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ABSTRACT  

Abstractions are critical for flexible behaviours and efficient learning. However, how the brain 

forgoes the sensory dimension to forge abstract entities remains elusive. Here, in two fMRI 
experiments, we demonstrate a mechanism of abstraction built upon valuation of task-relevant 

sensory features. Human volunteers learned hidden association rules between visual features. 
Computational modelling of participants’ choice data with mixture-of-experts reinforcement 

learning algorithms revealed that, with learning, emerging high-value abstract representations 
increasingly guided behaviour. Moreover, the brain area encoding value signals - the 

ventromedial prefrontal cortex - also prioritized and selected latent task elements, both locally 

and through its connection to visual cortex. In a second experiment, we used multivoxel neural 
reinforcement to show how reward-tagging the neural sensory representation of a task’s 

feature evoked abstraction-based decisions. Our findings redefine the logic of valuation as a 
goal-dependent, key factor in constructing the abstract representations that govern intelligent 

behaviour. 

Keywords: abstraction, sensory features, reinforcement learning, vmPFC, hippocampus, fMRI, 

neural reinforcement, multivoxel neurofeedback  
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Introduction 

“All art is an abstraction to some degree.” Henry Moore  

Art is one of the best examples of abstraction, a unique ability of the human mind to organise 

information beyond the immediate sensory reality. Abstraction is by no means restricted to 
high level cognitive spheres such as art production: it envelops every aspect of our interaction 

with the environment. Imagine this simple scenario: you are hiking in a park, and you need to 
cross a stream. Albeit deceptively simple, this scenario requires the processing of a myriad of 

visual (and auditory, etc.) features. For an agent that operates directly on each feature in this 
complex sensory space, any meaningful behavioural trajectory (such as crossing a stream) 

will quickly involve a prohibitive number of computations. If, on the other hand, the agent is 
able to first ‘abstract’ the current state to a lower dimensional manifold, representing only 

relevant features, behaviour would be more flexible and efficient 1–3. Abstractions can be 
thought of as simplified maps carved from higher dimensional space in which physical, spatial, 

temporal details have been removed or transformed, in order to focus on a subset of 

interconnected features, i.e. a higher-order concept, category or schema 4,5.  

To investigate how abstraction is instantiated in the brain and how it shapes choice, we have 
focused here on learning processes. By definition, to learn efficiently an agent has to extract 

some latent structure or rule rather than computing single associations ad infinitum. More 
importantly, learning implies abstraction is tied to explicit, measurable behavioural goals. 

Reinforcement learning (RL) provides a general framework to explain learning by experience 
6. However, in complex and/or multidimensional problems, classical RL (operating directly at 

the sensory level) becomes quickly inefficient 6–8. This problem can be alleviated by the 

interaction between RL and attention, so as to select behaviourally relevant dimensions 9–11. 
In general, the ability to act upon subspaces, concepts or abstract representations has been 

proposed as an effective solution to overcome the computational bottlenecks arising from 
sensory level operations 1,2,12–14. 

How are abstract representations constructed in the human brain during learning? For flexible 

deployment, abstraction should depend on task goals. From a psychological or 

neuroeconomic point of view, task goals generally determine what is valuable 15–17, such as 
that if I need to light a fire, matches are much more valuable than a glass of water. Hence, we 

hypothesized that valuation processes may be directly related to abstraction.  
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Value representations have traditionally been linked with neuronal activity in the ventromedial 

prefrontal cortex (vmPFC) in the context of economic choices 16,18; more recently vmPFC role 
has been extended to the computation of confidence 19–21. While this line of work has been 

extremely fruitful, it has mostly focused on the hedonic and rewarding aspect of value while 
neglecting its broader functional role. At the same time, in the field of memory, a large corpus 

of work has shown that vmPFC is crucial for the formation of schemas or conceptual 
knowledge 4,5,22–24, as well as generalizations 25. Considering its connectivity pattern 26, the 

vmPFC is well suited to play a pivotal role in the circuit that involves the hippocampal formation 
(HPC) and orbitofrontal cortex (OFC), dedicated to extracting latent task information and 

regularities important for navigating behavioural goals 3,27–30. The vmPFC also collates goal-
relevant information from elsewhere in the brain 31. Thus, the aim of this study is twofold: (1) 

test whether abstraction naturally emerges during the course of learning, and (2) investigate 

how the brain, and specifically the vmPFC, uses valuation upon low-level sensory features to 
inform an abstract process or strategy, and construct task-states. 

To achieve this, we leveraged a task in which human participants repeatedly learned novel 

association rules, while their brain activity was recorded with fMRI. Reinforcement learning 
(RL) and mixture-of-experts modelling 32,33 allowed us to track participants’ valuation 

processes and to dissociate their learning strategies (both at the behavioural and neural 

levels) based on the degree of abstraction. In a second experiment, we studied the causal role 
of value in promoting the formation of abstraction for rapid learning. To anticipate our results, 

we show that vmPFC and its connection to visual cortex construct abstract representations 
through a goal-dependent valuation process, that is implemented as top-down control of 

sensory cortices.  
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Results 

Experimental design 

The main objective in developing the learning task was to present a problem that could be 

solved according to different strategies, based on the task-space dimensionality they sampled: 
a simple, slower one akin to pattern recognition, and a more sophisticated one that required 

abstraction to use the underlying structure. Participants (N = 33) learned the fruit preference 
of pacman-like characters formed by the combination of 3 visual features (colour, mouth 

direction and stripes orientation, Figure 1A-B). The preference was governed by the 
combination of two features, selected randomly by our computer program on each block 

(Figure 1A-B). Participants learned the blocks’ rules: essentially, the hidden associations 
between features and fruits (although they were instructed that one feature was irrelevant, they 

did not know which). A block ended when a sequence of 8-12 (randomly set by our computer 
program) correct choices was detected. At the end of the session, a final reward was delivered, 

commensurate to one’s performance (see Methods).  

 

Behavioural accounts of learning 

We verified that participants learned the task sensibly. Within blocks, performance was higher 
than chance already from the second trial (Figure 1C, one-sample t-test against mean of 0.5, 

trial 2: t32 = 4.13, P(FDR) < 10-3, trial 3: t32 = 2.47, P(FDR) = 0.014, all trials t>3: P(FDR) < 10-3). 
Considering the whole experimental session, learning speed significantly increased across 

blocks (Figure 1D, N = 11 time points, Pearson’s r = 0.80, p = 0.003). These results not only 
confirmed participants learned the task rule in each block, but also that their strategies for 

finding the appropriate rule became more efficient over time. When asked at the end of the 
session their degree of confidence in having performed the task well, participants’ self-reports 

correlated with their learning speed (N = 31 [2 missing data], robust regression slope = 0.024, 

t29 = 3.27, p = 0.003, Figure 1E). We also confirmed that the block type (defined by the relevant 
features, e.g. colour-orientation) or the association type (e.g. symmetric 2x2) did not 

systematically affect the learning speed (Figure S1). 
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Figure 1: Learning task and behavioural results. A, Task: participants learned the fruit preference of pacman-
like characters, which changed on each block. B, Examples of the two types of fruit associations. The 4 
combinations arising from 2 features with 2 levels were divided into symmetric (2x2) and asymmetric (3x1) cases. 
f1-3: features 1 to 3; fruit:rule refers to the fruit as being the association rule. C, Trial-by-trial ratio correct as a 
measure of within-block learning. Dots represent the mean across participants, while the error bars the SEM, and 
the shaded area the 95% CI (N = 33). Participant-level ratio correct was computed for each trial across all completed 
blocks. D, Correlation between learning speed and time, across participants. The learning speed was computed as 
the inverse of the max-normalized number of trials taken to complete a block. The thin grey lines represent individual 
participants least square fits, while the black line represents the group-average fit. The correlation was computed 
with group-averaged data points (N = 11). E, correlation between confidence judgements and learning speed, 
across participants. Each dot represents data from one participant, and the thick line the regression fit (N = 31 [2 
missing data]), ** p<0.01 

 

Mixture-of-experts reinforcement learning for the discovery of abstract representations 

We first sought to establish how participants’ behaviour was guided by the selection of 
accurate RL representations. To this end, we built upon a classic RL algorithm (Q-learning) 34 

in which state-action value functions (beliefs), used to make predictions on future rewards, are 
updated according to a trial’s task state and action’s outcome. In this study, task states were 

defined by the number of features combinations that the agent may track; hence, we devised 

algorithms that differed in their state-space dimensionality. The first algorithm, called Feature 
RL, implements an agent that explicitly tracks all combinations of 3 features, 23 = 8 states 

(Figure 2A, top left). This algorithm is anchored at a low feature level because each 
combination of the 3 features results in a unique fingerprint - one simply learns direct pairings 

between visual patterns and fruits (actions). Conversely, a second algorithm, called Abstract 
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RL, implements an agent that learns to use a more compact or abstract state representation 

in which only two features are tracked. These compressed representations reduce the 
explored state-space by half, 22 = 4 states (Figure 2A, top right). Importantly, in this task 

environment there can be as many as 3 Abstract RL in parallel, one for each combination of 
two features. 

The above four RL algorithms were combined in a mixture-of-experts architecture 32,33,35: that 

is, a mixture of Feature RL and three different options of Abstract RL (Figure 2B, see Methods). 
The key intuition behind this approach is that, at the beginning of a new block, the agent does 

not know which abstract representation is correct (i.e. which features are relevant). Thus, the 

agent should learn which representations (and associated actions) are most predictive of 
reward, and thereby exploit the best representation for action selection. While all experts 

participated in action selection, their learning uncertainty (RPE: reward prediction error) 
determined their strength in doing so 33,36,37. This architecture allowed us to track the value 

function of each RL expert separately, while using a unique, global action on each trial.  

Estimated hyperparameters were then used to compute the value functions of participants’ 

data, as well as to generate new, artificial choice data and compute simulated value functions 
(Figure 2C, see Methods). Simulations indicated expected value was highest for the 

appropriate Abstract RL, followed by Feature RL, and the two Abstract RLs based on irrelevant 
features as the lowest (Figure 2D). Participants’ empirical data displayed the same pattern, 

whereby the value function of the appropriate Abstract RL was higher than other RL algorithms 
(Figure 2D, right side). Note the large difference between appropriate Abstract RL and Feature 

RL: this is due to the appropriate Abstract RL being an ‘oracle’, as it has access to the correct 
low-dimensional state from the beginning. The RPE variance v adjusted the sharpness with 

which each RL’s (un)certainty was considered for the expert weighting. Crucially, the variance 
v was associated with participants' learning speed, such that participants who learned the 

blocks’ rules quickly were sharper in expert selection (Figure 2E, N = 29, robust regression 

slope = -1.02, t27 = -2.59, p = 0.015). These modelling results provided a first layer of 
computational support for the hypothesis that valuation is related to abstractions.  
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Figure 2: Mixture of reinforcement learning (RL) experts and value computation. A, Outline of the 
representational spaces of each RL algorithm comprising the mixture-of-experts architecture. B, Illustration of the 
model architecture. See Methods for a formal description of the model. All experts had the same number of 
hyperparameters: the learning rate a (how much the latest outcome affect the agent’s beliefs), the forgetting factor 
g (how much prior RPEs influence current decisions), and the RPE variance v, modulating the sharpness with which 
the mixture-of-expert RL model should favour the best performing algorithm in the current trial. C, Approach used 
for data analysis and model simulation. The model was first fit to participants’ data with Hierarchical Bayesian 
Inference (Piray et al., 2019). Estimated hyperparameters were used to compute the value functions of participants’ 
data, as well as to generate new, artificial choice data and compute simulated value functions. D, Averaged 
expected value across all states for the chosen action in each RL expert. Left: simulated data, right: participants’ 
empirical data. Dots represent individual agents (left) or participants (right), bars the mean and error bars the SEM. 
Statistical comparison was performed with two-sided Wilcoxon signed rank tests. Model: AbRLw1 vs AbRLw2, z = 
1.00, p = 0.32, all remaining comparisons, z = 5.84, ***p<0.001; Participants: AbRLw1 vs AbRLw2, z = -0.08, p = 
0.94, all remaining comparisons, z ≥ 4.92, ***p<0.001. AbRL: Abstract RL, FeRL: Feature RL, AbRLw1: wrong-1 
Abstract RL, AbRLw2: wrong-2 Abstract RL. E, Correlation between RPE variance and learning speed (outliers 
removed, N = 29). Dots represent individual participants' data, the thick line the regression fit, * p<0.05. 

 

Behaviour shifts from Feature- to Abstract-based reinforcement learning 

The mixture-of-expert RL model uncovered that participants who learned faster relied more 

on the best RL model value representations. Critically, the modeling established that choices 
were driven by either the appropriate Abstract RL or Feature RL - as they had higher expected 

values. Hence, we next explicitly explained participants’ choice and learning behaviour 
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according to either strategies. We hypothesized that a shift from Feature RL towards Abstract 

RL should be observed with learning. 

Both algorithms had two hyperparameters: the learning rate 𝛂 and greediness 𝜷 (inverse 
stochasticity - the strength that expected value has on determining actions). Using the 

estimated hyperparameters, we generated new, synthetic data to evaluate how fast artificial 
agents, implementing either Feature RL or Abstract RL, solved the learning task (see 

Methods). The simulations attested Feature RL was slower and less efficient: yielding lower 
learning speed (Figure 3A left, two-sided Wilcoxon rank sum test, z = 90.97, p < 10-30), and a 

higher percentage of failed blocks (Figure 3A right, two-sided Wilcoxon rank sum test, z = 

8.16, p < 10-6).  

Model comparison at the single participant and block level 38 provided a direct way to infer 
which algorithm was more likely to explain learning in any given block. Overall, there were 

similar proportions of blocks classified as Feature RL and Abstract RL, indicating that 
participants used both learning strategies (binomial test applied to all blocks: proportion of 

Abstract RL = 0.47 vs. equal level = 0.5, P(212|449) = 0.26, Figure 3B; two-sided t-test of 

participant-level proportions: significantly lower than 0.5, but close to that, t32 = -2.87, p = 
0.007, Figure 3B inset).  

As suggested by the simulations (Figure 3A), the strategy that best explained participants’ 

block data correlated with learning speed. Where learning proceeded slowly, Feature RL was 
consistently predominant (Figure 3B), while the reverse happened in blocks where participants 

displayed fast learning (Abstract RL predominant, Figure 3B). Moreover, across participants, 
the degree of abstraction (propensity to use Abstract RL) correlated with the empirical learning 

speed (N = 33, robust regression, slope = 0.52, t31 = 4.56, p = 7.64x10-5, Figure 3C, top). 

Participants' sense of confidence in having performed the task well also significantly correlated 
with the degree of abstraction (N = 31, robust regression, slope = 0.026, t29 = 2.69, p = 0.012, 

Figure 3C, bottom). Together with confidence self-reports being predictive of learning speed 
(Figure 1E), these results raise intriguing questions on the function of metacognition, as 

participants appeared to grasp their own ability to construct and use abstractions 39. 

The two RL algorithms revealed a second aspect of learning. Feature RL had consistently 

higher learning rates 𝛂 compared with Abstract RL (two-sided Wilcoxon rank sum test against 
median 0, z = 14.33, p < 10-30, Figure 3D). This difference might be explained intuitively as 

follows. Integration of information had to happen over a longer time horizon in Abstract RL, 
because a single trial per se was uninformative with respect to the rule. Conversely, a higher 
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learning rate would allow the agent to make larger updates on states that were less frequently 

visited, as would happen in Feature RL. A similar asymmetry in hyperparameter values was 
found with greediness (Figure 3E, two-sided Wilcoxon rank sum test against median 0, z = 

7.14, p < 10-10), suggesting action selection tended to be more deterministic in Feature RL (i.e. 
large 𝜷).  

We initially predicted that abstraction use would increase with learning, because the brain has 

to construct abstractions in the first place and should thus initially rely on Feature RL. To test 
this hypothesis, we quantified the number of participants using Feature RL or Abstract RL 

strategy in their first and last blocks. The first block was dominated by Feature RL, while the 

pattern reversed in the last block (two-sided sign test, z = -2.77, p = 0.006, Figure 3F). 
Computing the abstraction level separately for the session’s median split early and late blocks 

also resulted in higher abstraction in the late blocks (two-sided sign test, z = -2.94, p = 0.003, 
Figure 3G). This general effect was complemented by a linear increase towards higher 

abstraction from early to late blocks (Figure S2). 

Supporting the current modelling framework, the mean expected value of the chosen action 

was higher for Abstract RL (Figure S3), and model hyperparameters could be recovered in 
the presence of noise (Figure S4, see Methods) 40. 
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Figure 3: Feature RL vs Abstract RL are related to learning speed. A, Simulated learning speed and % of failed 
blocks for both Abstract RL and Feature RL. To make the simulations more realistic, arbitrary noise was injected 
into the simulation, altering the state (see Methods). N = 500 simulations of 45 agents. Right plot: bars represent 
the mean, error bars the SEM. B, Relationship between block-by-block best-fitting model and learning speed in 
participants. Each dot represents one block, from one participant. Data aggregated across all participants. Note 
some dots fall beyond p=1 or p=0: the effect is due to dots being scattered with noise in their x-y coordinates for 
better visualization. C, Between participants correlations. Top: abstraction level vs learning speed. The abstraction 
level was computed as the average over all blocks completed by a given participant (code: Feature RL = 0, Abstract 
RL = 1). Bottom: confidence vs abstraction level. Dots represent individual participants (top: N = 33, bottom: N = 
31, some dots are overlapping). D, Learning rate was not symmetrically distributed across the two algorithms. E, 
Greediness was not symmetrically distributed across the two algorithms. For both D and E, each dot represents 
one block, from one participant, data aggregated across all participants. Histograms represent the distribution of 
the data around the midline. F, Number of participants for which Feature RL or Abstract RL explained best their 
choice behaviour in the first and last block of the experimental session. G, Abstraction level was computed 
separately with blocks from the first half (early) and latter half (late) session. * p<0.05, ** p<0.01, *** p<0.001. 

 

The role of vmPFC in constructing goal- and task-dependent value from sensory features 

Both computational approaches indicated participants relied on both a low-level, feature-

based strategy and a more sophisticated abstract strategy (i.e. Feature RL and Abstract RL; 
Figure 2D, 3B). Besides proving that abstract representations were generally associated with 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.10.29.361469doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.361469
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 11 

higher expected value, the modelling approach further allowed us to explicitly classify trials as 

belonging to either strategy. Here, our goal was to dissociate the neural signatures of these 
distinct learning strategies in order to elucidate how abstract representations are constructed 

by the human brain.  

Since the association between pacman features and fruits was fixed throughout a block and 
reward was deterministic, we reasoned that an anticipatory value signal might emerge in the 

vmPFC already at stimulus presentation 41. We performed a general linear model (GLM) 
analysis of the neuroimaging data with regressors for ‘High value’ and ‘Low value’ trials, 

elected by the block-level best fitting algorithm (Feature RL and Abstract RL, see Methods for 

full GLM and regressors specification). As predicted, activity in the vmPFC strongly correlated 
with value magnitude (Figure 4A). That is, the vmPFC indexed the anticipated value 

constructed from the pacman features at stimulus presentation time. We used this signal to 
functionally define, for ensuing analyses, the subregion of the vmPFC that was maximally 

related to task computations about value when (pacman’s) visual features were integrated. 
Concurrently, activity in insular and dorsal prefrontal cortices increased when the low value 

trials were selected. This pattern of activity is consistent with previous studies on error 
processing 42,43 (Figure S5). 

In order for the vmPFC to construct goal-dependent value signals, it should receive relevant 
feature information from other brain areas (specifically visual cortices given the nature of our 

task). Thus, we computed a psychophysiological interaction (PPI) analysis 44, to isolate regions 
whose functional coupling with the vmPFC at the time of stimulus presentation was dependent 

on the magnitude of expected value. Supporting the idea that vmPFC based its predictions on 
the integration of visual features, only the connectivity between VC and vmPFC was higher on 

trials that carried large expected value compared to low value trials (Figure 4B). Strikingly, the 
strength of this VC - vmPFC interaction was predictive of the overall learning speed across 

participants (N = 31, robust regression, slope = 0.016, t29 = 2.53, p = 0.016, Figure 4C), such 

that participants who had a stronger modulation of the coupling between the vmPFC and VC 
also learned the blocks’ rules faster. 
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Figure 4: Neural substrates of value construction during learning. A, Correlates of anticipated value at pacman 
stimulus presentation time. Trials were labelled according to a median split of the expected value for the chosen 
action as computed by the best fitting model - Feature RL or Abstract RL - at the block level. Mass univariate 
analysis, contrast ‘High value’ > ‘Low value’. vmPFC peak at [2 50 -10]. The statistical parametric map was z-
transformed and plotted at p(FWE) < 0.05. B, Psychophysiological interaction, using as seed a sphere (radius = 
6mm) centred around the participant-specific peak voxel, constrained within a 25mm sphere centred around the 
group-level peak coordinate from contrast in (A). The statistical parametric map was z-transformed and plotted at 
p(fpr) < 0.001. C, The strength of the interaction between the vmPFC and VC was predictive of the participants’ 
ability to learn the blocks’ rules. Dots represent individual subject’s data points, the line a regression fit, * p<0.05. 

 

Value-sensitive vmPFC subregion prioritizes abstract elements 

Having established that the vmPFC computes a goal-dependent value signal, we evaluated 

whether this region’s activity level was sensitive to the strategy participants used. Using the 

same GLM introduced earlier, two new statistical maps were estimated (from the orthogonal 
regressors ‘Abstract RL’ and ‘Feature RL’, see Methods and Supplementary note 1). A region-

of-interest (ROI) analysis was performed on the HPC and the vmPFC, which have been 
consistently linked with abstraction and feature-based or conceptual learning. The HPC was 

defined anatomically (Figure 5A, top, see Methods), while the vmPFC was defined as the 
voxels sensitive to the orthogonal contrast ‘High value’ > ‘Low value’ (Figure 5A, bottom). We 

extracted the peak activity in both ROIs at the participant level, under Feature RL and Abstract 
RL conditions (Figure 5B). A linear mixed effects model (LMEM) with fixed effects ‘roi’ and 

‘strategy’ [LMEM: ‘y ~ roi * strategy + (1|participants)’, y: roi activity] revealed significant main 
effects of ‘roi’ (t128 = 2.16, p = 0.033), and ‘strategy’ (t128 = 3.07, p = 0.003), and a significant 

interaction (t128 = -2.29, p = 0.024), illustrating different HPC and vmPFC recruitment. Post-

hoc comparisons showed Feature RL and Abstract RL cases could be well distinguished in 
vmPFC activity levels (LMEM: t64 = 2.94, p(FDR) = 0.009), while the HPC was agnostic to the 

style of learning (LMEM: t64 = 0.62, p(FDR) = 0.54). We also verified reaction times were not 
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different in Feature RL and Abstract RL blocks, precluding an alternative explanation based 

on differences in difficulty (Figure S6B).  

The next question we asked was, can we retrieve feature information from HPC and vmPFC 
activity patterns? In order to abstract and operate in the latent space, an agent is still bound 

to represent and use the features, because the rules are dictated by features’ combinations. 
One possibility is that feature information could be represented solely in sensory areas. What 

matters then is the connection with and/or the read out of, vmPFC or HPC. Accordingly, neither 
HPC or vmPFC should represent feature information (regardless of the strategy used). 

Alternatively, feature-level information could be represented also in higher cortical regions 

under Abstract RL to explicitly support (value-based) relational computations. To resolve this 
question, we applied multivoxel pattern analysis to classify basic feature information (e.g. 

colour: red vs green) in three regions of interest: the VC, HPC, and vmPFC; separately for 
trials belonging to Feature RL and Abstract RL blocks. We found the classification accuracy 

to be significantly higher in Abstract RL than in Feature RL trials in both HPC and vmPFC 
(two-sided Wilcoxon signed rank test, HPC: z = -4.21, p(FDR) < 0.001, vmPFC: z = -3.15, p(FDR) 

= 0.002, Figure 5C), while there was only a negligible difference in VC (z = -1.30, p(FDR) = 0.20, 
Figure 5C). The difference in feature decodability was significantly larger in HPC and vmPFC 

compared to VC (LMEM model ‘y ~ roi + (1|participants)’, y: difference in decodability, t97 = 

2.52, p = 0.013). This empirical result supports the second hypothesis: beyond a simple read 
out of sensory cortices, in Abstract RL, features are represented in the neural circuitry 

incorporating the HPC and vmPFC. In Feature RL, representing feature-level information in 
sensory cortices alone should suffice because each visual pattern (feature combination) forms 

the task-state as such. 

We expanded on this idea with two multivoxel pattern analysis searchlights. In short, we 
inquired which brain regions were sensitive to feature relevance (i.e. when the feature was 

relevant to the rule or not), and whether we could recover representations of the latent rule 

itself (fruit preference). Besides the occipital cortex, significant reduction in decoding accuracy 
when a feature was irrelevant to the rule compared to when it was relevant was also detected 

in the OFC, ACC, vmPFC and dorsolateral PFC (Figure S7A). Multivoxel activity patterns in 
the dorsolateral PFC and lateral OFC also predicted the fruit class (Figure S7B). 
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Figure 5: Neural substrate of abstraction. A, Regions of interest for univariate and multivariate analyses. The 
HPC was defined through anatomical automated labelling (FreeSurfer). The vmPFC was functionally defined as the 
cluster of voxels found with the orthogonal contrast ‘High value’ > ‘Low value’, at P(unc) < 0.0001. B, ROI activity 
levels corresponding to each learning mode were extracted from the contrasts ‘Feature RL’ > ‘Abstract RL’, and 
‘Abstract RL’ > ‘Feature RL’. Coloured bars represent the mean, error bars the SEM. C, Multivariate (decoding) 
analysis in three regions of interest: VC, HPC, vmPFC. Binary decoding was performed for each feature (e.g. colour: 
red vs green), either by using trials from blocks labelled as Feature RL or Abstract RL. Colour bars represent the 
mean, error bars the SEM, grey dots individual data points (for each individual, taken as the average across all 3 
classifications, i.e. of all feature), * p<0.05, ** p<0.01, *** p<0.001. 

 

Artificially injecting value in sensory representations with neurofeedback fosters abstraction 

Our computational and neuroimaging results indicate valuation plays a key role in abstraction. 

Two hypotheses on the underlying mechanism can be outlined here. On one hand, the effect 
of vmPFC value computations could remain localized within the prefrontal circuitry. For 

example, by representing and ranking incoming sensory information for further processing 
within the HPC-OFC circuitry. Alternatively, value computation could determine abstractions 

by directly affecting early sensory areas - i.e. a top-down (attentional) effect, to tag sensory 
information 45. Work in rodents has reported strong top-down modulation of sensory cortices 

by OFC neurons implicated in value computations 46,47. We thus hypothesized abstraction 
could result from a direct effect of value in the VC. Artificially adding value to a neural 

representation of a task-relevant feature should result in enhanced behavioural abstraction. 

Decoded neurofeedback is a form of neural reinforcement based on real time fMRI and 

multivoxel pattern analysis. It is the closest approximation to a non-invasive causal 
manipulation, with high levels of specificity and administered without participants’ awareness 
48–50. Such reinforcement protocols can reliably lead to behavioural or physiological changes 
that last over time 51–54. We used this procedure in a follow-up experiment (N = 22) to artificially 

add value (rewards) to neural representation in VC of a target task-related feature (e.g. the 
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orientation; Figure 6A, see Methods). At the end of 2 training sessions, participants completed 

16 blocks of the pacman fruit preference task, outside of the scanner. With respect to the 
targeted feature, blocks could be labelled as ‘relevant’ (8 blocks) if the feature tagged with 

value was relevant to the block’s rule, and ‘irrelevant’ otherwise (8 blocks).  

Data from the ‘relevant’ and ‘irrelevant’ blocks were analysed separately. The same model 
fitting procedure used in the main experiment established whether participants’ choices in the 

new blocks were driven by a Feature RL or Abstract RL strategy. Plotting the probability of the 
Feature RL model against Abstract RL revealed a shift towards Abstract RL in the ‘relevant’ 

blocks, while substantially no qualitative effect in the ‘irrelevant’ blocks (Figure 6B). To quantify 

this effect, we first applied a binomial test, finding that behaviour in blocks where the targeted 
feature was relevant displayed markedly increased abstraction (base rate 0.5, number of 

Abstract RL blocks given total number of blocks; ‘relevant’: P(123|176) = 1.37x10-7, ‘irrelevant’: 
P(90|176) = 0.82). We then measured the abstraction level for each participant and directly 

compared it to the level they attained in the late blocks of the main experiments (from Figure 
3G). Participants increased their use of abstraction in ‘relevant’ blocks, while no significant 

difference was detected in the ‘irrelevant’ blocks (Figure 6C, two-sided Wilcoxon signed rank 
test, ‘relevant’ blocks: z = 2.44, p = 0.015, ‘irrelevant’ blocks: z = -1.55, p = 0.12, ‘relevant’ vs 

‘irrelevant’: z = 4.01, p = 6.03x10-5). Finally, we measured the difference between model 

probabilities P(Feature RL) - P(Abstract RL) for each block, and bootstrapped the mean over blocks 
(with replacement) 10,000 times to generate a distribution for the ‘relevant’ and ‘irrelevant’ 

conditions. Replicating the results reported above, behaviour in ‘relevant’ blocks had higher 
probability to be driven by Abstract RL (Figure 6D, perm. test p < 0.001), while Feature RL 

tended to appear more in ‘irrelevant’ blocks. A strategy shift towards abstraction, specific to 
the blocks in which the target feature was tagged with reward, indicates the effect of value in 

facilitating abstraction is likely to be mediated by a change in the early processing stage of 
visual information. In this experiment, by means of neurofeedback, value (in the form of 

external rewards) was artificially added to a target feature’s neural representation in VC. 
Hence, the brain used these ‘artificial’ values to select relevant dimensions when constructing 

abstract representations by tagging certain sensory channels. Critically, this manipulation 

indicates that value tagging of early representation has a causal effect on abstraction and 
consequently on the learning strategy.  
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centre

 

Figure 6: Artificially adding value to a feature’s neural representation. A, Schematic diagram of the follow-up 
multivoxel neurofeedback experiment. During the neurofeedback procedure, participants were rewarded for 
increasing the size of a disc on the screen (max session reward 3,000 JPY). Unbeknownst to them, the disc size 
was changed by the computer program to reflect the likelihood of the target brain activity pattern (corresponding to 
one of the task features) measured in real time. B, Blocks were subdivided based on the feature targeted by 
multivoxel neurofeedback: ‘relevant’ or ‘irrelevant’ for the blocks’ rules. The scatter plots replicate the finding from 
the main experiment, with a strong dependency between Feature RL / Abstract RL and learning speed. Each 
coloured dot represents a single block, from one participant. Data aggregated from all participants. C, Abstraction 
level computed for each participant from all blocks belonging to: 1) left, the latter half of the main experiment (as in 
Figure 3G, but only selecting participants who took part in the multivoxel neurofeedback experiment); 2) centre, 
post-neurofeedback, for the ‘relevant’ condition; 3) right, post-neurofeedback, for the ‘irrelevant’ condition. Coloured 
dots represent participants, shaded areas the density plot, central white dots the median, the dark central bar the 
interquartile range, and thin dark lines the lower and upper adjacent values. D, Bootstrapping the difference between 
model probabilities on each block, separately for ‘relevant’ and ‘irrelevant’ conditions. * p<0.05, *** p<0.001 
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Discussion 

The ability to generate abstractions from simple sensory information has been suggested as 
key to support flexible and adaptive behaviours 1,12,13. Here, using computational modelling 

based on a mixture-of-experts RL architecture, we revealed that value predictions drove 
participants’ selection of the appropriate representation to solve the task. Participants explored 

and used the task dimensionality through learning, as they shifted from a simple feature-based 
strategy to using more sophisticated abstractions. The more participants used Abstract RL, 

the faster they were at solving the task. These results support the idea that decision-making 

processes in the brain depend on higher-order, summarized representations of task-states 3. 

Further, abstraction likely requires a functional link between sensory regions and areas 
encoding value predictions about task states (Figure 4C, the VC-vmPFC coupling predicted 

participants' learning speed). This is in line with previous work that has demonstrated how 
estimating reward value of individual features provides a reliable and adaptive mechanism in 

RL 11. We extend this notion by showing that the mechanism may support the formation of 

abstract representations to be further used for learning computations, for example the 
selection of the appropriate abstract representation.  

There is an important body of work considering how the HPC is involved in the formation and 

update of conceptual information 5,23,25,55. Likely, the HPC’s role is to store or index 
conceptual/schematic memories, and update concepts 5,24,56. The 'creation' of new concepts 

or schemas may happen elsewhere. A good candidate could be the mPFC or vmPFC in 
humans 56,57. OOur results expose a potentially mechanism on how vmPFC interplays with 

HPC in the construction of goa-relevant abstractions: vmPFC-driven valuation of low-level 

sensory information serves to channel specific features/components to higher order areas 
(e.g. the HPC, vmPFC, but also the dorsal prefrontal cortex for instance), where it is used to 

construct abstractions (e.g. concepts, categories or rules). In line with this interpretation we 
found vmPFC to be more engaged in Abstract RL, while HPC was equally active under both 

abstract and feature-based strategies (Figure 5B). Our results indicate that when a feature is 
irrelevant to the rule, its decodability from activity patterns in OFC/DLPFC decreases (Figure 

S7A). This dovetails well with the OFC/DLPFC function in constructing goal-based task states 
and abstract rules from relevant sensory information 27,58,59. Furthermore, the abstract rule 

itself was represented in multivoxel activity patterns within these regions implicated in abstract 
strategies, rules and contexts (Figure S7B) 58,60,61. How these representations are actually 

used remains an open question. This study also suggests that there is no single region in the 
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brain that maintains a fixed task state. Rather, the configuration of elements that determines 

a state is continuously updated or reconstructed over time. At first glance this seems 
dispendious and inefficient. But this approach would provide high flexibility in noisy and 

stochastic environments, and where temporal dependencies exist (i.e. any real world 
situation). By continuously recomputing task states (e.g. in the OFC), the agent can make 

more robust decisions because they are based on up-to-date information. This computational 
coding scheme shares strong analogies with the multiverse hypothesis of hippocampal 

representations, whereby HPC neurons continuously generate representations of alternative, 
possible future trajectories 62.  

One significant aspect of discussion concerns the elements used to construct abstractions. 
We leveraged simple visual features (colour, or stripe orientation), rather than more complex 

stimuli or objects that can be linked together conceptually 23,63. Abstractions happen at several 
levels, from features, to exemplar, concept/category, all the way to rules and symbolic 

representations. In this work we effectively studied one of the lowest levels of abstraction. One 
may wonder whether the mechanism we identified here generalizes to more complex 

scenarios. While our work cannot decisively support this, we are inclined to believe it is unlikely 
that the brain uses an entirely different strategy to generate new representations at different 

levels of abstractions. Rather, the internal source of information to be abstracted from should 

be different, but the algorithm itself should be the same or, at the very least, very similar. The 
fact our PPI analysis showed a link between vmPFC and VC may point to this distinguishing 

characteristic of our study: learning through abstraction of simple visual features should be 
related to early VC. Features in other modalities (e.g. auditory), would involve functional 

coupling between auditory cortex and the vmPFC. When learning about more complex objects 
or categories, we expect to see a stronger reliance on the HPC 5,23. Future studies could 

incorporate different levels of complexity, or different modalities, within a similar design so as 
to directly test this prediction and dissect exact neural contributions. Depending on which type 

of information is relevant at any point in time, we suspect different areas will be coupled with 
the vmPFC to generate value representations.  

In our second experiment, we implemented a direct assay to test our (causal) hypothesis that 
value about features is guiding abstraction in learning. Artificially adding value in the form of 

reward to a feature representation in the VC resulted in increased use of abstractions. The 
facilitating effect of value on abstraction can be thus directly linked to changes in the early 

processing stage of visual information. In line with this interpretation, recent work in mice has 
elegantly reported how value governs a functional remapping in the sensory cortex by direct 
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lateral OFC projections carrying RPE information 46, as well as by modulating the gain of 

neurons to irrelevant stimuli 47. While these considerations clearly point to a central role of the 
vmPFC and valuation in abstraction - by controlling sensory representations, it remains to be 

investigated whether this effect results in more efficient construction of abstract 
representations, or in better selection of internal abstraction-based RL algorithms.  

Given the complex nature of our design, there are some limitations to this work. For example, 

we don’t have an applicable feature decoder to test actual feature representations (e.g. colour 
vs orientation) - or the likelihood of one feature vs the other. This is because in our task design, 

on every trial, all features were used to define the pacman characters. Furthermore, we did 

not have a localizer session in which the features were presented in isolation (see 
Supplementary note 2 for further discussion). Future work could investigate how separate 

feature representations may emerge on the path to abstractions, for example in the vmPFC, 
and their relation to feature levels (e.g. within colour, red vs green) as reported here. We 

speculate that parallel circuitries between prefrontal cortex and basal ganglia could keep track 
of these levels of information or abstraction, possibly in a hierarchical fashion, to determine 

behavioural policies 13,64,65.  

One may point out that what we call ‘Abstract RL’ is, in fact, just an attention-mediated 

enhanced processing. If top-down attention were the sole cause in Abstract RL, we contend 
that the pattern of results would have been different. For example, we would expect to see a 

marked increase in feature decodability in VC 66,67. This was not the case here, with only a 
minimal, non-significant, increase. More importantly, the results of the decoded 

neurofeedback manipulation question this interpretation. Because decoded neurofeedback 
operates unconsciously 48,50, value was added directly at the sensory representation level 

(limited to the targeted region), precluding alternative top-down effects. That is not to say that 
attention does not play a significant role in mediating this type of abstract learning; however, 

we argue that attention is most likely to be an effector of the abstraction and valuation 

processes 68. A simpler top-down attentional effect was indeed evident in the supplementary 
analysis comparing feature decoding in the ‘relevant’ and ‘irrelevant’ cases (Figure S7A): 

occipital regions displayed large effect sizes (irrespective of the learning strategy used to solve 
the task). 

Some outstanding questions remain. While valuation and abstraction appear tightly linked in 

reducing the dimensionality of task space, what is the underlying mechanism? The degree of 

neural compression in the vmPFC has been shown to relate to features most predictive of 
positive outcomes, under a given goal 57. An attractive view is that valuation may be interpreted 
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as an abstraction in itself; value could provide a simple and efficient way for the brain to 

operate on a dimensionless axis. Each point on this axis could be indexing a certain task state, 
or even behavioural strategy, as a function of its assigned abstract value. The neuronal 

encoding of value about certain features, or choice options, may help the system construct 
useful representations that can, in turn, inform flexible behavioural strategies 3,27,30.  

In summary, in this work we have provided evidence for a role played by valuation that goes 

beyond the classic view in decision-making and neuroeconomics. We show that valuation 
subserves a critical function in constructing abstractions. One may go further and speculate 

that valuation, by generating a common currency across perceptually different stimuli, may be 

an abstraction in itself, and that it is tightly linked to the concept of task states in decision-
making. We believe this work not only offers a new perspective on the role of valuation in 

generating abstract thoughts, but also reconciles (apparently disconnected) findings in 
decision-making and memory literature on the role of the vmPFC. In this context value is not a 

simple proxy of a numerical reward signal but is better thought of as a conceptual 
representation or schema built on-the-fly to respond to a specific behavioural demand. We 

believe our findings thus provide a fresh vision on the invariable presence of value signals in 
the brain that play an important algorithmic role in the development of sophisticated learning 

strategies. Understanding how the brain can carefully craft useful abstract representations has 

important bearings for devising new learning and rehabilitation protocols while at the same 
time, it might inspire new algorithmic architectures in cognitively-inspired artificial agents. 
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Methods 

Participants 

Forty-six participants with normal or corrected-to-normal vision were recruited for the main 

experiment (learning task). Based on pilot data and the available scanning time in one session 
(60 minutes), we set the following conditions of exclusion: failure to learn the association in 3 

blocks or more (i.e. reaching a block’s limit of 80 trials without having learned the association), 
or failure to complete at least 11 blocks in the allocated time. Eleven participants were removed 

based on the above predetermined conditions. Additionally, 2 more participants were removed 
due to head motion artifacts. Thus, 33 participants (22.4 ± 0.3 y.o.; 8 females) were included 

in the main analyses. Of these, 22 participants (22.2 ± 0.3 y.o.; 4 females) returned for the 
follow-up experiment, based on their individual availability. All results presented up to Figure 5 

are from the 33 participants who completed the learning task. All results pertaining to the 
neurofeedback manipulation are from the subset of 22 participants that were called back. 

All experiments and data analyses were conducted at the Advanced Telecommunications 
Research Institute International (ATR). The study was approved by the Institutional Review 

Board of ATR. All participants gave written informed consent. 

 

Learning task  

The task consisted of learning the fruit preference of pacman-like characters. These characters 

were made of 3 different features, each with two levels (colour: green vs red, stripes 
orientation: horizontal vs vertical, mouth direction: left vs right). On each trial, a character 

composed of a unique combination of the three features was presented. The experimental 

session was divided into blocks, on each of which a specific rule directed the association 
between features and preferred fruits. There were always 2 relevant features and 1 irrelevant 

feature, but these changed randomly at the beginning of each block. Blocks could thus be of 
three types: CO (colour-orientation), CD (colour-direction), and OD (orientation-direction). 

Furthermore, to avoid a simple logical deduction of the rule after 1 trial, we introduced the 
following pairings. The 4 possible combinations of 2 relevant features with 2 levels were paired 

with the 2 fruits in both a symmetric or asymmetric fashion - 2x2 or 3x1. The appearance of 
the 2 fruits was also randomly changed at the beginning of each new block (see Figure 1B, 
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e.g. green-vertical: fruit 1, green-horizontal: fruit 2, red-vertical: fruit 1, red-horizontal: fruit 2 or 

green-vertical: fruit 2, green-horizontal: fruit 2, red-vertical: fruit 1, red-horizontal: fruit 2). 

Each trial started with a black screen for 1 sec, following which the character was presented 
for 2 sec. Then, while the character continued to be present at the centre of the screen, the 2 

fruit options appeared below, to the right and left sides (see Figure 1). Participants had 2 sec 
to indicate the preferred fruit by pressing a button (right for the fruit to the right, left vice versa). 

Upon registering a participant’s choice, a coloured square appeared around the chosen fruit: 
green if the choice was correct, red otherwise. The square remained for 1 sec, following which 

the trial ended with a variable ITI - bringing the trial to a fixed 8 sec duration.  

Participants were simply instructed that they had to learn the correct rule on each block, and 

the rule itself (relevant features + association type) was hidden. Each block contained up to 80 
trials, but a block could end before if participants learned the target rule. Learning was 

measured as a strike of correct trials (between 8 and 12, determined randomly on each block). 
Participants were instructed that each correct choice added one point, while incorrect choices 

did not alter the balance. But importantly, they were told that the points obtained would be 

weighted by the speed of learning on that block. The faster the learning, the greater the net 
worth of the points - the monetary reward was computed at the end of each block according to 

the formula: 

𝑅	 = 	𝐴	 ∗ (∑𝑝𝑡𝑠 ∑ 𝑡𝑟⁄ ) 	−	(∑ 𝑡𝑟 	− 	𝑚𝑐𝑠) ∗ 𝑎       (1) 

Where R is the reward obtained on that block, A the maximum available reward (150JPY), 
∑𝑝𝑡𝑠 the sum of correct responses, ∑𝑡𝑟 the number of trials, mcs the maximum length of a 
correct strike (12 trials), and a is a scaling factor (a = 1.5). This formula ensures a time-

dependent decay of the reward that approximately follows a quadratic fit. In case participants 
completed a block in less than 12 trials, if the amount was larger than 150JPY it was rounded 

to 150JPY.  

The maximum terminal monetary reward over the whole session was set at 3,000 JPY; 

participants on average earned 1251 ± 46 JPY (blocks in which participants failed to learn the 
association within the 80 trials limit were not rewarded). For each experimental session there 

was a sequence of 20 blocks that was pre-generated pseudo-randomly, and on average 
participants completed 13.6 ± 0.3 blocks. In the post-neurofeedback behavioural test all 

participants completed 16 blocks, 8 of which had the targeted feature as relevant, while in the 
other half the targeted feature was irrelevant. The order was arranged pseudo-randomly such 

that, on the both halves of the session there were 4 blocks of each type. In the post-
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neurofeedback behavioural session, all blocks only had asymmetric pairings with preferred 

fruits.  

For the sessions done in the MR scanner, participants were instructed to use their dominant 
hand to press buttons on a dual-button response pad to provide their choices. Concordance 

between responses and buttons was indicated on the display and, importantly, randomly 
changed across trials to avoid motor preparation confounds (i.e. associating a given 

preference choice with a specific button press).  

The task was coded with PsychoPy v1.82.01 69. 

 

Computational modelling part 1: mixture-of-experts RL model 

We built on a standard RL model 6 and prior work in machine learning and robotics to derive 
the mixture-of-experts architecture 32,33,36. In this work the mixture-of-experts architecture is 

composed of several ‘expert’ RL modules, each tracking a different representational space, 
and each with its own value function. On each trial, the action selected by the mixture-of-

experts RL model is given by the weighted sum of the actions computed by the experts. The 

weight reflects the responsibility of each expert, which is computed from the SoftMax of the 
squared prediction error. In this section we define the general mixture-of-expert RL model, and 

in the next section we define each specific expert, which are based on the different task-state 
representations being used.  

Formally, the mixture-of-expert RL model global action is defined as: 

𝐴4 = ∑ 𝜆4
6𝑎4

67
689            (2) 

Where N is the number of experts, 𝝺 the responsibility signal, and a the action selected by the 
jth-model. Thus, 𝝺 is defined as: 

𝜆4
6 = 𝑒𝑥𝑝(− =>?@@@@@@ABC

D

E
)/(∑ G𝑒𝑥𝑝(− =>?@@@@@@ABC

H

E
)I7

J89 )       (3) 

Where N is the same as above, v is the RPE variance. The expert’s uncertainty 𝑅𝑃𝐸@@@@@@4 is defined 
as: 

𝑅𝑃𝐸@@@@@@4
6 = 𝛾𝑅𝑃𝐸@@@@@@4N9

6 + (1 − 𝛾)(𝑅𝑃𝐸4
6)Q        (4) 
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Where 𝛄 is the forgetting factor, which controls the strength of the impact of prior experience 

on the current uncertainty estimate. The most recent RPE is computed as: 

𝑅𝑃𝐸4
6 = 𝑂 − 𝑄6(𝑆4, 𝐴4)          (5) 

Where O is the outcome (reward: 1, no reward: 0), Q is the value function, S the state for the 
current expert, and A the global action computed with equation (2). The update to the value 

function can therefore be computed as: 

𝛥𝑄6(𝑆4, 𝐴4) = 𝜆4
6𝛼𝑅𝑃𝐸4

6         (6) 

Where 𝝺 is the responsibility signal computed with equation (3), 𝛂 is the learning rate (assumed 
equal for all experts), and RPE computed with equation (5). Finally, for each expert, the action 

a at trial t is taken as the argmax of the value function as follows: 

𝑎4
6 = 𝑎𝑟𝑔𝑚𝑎𝑥[𝑄6(𝑆4, 𝑎)]         (7) 

Where Q is the value function, S the state at current trial, and a the two possible actions.   

 

Computational modelling part 2: Feature RL and Abstract RLs 

Each (expert) RL algorithm is built on a standard RL model 6 to derive variants that differ on 
the number and type of states visited. Here, a state is defined as a combination of features. 

Feature RL has 23 = 8 states, where each state was given by the combination of all three 
features (e.g. colour, stripe orientation, mouth direction: green, vertical, left). Abstract RL is 

designed with 22 = 4 states, where each state was given by the combination of two features.  

 Note that the number of states does not change for different blocks, only the features used to 

determine them. These learning models create individual estimates of how participants’ action-
selection was dependent on the features they attended and their past reward history. Both RL 

models share the same underlying structure and are formally described as: 

𝑄(𝑠, 𝑎) 	← 	𝑄(𝑠, 𝑎) 	+ 	𝛼	(𝑟	 − 	𝑄(𝑠, 𝑎))        (8) 

Where 𝑄(𝑠, 𝑎) in (8) is the value function of selecting either fruit-option 𝑎 for packman-state 𝑠. 

The value of the action selected on the current trial is updated based on the difference between 
the expected value and the actual outcome (reward or no reward). This difference is called the 

reward prediction error (RPE). The degree to which this update affects the expected value 
depends on the learning rate 𝛼. The larger 𝛼, the more recent outcomes will have a strong 
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impact. On the contrary, for small 𝛼 recent outcomes will have little effect on expectations. 

Only the value function of the selected action - which is state-contingent in (8) - is updated. 
The expected values of the two actions are combined to compute the probability p of predicting 

each outcome using a SoftMax (logistic) choice rule: 

𝑃]^,_ = 1	/	(1	 + 	𝑒𝑥𝑝(−𝛽(𝑄(𝑠a, 𝑎9) 	− 	𝑄(𝑠a, 𝑎Q)))       (9)  

The greediness hyperparameter 𝛽 controls how much the difference between the two expected 

values for a1 and a2 actually influence choices. 

 

Procedures for model fitting, simulations and hyperparameter recovery 

Hierarchical Bayesian Inference (HBI) 38 was used to fit the models to participants’ behavioural 

data, enabling precise estimate of the hyperparameters at the block level for each participant. 
The hyperparameters were selected by maximizing the likelihood of the estimated actions 

given the true actions. For the mixture-of-experts architecture, we fit the model on all 
participants block-by-block to estimate the hyperparameters at the single block and single 

participant level. For the subsequent direct comparison between Feature RL and Abstract RL 

models, we used HBI for concurrent model fitting and comparison on an individual, block-by-
block basis 38. The model comparison provided the likelihood that each RL algorithm best 

explained participants’ choice data. That is, this measure was a proxy to whether learning 
followed a Feature RL or Abstract RL strategy. Therefore, for all fitting analyses, blocks were 

first sorted according to their length, from longer to shorter, at the individual participant’s level. 
The HBI procedure was then implemented on all participants’ data, proceeding block-by-block.  

We also simulated the models’ action-selection behaviour to benchmark their similarity to 

human behaviour and, in the case of the Feature RL vs Abstract RL comparisons, to 

additionally compare their formal learning efficiency. In the case of the mixture-of-experts RL 
architecture, we simply used the estimated hyperparameters to simulate 45 artificial agents, 

each completing 100 blocks. The simulation allowed us to compute - for each expert RL 
module - the mean responsibility signal, and the mean expected value across all states for the 

chosen action. Additionally, we also computed the learning speed (time to learn the rule of a 
block) and compare it with the learning speed of human participants.  

In the case of the simple Feature RL and Abstract RL models, we added noise to the state 
information in order to have a more realistic behaviour (from the perspective of human 
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participants). In the empirical data, the action (fruit selection) in the first trial of a new block 

was always chosen at random because participants did not have access to which were the 
appropriate representations (states). In later trials participants may have followed specific 

strategies. For the model simulations we simply assumed that states were corrupted by a 
decaying noise function:  

𝑛4 = 𝑛c(1	/	𝑡9/d4e)          (10) 

where nt is the noise level at trial t, n0 the initial noise level (randomly drawn from a uniform 
distribution within the interval [0.3 0.7]), and rte was the decay rate, which was set to 3. This 

meant that in early trials in a block there was a higher chance of basing the action on the wrong 

representation (at random), rather than following the appropriate value function. The actions 
in later trials had a decreasing probability of being chosen at random. This approach is a 

combination of the classic 𝜺-greedy policy and standard SoftMax action-selection policy in RL. 
The hyperparameters values were sampled from the set obtained participants’ data maximum 

likelihood fits. We simulated 45 artificial agents solving 20 blocks each. The procedure was 
repeated 100 times for each block with new random seeds. We used two metrics to compare 

the efficiency of the two models: learning speed (same as above, the time to learn the rule of 
a block), as well as the fraction of failed blocks (blocks in which the rule was not learned with 

the 80-trials limit).  

We performed a parameter recovery analysis for the simple Feature RL and Abstract RL 

models based on the data from the main experiment. The parameter recovery analysis was 
done in order to confirm that the fitted hyperparameters had sensible values and the models 

themselves were a sensitive description of human choice behaviour 40. Using the same noisy 
procedure described above, we generated one more simulated dataset, using the exact blocks 

that were presented to the 33 participants. The blocks from simulated data were then sorted 

according to their length, and the hyperparameters a and b were fitted by maximizing the 

likelihood of the estimated actions given the true model actions. We report in Figure S4 the 

scatter plot and correlation between hyperparameters estimated from participants data and 
recovered hyperparameters values, showing good agreement notwithstanding the noise in the 

estimation.  

For the data from the behavioural session after multivoxel neurofeedback, blocks were first 

divided into whether the targeted feature was relevant or irrelevant to the rule of a given block. 
We then applied the HBI procedure as described above, on all participants, with all blocks of 

the same type (e.g. targeted feature relevant) ordered by length. This allowed us to compute - 
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based on whether the targeted feature was relevant or irrelevant, the difference in frequency 

between the models. We resampled with replacement to produce distributions of mean 
population bias for each block type.  

 

fMRI scans: acquisition and protocol 

All scanning sessions took place in a 3T MRI scanner (Siemens, Prisma) with a 64-channel 
head coil in the ATR Brain Activation Imaging Centre. Gradient T2*-weighted EPI (echoplanar) 

functional images with blood-oxygen-level-dependent (BOLD) sensitive contrast and multi-
band acceleration factor 6 were acquired. Imaging parameters: 72 contiguous slices (TR = 1 

sec, TE = 30 ms, flip angle = 60 deg, voxel size = 2×2×2 mm3, 0 mm slice gap) oriented parallel 
to the AC-PC plane were acquired, covering the entire brain. T1-weighted images (MP-RAGE; 

256 slices, TR = 2 s, TE = 26 ms, flip angle = 80 deg, voxel size = 1×1×1 mm3, 0 mm slice 

gap) were also acquired at the end of the first session. For participants who joined the 
neurofeedback training sessions, the scanner was realigned to their head orientations with the 

same parameters on all sessions.  

 

fMRI scans: standard and parametric general linear models 

BOLD-signal image analysis was performed with SPM12 (http://www.fil.ion.ucl.ac.uk/spm/), 

running on MATLAB v9.1.0.96 (r2016b) and v9.5.0.94 (r2018b). The fMRI data for the initial 
10 sec of each block were discarded due to possible unsaturated T1 effects. Raw functional 

images underwent realignment to the first image of each session. Structural images were re-
registered to mean EPI images and segmented into grey and white matter. The segmentation 

parameters were then used to normalize (MNI) and bias-correct the functional images. 

Normalized images were smoothed using a Gaussian kernel of 7 mm full-width at half-
maximum.  

GLM1: regressors of interest included ‘High value‘, ‘Low value’ (trials were labelled as such 

based on the median split of the trial-by-trial expected value for the chosen option computed 
from the best fitting algorithm - Feature RL or Abstract RL), ‘Feature RL’, ‘Abstract RL’ (trials 

were labelled as such based on the best fitting algorithm at the block level). For all, we 

generated boxcar regressors at the beginning of the visual stimulus (character) presentation, 
with duration 1 sec. Contrast of [1 -1] or [-1 1] were applied to the regressors ‘High value’ - 

‘Low value’, and ‘Feature RL’ - ‘Abstract RL’. Specific regressors of no interest included the 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.10.29.361469doi: bioRxiv preprint 

https://doi.org/10.1101/2020.10.29.361469
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 29 

time in the experiment: ‘early’ (all trials falling within the first half of the experiment), and ‘late’ 

(all trials falling in the second half of the experiment). The early/late split was done according 
to the total number of trials: taking as ‘early’ the trials from the first block onward, adding blocks 

until the trial sum exceeded the total trials number divided by two.  

GLM2 (PPI): the seed was defined as a sphere (radius = 6mm) centred around the individual 
peak voxel from the ‘High value’ > ‘Low value’ group-level contrast, within the vmPFC (peak 

coordinates [2 50 -10], radius 25 mm). The ROI mask was defined individually to account for 
possible differences across participants. Two participants were excluded from this analysis as 

they did not show any significant cluster of voxels in the bounding sphere (even at very lenient 

thresholds). The GLM for the PPI included 3 regressors (the PPI, the mean BOLD signal of the 
seed region, and the psychological interaction), as well as nuisance regressors described 

below.  

For all GLM analyses, additional regressors of no interest included a parametric regressor for 
reaction time, regressors for each trial event (fixation, fruit options presentation, choice, button 

press, ITI), block regressors, the six head motion realignment parameters, framewise 

displacement (FD) computed as the sum of the absolute values of the derivatives of the six 
realignment parameters, the TR-by-TR mean signal in white matter and TR-by-TR mean signal 

in cerebro-spinal fluid. 

Second-level group contrasts from all models were calculated as one-sample t-tests against 
zero for each first-level linear contrast. Statistical maps were z-transformed, and then reported 

at a threshold level of P(fpr) < 0.001 (Z > 3.09, false positive control meaning of cluster forming 
threshold), unless otherwise specified. Statistical maps were projected onto a canonical MNI 

template with MRIcroGL [https://www.nitrc.org/projects/mricrogl/] or a glassbrain MNI template 

with Nibabel 2.5.0, part of the NiPy suite. 

 

fMRI scans: pre-processing for decoding 

As above, the fMRI data for the initial 10 sec of each run were discarded due to possible 

unsaturated T1 effects. BOLD signals in native space were pre-processed in MATLAB v7.13 
(R2011b) (MathWorks) with the mrVista software package for MATLAB 

[http://vistalab.stanford.edu/software/]. All functional images underwent 3D motion correction. 
No spatial or temporal smoothing was applied. Rigid-body transformations were performed to 

align the functional images to the structural image for each participant. One region of interest 
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(ROI), the HPC, were anatomically defined through cortical reconstruction and volumetric 

segmentation using the Freesurfer software [http://surfer.nmr.mgh.harvard.edu/]. Furthermore, 
VC subregions V1, V2, and V3 were also automatically defined based on a probabilistic map 

atlas 70. The vmPFC ROI was defined based on the significant voxels from the GLM1 ‘High 
value’ > ‘Low value’ contrast at p(fpr) < 0.0001, within the OFC. All subsequent analyses were 

performed using MATLAB v9.5.0.94 (r2018b). Once ROIs were individually identified, time-
courses of BOLD signal intensities were extracted from each voxel in each ROI and shifted by 

6 sec to account for the hemodynamic delay (assumed fixed). A linear trend was removed from 
the time-courses, which were further z-score normalized for each voxel in each block to 

minimize baseline differences across blocks. The data samples for computing the individual 
feature identity decoders were created by averaging the BOLD signal intensities of each voxel 

over 2 volumes, corresponding to the 2 sec from stimulus (character) onset to fruit options 

onset.  

 

Decoding: multivoxel pattern analysis (MVPA) 

All MVP analyses followed the same procedure. We used sparse logistic regression (SLR) 71, 

to automatically select the most relevant voxels for the classification problem. This allowed us 
to construct several binary classifiers (e.g. feature id.: colour - red vs green, stripes orientation 

- horizontal vs vertical, mouth direction - right vs left).  

Cross-validation was used for each MVPA by repeatedly subdividing the dataset into a “training 

set” and a “test set” in order to evaluate the predictive power of the trained (fitted) model. The 
number of folds was set at k=50. On each fold, 80% of the data was assigned to the training 

set, and the remaining to the test set. The samples assigned to either set were randomly 
chosen in each fold. Furthermore, SLR classification was optimized by using an iterative 

approach 72: in each fold of the cross-validation, the feature-selection process was repeated 
10 times. On each iteration, the selected features (voxels) were removed from the pattern 

vectors, and only features with unassigned weights were used for the next iteration. At the end 
of the cross-validation, the test accuracies were averaged for each iteration across folds, in 

order to evaluate the accuracy at each iteration. The number of iterations yielding the highest 

classification accuracy was then used for the final computation. Results (Figure 5C) report the 
cross-validated average of the best yielding iteration. 

For the multivoxel neurofeedback experiment, we used the entire dataset to train the classifier 

in VC. Thus, each classifier resulted in a set of weights assigned to the selected voxels; these 
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weights could be used to classify any new data sample - and therefore, compute a likelihood 

of it belonging to the target class.  

 

Real-time multivoxel neurofeedback and fMRI pre-processing 

As in previous studies 51,52,73, during the multivoxel neurofeedback manipulation, participants 

were instructed to modulate their brain activity, in order to enlarge a feedback disc and 
maximize their cumulative reward. Brain activity patterns measured through fMRI were used 

in real time to compute the feedback score. Unbeknownst to participants, the feedback score, 
ranging from 0 to 100 (empty to full disc), represented the likelihood of a target pattern 

occurring in their brain at measurement time. Each trial started with an induction period of 6 
sec, during which participants viewed a cue (small grey circle) which instructed them to 

modulate their brain activity. This period was followed by a 6 sec rest interval, and then by a 2 

sec feedback, during which the disc appeared on the screen. Lastly, each trial ended with a 6 
sec inter-trial interval (ITI). Each block was composed of 12 trials, and one session could last 

up to 10 blocks (depending on time availability). Participants did 2 sessions on consecutive 
days. Within a session the maximum monetary bonus was 3,000 JPY. 

The feedback was calculated through the following steps. In each block, the initial 10 sec of 

fMRI data were discarded to avoid unsaturated T1 effects. First, newly measured whole-brain 

functional images underwent 3D motion correction using Turbo BrainVoyager (Brain 
Innovation, Maastricht, Netherlands). Second, time-courses of BOLD signal intensities were 

extracted from each of the voxels identified in the decoder analysis for the target ROI (VC). 
Third, the time-course was detrended (removal of linear trend), and z-score normalized for 

each voxel using BOLD signal intensities measured up to the last point. Fourth, the data 
sample to calculate the target likelihood was created by taking the average BOLD signal 

intensity of each voxel over the 6 sec (6 TRs) ‘induction’ period. Finally, the likelihood of each 
feature level (e.g. right vs left mouth direction) being represented in the multivoxel activity 

pattern was calculated from the data sample using the weights of the previously constructed 
classifier.   
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