements of an awake behaving monkey and
confirmed the accuracy of the estimations by comparing the
time-frequency patterns of the reconstructed data with those of
the real LFP data in the M1. Our results suggested that when
information from multiple ECoG channels was combined,
estimations of LFPs, even in deeper cortical layers, were much
improved.

In this experiment, we used a time lag of 0–1 s to
calculate the weighted summations. Our data showed that
including the past information from the ECoG recordings as a
‘spatiotemporal weighted summation’ improved the accuracy
of reconstruction compared to using the ECoG records of the
same moment as a ‘spatial weighting’ for the broad band,
the β band and the high-γ band components (figures 4(C)–
(E)). The degree of improvement seemed to be larger for
the deeper layer LFPs. This result indicates that the earlier
ECoG records contain useful information for reconstructing
the deeper layer LFPs, which suggests that activities in the
superficial layers have a causal relationship to the future
activities in the deeper layer. If the sensory feedback signals
caused by movements generated by the activity of neurons in
layer V are included in the signals recorded in the superficial
layers of the M1, including subsequent signals (i.e. a time-
lag to the future) might also contribute to improving the
accuracy of reconstruction; however, we did not test this

in this study, because the subsequent ECoG signal cannot
be used in real-time control of a BMI. Linear regression
approaches using a machine learning algorithm such as the
SLiR do not necessarily reveal direct causality among neuronal
signals in the physiological context. However, the current
results indicated that including the earlier ECoG information
improves the accuracy of reconstructing the subsequent LFP
in the deeper layers, and such results are suggestive of neural
representation in the brain. In addition, it was found in the
present study that the distribution of ECoG channels that
remained effective for reconstructing the LFP following the
selection process of the SLiR, was dependent on their distance
from the LFP probe. Reconstruction of deeper layer LFPs
required ECoG signals from a wider extent compared to those
for the more superficial LFPs (figure 5(G)). This tendency
seems to reflect the property of signal propagation in the
cortical tissue. Correlated activity along the apical dendrites
of large pyramidal neurons induces a major dipole orientated
perpendicularly to the cortical surface. The ECoG signal
reflects the assembly of these dipoles generated over the
area of several hundreds of micrometers in diameter under
each ECoG electrode. However, it is not yet clear how the
ECoG signal represents the intracortical neuronal activity and
its propagation via synapses. The present findings showed
that earlier information in the ECoG signals contributes to
reconstruction of deeper layer LFPs (figure 5(J)), suggesting
that the LFP signal involves not only physical propagation
of electrical signals recorded by the ECoG, but also reflects
signals generated through neuronal dynamics in the local
circuits. Our obvious next step is to perform a current–source
density analysis (Pitts 1952, Freeman and Nicholson 1975,
Mitzdorf 1985) and partial coherence analysis (Kocsis et al
1999), both of which will surely give insight into the neuronal
dynamics of cortical local circuits and behavioral outcome
from the parameters estimated in this way. If we could properly
perform these analyses based on the reconstructed LFPs, it is
expected not only to enable us to accurate decoding of motor
output from the motor cortex, but also to give us deeper insights
into the relation between the dynamics of cell assembly and
brain functions.

Frequency analysis of recorded neural activities and their
application for BMI control

The present study demonstrated the possibility of
reconstructing LFP components of various frequency ranges.
It is well known that the δ band component reflects the period
of deep sleep (e.g. Steriade 2006). Recently, δ-range activities
were shown to be informative of input stimulus (Montemurro
et al 2008), linked to attentional selection (Lakatos et al
2008), and related to arm-movements of monkeys (Bansal
et al 2011) and humans (Ball et al 2009). From a view
of studies about hand and finger movements (Zanos et al
2008, Pistohl et al 2012), low frequency components recoded
from ECoG array would have important implications for
preshaping during reach-and-grasping movements. Moreover,
the neuronal signals in the δ-range were also useful for
moving a cursor with a prosthetic device, using the chin in
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humans (Saleh et al 2010). In the present study, the power
of the low-frequency LFPs, such as the δ band component,
increased remarkably both in the deeper layer LFP and the
cortical surface ECoG recordings at the onset and offset of
arm movements (figure 2(F)). The increase in the δ band
component was observed at the movement onset, between
the disappearance of the β band signal and the appearance
of the high-γ band activity. In this paper we did not focus on
the δ band signals (1–4 Hz). However, it actually increased
around the movement initiation, approximately 1.5 s before
the timing of reaching offset (figure 2(F)). Moreover, as shown
in figure 6, the δ band signals were reconstructed with high
accuracy (at 0.2 mm, rδ = 0.82 ± 0.005; at 3.2 mm, rδ =
0.57 ± 0.007 between reconstructed and real LFPs across all
cross-validation trials). For future studies, detection of such an
increase in the δ band signal may be useful for decoding the
motor output from the ECoG signal.

The LFPs reconstructed in this experiment seem to carry
information about individual phases of arm movements, such
as rest, reach and hand-withdrawal, by detecting the shift in
activation of various frequency components. These results
suggest the possibility of estimating the kinematics of arm
movements with high accuracy not only with ECoG signals
but also with the ‘estimated’ LFP signals. To achieve high
decoding accuracy by the algorithm based on the weighted
summation of multichannel ECoG signals learned with
previously acquired neuronal datasets from another subject
is our future goal.
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