
1 
 

Dynamic organization of cerebellar climbing fiber response and 1 

synchrony in multiple functional modules reduces dimensions for 2 

reinforcement learning 3 

 4 

Huu Hoang1*, Shinichiro Tsutsumi2*, Masanori Matsuzaki3, Masanobu Kano4,5, Mitsuo Kawato6, 5 

Kazuo Kitamura7# & Keisuke Toyama1# 6 

 7 

1 ATR Neural Information Analysis Laboratories, Japan 8 

2 RIKEN Center for Brain Science, Japan 9 

3 Department of Physiology, Graduate School of Medicine, The University of Tokyo, Japan 10 

4 Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, 11 

Japan 12 

5 International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 13 

Japan 14 

6 ATR Computational Neuroscience Laboratories, Japan 15 

7 Department of Neurophysiology, Graduate School of Interdisciplinary Research, University of 16 

Yamanashi, Japan 17 

 18 

* These authors contributed equally to this work 19 

# Correspondence: Kazuo Kitamura (kitamurak@yamanashi.ac.jp) and Keisuke Toyama 20 

(toyama@atr.jp)  21 

 22 

  23 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.12.05.518634doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.05.518634
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 24 

Dynamic functional organization by synchronization is theorized to be essential for dimension 25 

reduction of the cerebellar learning space. We analyzed a large amount of coordinate-localized, 26 

two-photon imaging data from cerebellar Crus II in mice undergoing “Go/No-go” reinforcement 27 

learning. Tensor component analysis revealed that a majority of climbing fiber inputs to 28 

Purkinje cells were reduced to only four functional components, corresponding to accurate 29 

timing control of motor initiation related to a Go cue, cognitive error-based learning, reward 30 

processing, and inhibition of erroneous behaviors after a No-go cue. Spatial distribution of these 31 

components coincided well with the boundaries of Aldolase-C/zebrin II expression in Purkinje 32 

cells, whereas several components are mixed in single neurons. Synchronization within 33 

individual components was bidirectionally regulated according to specific task contexts and 34 

learning stages. These findings suggest that the cerebellum, based on anatomical compartments, 35 

reduces dimensions by self-organization of components, a feature that may inspire new-36 

generation AI designs.  37 

 38 

 39 

Introduction 40 

Computational learning theory asserts that machine learning algorithms necessitate as many 41 

training data samples as the number of their parameters for correct generalization1–5. In contrast, 42 

although the cerebellum contains tens of billions of neurons and even more synapses, and is 43 

involved in diverse functions6,7, each of which may require a different coding scheme8–10, 44 

animals can learn new behaviors within thousands of trials, for which the cerebellum is mainly 45 

responsible11. To reconcile these observations, previous theories have proposed that cerebellar 46 

compartments12–14 and spike synchronization drastically reduce effective numbers of learning 47 

parameters (degrees of freedom) and enable learning from small samples15–18. On one hand, the 48 

cerebellar cortex is organized into multiple longitudinal compartments with different intrinsic 49 
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neuronal activity12,19–25, each forming a computational unit26. Outstandingly in each of these, 50 

aldolase C (AldC)-positive and negative zones represent distinct information in adaptation of 51 

the vestibulo-ocular reflex27–29 and in eyeblink conditioning30–32. Therefore, this 52 

compartmentalization constitutes, at least in part, dimension reduction for cerebellar functions 53 

related to eye movement and conditioning. On the other hand, synchronization of climbing fiber 54 

(CF) activity, which mainly originates from inferior olivary neurons33–35, contributes strongly to 55 

cerebellar functions36–38. During acquisition of complex behaviors in motor activity39–41 or 56 

reward processing42–45, CF synchrony could provide flexible dimension control of neural 57 

dynamics15,16,18,46. Moreover, synchrony is high within cerebellar compartments, but not across 58 

them, implying a structure-function relationship between cerebellar compartments and 59 

synchronization47–49. However, it is unclear how compartments and synchronization together 60 

might facilitate dimension reduction for learning of cognitive functions for which genetic 61 

prewiring is unlikely to be sufficient.  62 

 63 

To shed light on mechanisms of dimension reduction in the cerebellum, we systematically 64 

examined two-photon recordings of CF activity from Purkinje cells in eight AldC compartments 65 

of mice learning an auditory discrimination Go/No-go task50. This task requires reinforcement 66 

learning guided by reward, and necessitated, first, accurate timing control of licking to obtain a 67 

reward, second, learning based on reward prediction error, third, reward processing, and fourth, 68 

inhibition of licking to the No-go-cue. We applied a hyper-acuity spike timing detection 69 

algorithm with 10-ms resolution51 and tensor component analysis52 of CF firings, and found that 70 

50% of the variance was explained by only four clearly separable components, each 71 

corresponding to one of the above four functions. Furthermore, spatial distributions of these 72 

four components were markedly different with functional boundaries between the medial and 73 

lateral Crus II and across AldC compartments. Ten-millisecond (ms) resolution analyses 74 

revealed that the CF synchrony of a specific component was high in a number of synchronous 75 
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neurons and in synchrony strength for a specific engaged cue-response condition, and was 76 

spatially localized within corresponding compartments. Strikingly, tensor components were 77 

shaped by bidirectional synchrony-response changes during the course of learning. These results 78 

demonstrated that the cerebellum reduces dimensions of activity in a large number of neurons to 79 

a much smaller number of components, each of which is driven by a synchronization scheme 80 

that conforms to a specific task. Interestingly, we also found that individual anatomical zones 81 

and even a single CF could contain signals from multiple components53–56.  82 

 83 

This study provided the first evidence simultaneously supporting the two major theories of 84 

cerebellar functions in a single task18,57–62, and should contribute to resolution of the long-85 

standing controversy63. This study also unveiled the secret of cerebellar functional architecture: 86 

learning from small samples is achieved by compartmentalization (reduced degrees of freedom) 87 

due to synchronization and dynamics; therefore, it may contribute to new-generation AI designs. 88 

 89 

 90 

Results 91 

Two behavioral learnings in a Go/No-go task 92 

We trained mice to perform a Go/No-go auditory discrimination task (Figure 1A), which 93 

required cognition beyond sensorimotor-related functions, thereby revealing functional 94 

differences across AldC compartments during learning50. Briefly, mice (n = 17) were trained to 95 

associate the “Go” cue (a 9-kHz tone for 0.5 s) with a water reward and to react by licking 96 

during a response period of 1 s after cue onset. The “No-go” cue (a 4-kHz tone for 0.5 s) was 97 

not associated with a reward, but a 4.5-second timeout was imposed if the mice licked during 98 

the response period (Figure 1A). We recorded 87 sessions from 17 mice (each underwent no 99 

more than 7 sessions), including 26,517 trials of auditory discrimination Go/No-go tasks in the 100 

three learning stages (1st, 2nd, and 3rd stages with fraction correct <0.6, 0.6 - 0.8, 0.8<, 101 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.12.05.518634doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.05.518634
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 
 

respectively). We categorized trials into the four cue-response conditions: HIT trials in the go 102 

task (lick after go cue, n = 12,334), false alarm (FA) trials (lick after No-go cue, n = 5,588), 103 

correct rejection (CR) trials (no lick after No-go cue, n = 7,681) and MISS trials (no lick after 104 

go cue, n = 914). Note that before the main Go/No-go auditory discrimination training, mice 105 

had already been trained to lick in response to both high and low tones with indiscriminate 106 

reward feedback. 107 

 108 

Behavioral data indicated that the lick rate was dramatically reduced in FA trials during the 109 

three stages of learning (Fig 1B), but it remained relatively unchanged in HIT trials. During 110 

learning, there was an increase in the fraction correct for the Go cue (0.78 ± 0.1 and 0.98 ± 0.01, 111 

1st and 6th sessions, respectively, Fig 1D). There were no consistent changes in the reaction 112 

time after Go; however, we found decreased lick-latency fluctuation in the licking response with 113 

learning (0.45 ± 0.15 and 0.22 ± 0.06, 1st and 6th sessions, respectively, Fig 1C-D). For the No-114 

go cue, the fraction incorrect decreased after learning (0.66 ± 0.12 and 0.15 ± 0.06, 1st and 6th 115 

sessions, respectively, Fig 1D), along with a decreased lick rate in the early response window 116 

(0-500 ms after cue onset, 2.4 ± 1.2 and 0.3 ± 0.2 Hz, 1st and 6th sessions, respectively, Fig 1C-117 

D). At an individual level (see Fig S1 for behavior changes associated with Go and No-go cues 118 

of individual mice), 14 out of 17 mice showed a negative rate of change in lick-latency 119 

fluctuation, while the rate of learning-related changes in the number of early licks for the No-go 120 

cue was negative for all mice (Fig 1E). In summary, behavioral data indicated that mice 121 

successfully learned an auditory discrimination task by changing licking behavior in the early 122 

response window: first, achieving more precise timing of the first lick after Go cues and second, 123 

suppressing licks after No-go cues. 124 

 125 

 126 

 127 
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 128 

 129 

 130 

Figure 1: Go/No-go auditory-cue discrimination task and behavior changes during learning. A: 131 

Schematic diagram of a mouse performing the Go/No-go discrimination task under a two-photon 132 

microscope. B: the lick rate of the four cue-response conditions sampled in the three learning stages 133 

(blue, green and red traces for 1st, 2nd and 3rd stages, respectively). C: from top to bottom, lick-latency, 134 

lick-latency fluctuation in Go trials and the early lick rate in No-go trials of a representative mouse 135 

(indicated by black arrow in E). Trials were sorted by the time course of training. Red traces indicate 136 

polynomial fittings of lick parameters as functions of trials (see Methods). D: changes in four learning 137 

indices as functions of training sessions, including the fraction correct of Go cues, the fraction incorrect 138 

of No-go cues, lick-latency fluctuation in Go trials, the early lick rate in No-go trials. Thin gray traces 139 

are of individual animals (n = 17 mice) and thick dark traces are the means. E: scatter plot for rate of 140 

change in lick-latency fluctuation for Go cues (abscissa) and rate of change in early lick rate for No-go 141 

cues (ordinate) estimated from licking behavior of individual mice. Black dots were for mice whose rates 142 

were both negative and red dots were for the three mice that showed increased lick-latency fluctuation 143 

after learning (positive rate).  144 

 145 
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Opposite changes in cue-related CF responses in medial and lateral parts of Crus II during 146 

learning 147 

We used the Aldoc-tdTomato transgenic mouse line49 to systematically explore functional 148 

differences in CF inputs to AldC compartments at single-cell resolution during the task. While 149 

mice underwent the Go/No-go task, we performed a total of 236 sessions of two-photon calcium 150 

imaging (sampling rate, 7.8 Hz) from PC dendrites at every boundary of AldC expression in 151 

eight AldC compartments (7+, 6-, 6+, 5-, 5+, 5a-, 5a+ and 4b-) in lobule Crus II to 152 

simultaneously monitor CF-dependent dendritic Ca2+ signals (see Methods and Tables S1-2 for 153 

detailed numbers of neurons and trials recorded). To investigate CF signals with higher temporal 154 

resolution than the two-photon recordings, CF firings were estimated for 6,445 PCs using 155 

hyperacuity software51 (HA_time, 100 Hz, see Methods and Fig S2A for reliability of 156 

HA_time). These technical advances allowed us to monitor CF firing activities of a large 157 

number of Purkinje cells in different AldC compartments during the course of learning with 158 

high temporal precision. 159 

  160 

We studied population peri-stimulus time histograms (PSTHs) of CF firings sampled in the 161 

three learning stages for the four cue-response conditions. We found contrastive response 162 

profiles between the lateral (AldC 7+ to 5-) and medial parts of Crus II (AldC 5+ to 4b-) 163 

segregated by the anatomical and functional border50 (Figs 2A-D). CF firings in HIT trials were 164 

large and diffusive at the initial learning stage across the entire medial Crus II, as well as a 165 

fraction (AldC 6+) of the lateral Crus II (Fig. 2A 1st stage). However, they became even 166 

stronger and compartmentally more focused on AldC positive compartments of the lateral and 167 

medial parts of Crus II (AldC 6+, 5+, 5a+), and temporally confined within 200 ms after cue 168 

onset (2nd and 3rd stages). PSTHs in FA trials were as strong as those in HIT trials initially, 169 

distributed across almost the entire lateral and medial parts of Crus II, but more in the lateral 170 

parts (Fig. 2B, 1st stage). However, they gradually decreased with learning and finally became 171 
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rather weak (2nd - 3rd stages), while maintaining the initial compartmental distribution profiles. 172 

For CR trials, PSTHs were initially localized in the lateral Crus II, and finally became confined 173 

to a fraction (AldC 6-, 6+) of the lateral Crus II (Fig. 2C 1st - 3rd stages). There was only 174 

spontaneous CF activity in MISS trials across the entire learning stage (Fig 2D). 175 

 176 

We also studied the compartmental topology of the cue-response for the population PSTH, 177 

including all three learning stages, evaluating response strength as cumulative PSTHs for 0-300 178 

ms after cue onset (Fig. 2E, see Methods). Response strength in HIT trials (black trace) across 179 

compartments exhibited 3 high peaks – including compartments 5+ (21 Hz), 5a+ (20.5 Hz), and 180 

6+ (14.4 Hz) – and 4 smaller valleys – including compartments 7+ (8.6 Hz), 5- (8.4 Hz), 5a- 181 

(11.8 Hz), and 4b- (12.4 Hz). By contrast, response strength in FA trials was stronger in the 182 

lateral than the medial Crus II. Response strength in CR shows a decline from lateral to medial, 183 

and MISS trials remained almost flat across both medial and lateral parts of Crus II.  184 

 185 

To better demonstrate opposite response changes of medial and lateral parts at each learning 186 

stage, we selected the top 100 neurons in AldC compartments 5+ and 6- (Fig 2E), which showed 187 

the largest differences in response strength to HIT and FA trials, respectively, i.e., the neurons 188 

whose response strength was most selective for HIT or FA trials (see Methods). We observed 189 

that AldC 5+ neurons exhibited a marked increase in PSTHs as well as a phase advance in cue-190 

response along with learning for the HIT condition (peak PSTH, 6.6 and 9.4 Hz for the 1st and 191 

3rd stages, respectively, Figure 2F), while that of AldC 6- neurons showed a significant decrease 192 

for the FA condition along with learning (8.6 and 4.0 Hz for the 1st and 3rd stages, 193 

respectively). Importantly, we found remarkably opposite changes in synchrony with learning of 194 

neurons in AldC compartments 5+ and 6-, which were strongly associated with corresponding 195 

opposite changes in their responses even on a single-trial basis (Fig S3). We name them 196 

“bidirectional synchrony-response changes”. 197 
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 198 

 199 

 200 

Figure 2: Opposite changes in CF response to cues in the lateral and medial parts of Crus II. A-D: 201 

Pseudo-color representation of population peri-stimulus time histograms (PSTHs) of CF responses 202 

sampled during three learning stages across four cue-response conditions (HIT trials (A), FA trials (B), 203 

CR trials (C), and MISS trials (D)) in each AldC compartment in Crus II. E: response strength estimated 204 

as cumulative PSTHs for 0-300 ms after the cue onset for HIT (black trace), FA (orange trace), CR (green 205 

trace), and MISS (cyan trace) trials across all three learning stages. Dashed traces show differences in 206 

cumulative PSTHs between the 1st and 3rd stages for HIT (black: 3rd-1st) and FA (orange: 1st-3rd) for 207 

individual AldC compartments. Black arrows indicate the two representative AldC compartments that 208 

show the largest changes in CF response after learning for HIT (5+) and FA (6-) trials. F: PSTHs in HIT 209 

and FA trials of the two representative AldC compartments 5+ and 6- during learning.   210 

 211 
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Tensor component analysis of CF activities  212 

We examined whether bidirectional synchrony-response changes observed in AldC 213 

compartments 5+ and 6- can be generalized across the entire Crus II. For this purpose, we 214 

conducted tensor component analysis52 (TCA) to decompose high-dimensional CF firings, i.e., 215 

PSTHs of neurons in the four cue-response conditions sampled during three different learning 216 

stages, into low-dimensional components, each with a unique set of coefficients of a temporal 217 

factor, the cue-response condition, and the neuron (see Methods for more details).  218 

 219 

We found that only four distinct tensor components underlie CF firings (Fig 3), and they 220 

accounted for about half the variance in 6,445 neuronal PSTHs (see Fig S4 for more details). 221 

The first tensor component (TC1) had a fast temporal profile peaking at 200 ms after cue onset 222 

(Fig 3A). This component TC1 was dominant mostly in the HIT condition and only weakly 223 

manifested in FA (Fig 3B). Compartmentally, TC1 was concentrated in AldC positive 224 

compartments across the medial and lateral Crus II and gradually increased its coefficients 225 

along with learning (Fig 3C). By contrast, the second tensor component (TC2) was dominant in 226 

the FA condition and weakly manifested in HIT (Fig 3A). It had a very fast temporal profile that 227 

peaked at 100 ms after cue onset, and decayed sharply toward baseline within 400 ms after cue 228 

onset. TC2 was distributed broadly in the lateral Crus II during early stages of learning (Fig 3C), 229 

but its coefficients were markedly reduced in the 3rd stage. The third tensor component (TC3) 230 

had a slow temporal profile, peaking at ~300 ms, and was prolonged for 1 s after cue onset. TC3 231 

was dominant in the HIT condition and little observed in FA. Compartmentally, TC3 was 232 

initially distributed in the entire medial Crus II, but mainly in AldC negative compartments 233 

during later stages of learning (Fig 3C). Finally, the fourth tensor component (TC4) had 234 

temporal profile and compartmental distribution similar to those of TC2, but was present only in 235 

the CR condition. In summary, TCA revealed four tensor components with distinct temporal and 236 

compartmental profiles for different cue-response conditions.        237 
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 238 

 239 

Figure 3: Tensor component analysis of CF activity. A-C: (A) Coefficients of temporal, (B) cue-response 240 

condition, and (C) neuronal factor of the four tensor components (TC1-TC4, from top to bottom) 241 

estimated by TCA. TCs are shown in their contribution order (see Methods for details). The three vertical 242 

lines in (A) represent the timing at 0, 100 and 200 ms after the cue onset. Bars with lines in (C) show 243 

means and SDs of neuron factor coefficients, grouped by eight AldC compartments (shown in red and 244 

blue colors for AldC positive and negative compartments, respectively) and three learning stages. The 245 

thick dashed line in (C) indicates a functional boundary between the lateral and medial Crus II48.  246 

 247 

Synchrony dynamics shape tensor component activities 248 

To investigate synchrony dynamics of the four tensor components, we selected the neurons that 249 

were most strongly represented by each component, i.e., with the highest contribution by that 250 

component. Briefly, we sampled the top 300 neurons for each TC at each learning stage, while 251 

rejecting those that overlapped. As a result, we selected 2,096 neurons, whose cumulative 252 

responses accounted for approximately 40% of total responses in the entire population (see 253 

Methods and Fig S5 for more details; Basically, the same results were obtained when we 254 

selected fixed proportion of the sampled neurons for each TC at each learning stage). Firings for 255 

each class of neurons varied considerably with learning stages, while maintaining roughly the 256 
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same temporal profiles of the corresponding tensor components (compare Fig. S5C PSTH 257 

temporal profiles at the three learning stages with the corresponding temporal profiles of TCs in 258 

Fig 3A).  259 

 260 

We found that synchrony strengths (estimated as the summation of cross-correlograms in ±10 261 

ms around the center time bin, see Methods) within TCs (0.40 ± 0.17, 0.36 ± 0.17, 0.33 ± 0.17 262 

and 0.19 ± 0.13 for TC1-4, respectively) were significantly larger than those across TCs (0.12 ± 263 

0.09, p < 0.0001 for all pairwise comparisons between within-TC and across-TC populations, 264 

Fig 4A). We further investigated synchrony strengths for specific cue-response conditions in 265 

which TC1-2 neurons were engaged. More specifically, synchrony strength (which was 266 

normalized by the number of spikes) of TC1 in HIT trials (0.40 ± 0.17) and that of TC2 in FA 267 

trials (0.37 ± 0.17) were significantly stronger than those of TC1-2 in other cue-response 268 

conditions (0.19 ± 0.11 and 0.23 ± 0.14 for TC1-others and TC2-others, respectively, Fig 4B). 269 

That tendency was observed even at a single-trial basis, with strong instantaneous synchrony 270 

(total number of synchronous firings in 30-ms bins in a window of 300 ms before the first lick 271 

onset, see Methods) was found in TC1-HIT and TC2-FA trials at the 3rd and 1st learning stages, 272 

respectively (Fig 4C and Supplemental Movie M1). Furthermore, such synchrony dynamics 273 

were well aligned with the spatial distribution of TC1-2 (see Supplemental Movie M2). 274 

Together, these results suggested that synchronization, spatially guided by AldC compartments, 275 

organizes TC populations only during dedicated cue-response conditions.   276 

 277 

Moreover, we found that the firing of TC1 strongly increased (peak PSTH, 6.8 and 10.5 Hz for 278 

1st and 3rd stages, respectively, Fig 4D) along with learning for the HIT condition, while it was 279 

moderate at the 1st stage and almost disappeared at the 3rd stage for the FA condition. By 280 

contrast, the cue-response of TC2 remained small across all learning stages for the HIT 281 

condition, while it was strong at the 1st and 2nd stages and markedly decreased at the 3rd stage 282 
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for the FA condition (10.6 and 6.8 Hz for 1st and 3rd stages, respectively, Fig 4D). We also 283 

observed clear synchrony changes during learning only for neurons of TC1 (increased for Go 284 

trials) and TC2 (decreased for No-go trials, Fig 4E and S6). Together, those findings suggest 285 

that synchronization may drive two opposite response changes in the early window associated 286 

with the Go cue for TC1 and the No-go cue for TC2.  287 

 288 

 289 

Figure 4: Dynamics of synchrony and opposite changes in synchrony of TC1-TC2 during the course of 290 

learning. A: histograms of synchrony strength between TC1-4 neurons (colored traces) in comparison 291 

with those across TCs (black trace). B: histograms of synchrony strength computed specifically in HIT 292 

trials for TC1 (solid blue trace) and in FA trials for TC2 (solid orange trace), contrasting with those in 293 

other cue-response conditions (dashed traces). C: representative images of synchronous firings in 294 

TC1/HIT (5a-/5a+) and TC2/FA (6+/5-) in the 1st and 3rd stages. The horizontal line shows the time 295 

course of -200 ms to 1 s after cue onset with a small tick indicating the timing of the snapshot relative to 296 
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the cue onset (the cue period of 500 ms was shown in red color). Short vertical bars indicate the lick 297 

timings. The snapshots capture firings of Purkinje cell dendrites (gray areas) co-activated in a time bin of 298 

10 ms. The hot-color spectrum represents pair-wise synchrony strength between the reference cells 299 

(pointed by black arrows) and other cells in the same recording session (see Supplemental Movies). D: 300 

PSTHs of TC1-TC2 neurons in HIT and FA trials in three learning stages. E: population CCGs of the 1st 301 

and 3rd stages indicated opposite changes in synchrony strength of TC1-TC2 neurons during learning. 302 

The red traces in CCGs indicate shift predictors estimated for the correlation solely due to the cue 303 

stimulus.  304 

 305 

Correlations between CF synchrony and licking behaviors 306 

The facts that TC1 increased synchrony in HIT trials during learning of precisely timed 307 

initiation of licking and that TC2 decreased synchrony in FA trials along with reduction in 308 

erroneous licks with learning suggest that two opposite synchrony changes are related to two 309 

changes in licking behaviors for the two corresponding cue-response conditions. To test these 310 

possibilities, we investigated synchrony-behavior correlations in the three response windows, 311 

namely, early lick (0 – 0.5 s), reward lick (0.5 – 2 s) and succeeding lick (2 – 4 s). These 312 

windows were determined from behavioral data showing that rewards were given in a window 313 

of 0.41-1.23 second after the first lick, timing of which was about 0.5 s after cue onset. 314 

 315 

For the early lick window, we found a tendency for TC1-synchronous spike-triggered lick 316 

responses in Go trials to be mostly positive, peaking at 200-300 ms for all three learning stages 317 

(Fig 5A). Importantly, peak amplitude increased with learning, from 7.4 to 11.5 Hz for the 1st 318 

and 3rd stages, respectively. Furthermore, on a single trial basis, instantaneous synchrony of 319 

TC1 neurons was negatively correlated with lick-latency fluctuation (slope = -0.02, p < 0.0001, 320 

2,115 trials, see Methods for details). 321 

 322 

Conversely, for TC2 neurons in No-go trials, synchronous spike-triggered lick responses in the 323 

positive time domain were very strong initially, but disappeared at the later stage (peak 324 

amplitude, 7.5 and 0.7 Hz for the 1st and 3nd stages, respectively, Fig 5B). Regression analysis 325 
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further showed that instantaneous synchrony of TC2 neurons was positively correlated with the 326 

early lick rate in No-go trials (slope = 0.24, p < 0.0001, 965 trials Fig 5B). Note that 327 

synchronous spike-triggered lick responses of TC1-TC2 in the reward lick and succeeding lick 328 

windows were small and unchanged during learning, suggesting that TC1-TC2 were neither 329 

related to rewards nor their sensorimotor feedback. Moreover, multiple regression analysis of 330 

the two early lick variables (Go and No-go) with instantaneous synchrony of the four TCs 331 

combined indicated that lick-latency fluctuation in Go trials was only correlated with synchrony 332 

of TC1 neurons, whereas the early lick rate in No-go trials was most strongly correlated with 333 

synchrony of TC2 neurons, although moderate correlations with synchrony of TC1 and TC4 334 

neurons were also observed (see Fig S7). 335 

 336 

We further conducted a decoding analysis to test how well the spiking model could predict 337 

licking behavior. By assuming that a single spike independently triggers a lick event following 338 

the spike-triggered lick histogram, we derived the likelihood of a trace of licking events given 339 

the spike train (see Supplemental Information for details). These results indicated that 340 

synchronous spikes of TC1-2 predicted occurrence of lick events statistically better than all 341 

spikes of TC1-2 neurons, all spikes of all neurons in the same recording session, or the chance 342 

level for which no correlation between spike and lick events was assumed (Fig S8). At the 343 

individual trial level, synchronous spikes of TC1 and TC2 were the best model for 344 

approximately 50% of all lick events in HIT and FA trials, respectively (Fig S8C). In addition to 345 

the decoding analysis, 4 out of 5 animals showed an increase in timing fluctuation of the first-346 

lick in HIT trials following muscimol injection at the left Crus II (Fig S9). Together, these 347 

results suggest strong relationships between synchronization of TC1-2 and licking behaviors.              348 

 349 
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 350 

Figure 5: Correlations of TC synchronous activities and licking behavior. A: synchronous spike-lick 351 

CCGs of TC1 neurons in the three response windows: early lick (0–0.5 s after cue onset), reward lick 352 

(0.5–2 s) and succeeding lick (2–4s). B: scatter plot of instantaneous synchrony and lick-latency 353 

fluctuation in Go trials of TC1 neurons. C: synchronous spike-lick CCGs of TC2 neurons in the three 354 

response windows similar to those in A. D: scatter plot of instantaneous synchrony and number of early 355 

licks in No-go trials of TC2 neurons. Each dot in scatter plots of B-D corresponds to a single trial. We 356 

used a multiple linear regression model with the two learning variables as functions of instantaneous 357 

synchrony of the four TCs and fraction correct. The black trace represents the correlation of two learning 358 

variables and instantaneous synchrony, with a slope and significance level indicated by asterisks. Note 359 

that the ordinate and abscissa of scatter plots in A-B were adjusted to show correlations specific to TC1 360 

or TC2 neurons (see Methods). 361 

 362 

Tensor representation in CF responses of individual cells in the cerebellar cortex 363 

While TCA clearly decomposed CF responses into four TCs, we also observed overlaps in TC 364 

representation at the individual neuron level, i.e., a single neuron may represent more than one 365 

TC by having large coefficients of multiple TCs (see Fig S5A for the ratio of overlapping 366 

neurons among TCs). We visualized such overlap by mixing the coefficients of TC1-4 for 367 

individual neurons by CMYK colors (Fig 6A). Compartmental distributions of each TC were 368 
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roughly maintained as shown in Fig 3C. TC1 was mostly distributed in AldC-positive 369 

compartments, TC2 and TC4 in the lateral Crus II, and TC3 in the medial Crus II, and mainly in 370 

AldC negative compartments at the later learning stage. However, neurons representing 371 

different TCs could reside in the same compartments. For instance, TC1 (cyan) and TC2 372 

(magenta) neurons could be found in AldC 6+ in the first two learning stages. More strikingly, 373 

we found that a fraction of neurons represented multiple TCs. They were “green” neurons for 374 

mixing of TC1-TC3 in AldC compartments 5a- and 5a+, and “dark magenta” neurons for 375 

mixing of TC2-TC4 in the lateral Crus II at the first stage. The tensor representation of 376 

individual neurons showed that TCs have complicated compartmental distributions that change 377 

during learning. At the same time, single AldC compartments and single neurons can represent 378 

multiple TCs.  379 

 380 

To systematically investigate changes in TC representation with learning, we classified all 381 

recorded neurons into one of the TC1-4 populations based on their TC coefficients, e.g., a 382 

particular neuron is classified as TC1 if its coefficient of TC1 is the highest among four TC 383 

coefficients. As expected, fractions of TC1 and TC4 neurons increased and those of TC2 and 384 

TC3 decreased significantly (Fig 6B). More interestingly, while fractions of TC2 and TC4 385 

neurons in the lateral Crus II (AldC compartments 7+ to 5-) changed in opposite directions 386 

(ANOVA, p < 0.0001 for changes in fractions across the three stages, n = 150 sessions, Fig 6C), 387 

their summation remained unchanged at about 60% even at the session level (ANOVA and 388 

pairwise t-tests, p > 0.3).  389 

  390 
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 391 

Figure 6: Tensor representation of individual cells in Crus II. A: CF inputs to 6,465 neurons were 392 

recorded in 8 AldC compartments (columns) and at three learning stages (rows). Each short bar indicated 393 

the location of a single cell relative to the AldC boundaries (vertical lines). The color of each cell was 394 

mixed by coefficients of the four tensor components (cyan – TC1, magenta – TC2, yellow – TC3 and black 395 

– TC4). Each row corresponds to a single recording session. For visualization purposes, the width of 396 

each AldC compartments was manually adjusted to 300 𝜇m. B: fractions of neurons classified as TC1-4 397 

in each of the three learning stages (color bars). Note that less than 6% of all recorded neurons could not 398 

be classified as TC1-4 (open bars). C: fractions of neurons in the lateral Crus II (AldC compartments 7+, 399 

6-, 6+, 5-) classified as TC2 (magenta) and TC4 (black) and their summation (TC2 + TC4, dark 400 

magenta) in 150 sessions (small open circles) and their means (solid large circles) for the three learning 401 

stages. 402 

 403 

 404 

Discussion 405 

One of the technical advances of this study was that we applied the hyperacuity algorithm51 to 406 

estimate spike timing from Ca signals with 10-ms resolution. This enabled us to study a huge 407 

number of neurons (>6,000) with hyperacuity resolution (10 ms) along a whole process of 408 

cognitive and motor learning, while spatially guided by Aldolase-C zones. Tensor component 409 

analysis (TCA) of this high spatio-temporal CF data revealed distinct components that may be 410 
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involved in different learning-related functions. In particular, TC1 consisted of neurons in AldC-411 

positive zones with fast responses in the HIT condition (Fig 3A). Importantly, their synchronous 412 

spike-triggered lick responses were almost zero for negative time lag and sharply raised in 413 

positive time lag (Fig 5A), suggesting that synchronous TC1 spikes control early licks as motor 414 

commands. This hypothesis is further supported by our observation that synchronous TC1 415 

spikes best predict early lick timings in HIT among four different models (Fig S8). Furthermore, 416 

increased CF synchrony in TC1 was negatively correlated with the decrease of lick-latency 417 

fluctuation (Fig 5B). Together, these findings for TC1 are in good agreement with the 418 

synchronization and timing control hypothesis of the cerebellum34,39,41,57,64, according to which, 419 

more synchronization could stabilize timing of synchronized motor commands by canceling 420 

noisy synaptic inputs to the IO, possibly leading to more precise timing control with less 421 

fluctuation65.  422 

  423 

TCA also revealed the component that may be involved in cognitive learning66,67. Namely, the 424 

TC2 population, distributed mostly in the lateral Crus II, showed very fast responses in the FA 425 

condition (Fig. 3A). As learning proceeded, TC2 synchronous firings in the FA condition 426 

decreased dramatically (Fig 4E). Notably, such a decrease in CF firing of TC2 neurons was 427 

highly correlated with a decrease in the early lick rate (Fig 5D). These results suggested that 428 

CFs projecting to TC2 neurons convey predictive error signals (unwarranted licks) specific to 429 

the No-go cue, in accordance with the Marr-Ito-Albus hypothesis18,59–61. We postulate that 430 

cognitive error signals can be computed as sign-reversed reward prediction errors by 431 

reinforcement learning algorithms. Because TC2 activity was within 0.2 seconds, but rewards 432 

were delivered mainly between 0.5 and 2 seconds after the cue, internal forward models, which 433 

may consist of a loop network of cerebral cortex, basal ganglia and the cerebellum68–70, could be 434 

employed to compute the reward prediction error before actual rewards arrived71,72. The 435 
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proposed combination of computational reinforcement learning models and internal forward 436 

models of the cerebellum can be tested in future experiments.  437 

 438 

Beside their correlation with error signals, synchronized CFs of TC2 neurons may also convey 439 

motor commands to control early licks in No-go trials (Fig 5C). How do climbing fibers serve a 440 

dual function of cognitive learning and motor control as reported in previous studies53,55? One 441 

possibility is that PCs that are involved in cognitive learning are assumed to generate SSs that 442 

also induce licks in FA trials as motor commands. Long-term depression (LTD) may occur by 443 

co-activation of parallel fibers and CF inputs to these PCs73–76. As a result, simple spikes (SSs) 444 

tend to decrease and fewer erroneous licks are generated.  445 

 446 

In contrast to TC1 and TC2 populations that exhibited marked learning effects, the TC3 447 

population showed only slight changes in CF firing and synchrony, except for becoming silent 448 

at the final learning stage for the FA condition (Fig S5C). The correlation of TC3 CFs with 449 

reward licks was high for HIT trials across all learning stages. Indeed, TC3 neurons may be 450 

related to both motor control and sensory feedback components of reward licks since spike-451 

triggered lick responses were large for both positive and negative time-lags (Fig S10A).  452 

 453 

We also found that TC4 is only related to CR trials (Fig 3B and Fig S5C). Increased CF firing in 454 

TC4 neurons with learning, especially in AldC compartment 6+, might induce more successful 455 

suppression of early licks after the No-go cue, i.e., an increase of CR trials and decrease of FA 456 

trials (Fig S10B). Spike-triggered lick responses further indicated that TC4 firings suppress the 457 

licks after the No-go cue compared to those in the pre-cue period (Fig S10C). It is interesting to 458 

note that TC2 and TC4 neurons (both responded actively to the No-go cue) possess not only 459 

almost identical temporal response profiles and overlapping spatial distributions (Fig. 3), but 460 

also the largest overlap among TCs (Fig S5A). Furthermore, although fractions of TC2 and TC4 461 
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neurons changed significantly, summation of their fractions remained unchanged during the 462 

course of learning (Fig 6C). We hypothesized that TC2 and TC4 neurons are of the same neuron 463 

population, but that they changed their cue-response specificity (FA to CR) due to LTD of 464 

parallel-fiber-Purkinje-cell synapses guided by CF inputs. Let us first assume that SSs show a 465 

similar temporal profile to those of CFs (Fig 3A) for TC2 PCs with a positive baseline firing 466 

rate. At the beginning of learning, both SSs and CSs of these Purkinje cells contribute to 467 

generation of early licks, as shown by spike-triggered lick responses (Fig 5C). Once LTD occurs 468 

at parallel-fiber-Purkinje-cell synapses, SS modulation turns negative and becomes an 469 

approximate mirror image of CS modulation77. At later stages of learning, even though CFs of 470 

the same PCs are activated following No-go cues (Fig S5C), these neurons contribute to 471 

suppression of early licks rather than generation, because SS action is stronger than CS effects 472 

on motor control. Future simultaneous recordings of SSs and CSs as well as downstream 473 

systems may reveal neural mechanisms of these neurons. 474 

 475 

Limitations of the current study are that activities of the four TC populations described above 476 

were of neurons sampled in different recording sessions, and that we did not investigate in detail 477 

single populations throughout learning. Thus, monitoring population activities as learning 478 

proceeds, combined with causal analysis of neuronal responses and behavior changes, is needed 479 

to understand diverse CF functions across TC populations. This is particularly crucial because 480 

CFs may multiplex motor, cognitive and reward-related information, as found in previous 481 

studies53–56. In Figure 6 we highlighted this possibility by showing a mixed tensor representation 482 

of 6,445 individual neurons in the cerebellar cortex. Even though each TC has a unique zonal 483 

distribution, individual zones or even neurons may represent multiple TCs and may be involved 484 

in different cerebellar functions.  485 

 486 
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From a computational learning-theory point of view, it is striking and extremely important that 487 

only four components seem to account for a wide variety of neural responses of Purkinje cells in 488 

eight AldC compartments (four TCs accounted for more than 50% of the variance of 6,445 489 

neurons in four cue-response conditions, Fig S4A). Furthermore, these four components also 490 

explain main learning effects in behaviors, that is, more precise timing control, error decrease, 491 

reward processing, and successful lick suppression. If a learning system possesses many degrees 492 

of freedom, a huge training dataset is theoretically required. But mice learned auditory 493 

discrimination Go/No-go task within hundreds of trials. This implies that the cerebellum 494 

reduces its degrees of freedom significantly, thanks to its zonal structure and IO electrical 495 

couplings. Dimensional reduction is certainly beneficial for the cerebellum to work in concert 496 

with the cerebral cortex and basal ganglia in different learning stages69,78–80. 497 

 498 

We also found that CF synchrony is spatially and temporally dynamic, in concert with the zonal 499 

structure. This phenomenon was demonstrated by the change in the number of synchronous 500 

spikes across PCs during learning (cf. Supplemental Movies M1-2). Synchronous firing 501 

decreased in TC2 neurons for the FA, but it increased in TC1 neurons for the HIT condition. 502 

Such opposite changes in CF synchrony were strongly correlated with changes in cue 503 

responsiveness (Fig 4 and Fig S3C). This phenomenon raised an important question of which 504 

factor, CF response or synchrony, drives licking behaviors. Our decoding analysis indicated that 505 

synchronous CSs better predict licking events than ordinary CSs (Fig S8). Furthermore, 506 

previous studies showed that highly synchronous CSs caused a large drop in deep cerebellar 507 

nucleus (DCN) activity while isolated CSs produced only weak inhibition81,82. These results 508 

together supported the view that synchronous CS activity shapes DCN output related to motor 509 

commands.   510 

 511 

Remarkably, we found that CF synchrony was significantly stronger within TCs than among 512 
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TCs, and the highest synchrony was observed when TCs function in their specific cue-response 513 

conditions (Fig 4A-C). Such synchrony dynamics could be realized by circuitry of Purkinje 514 

cells (PCs) - DCN – IO as follows. Under resting conditions, IO neurons are decoupled and 515 

remain rather silent due to tonic CN inhibition. When a stimulus arrives, common input 516 

activates a group of IO neurons and excites their innervated PCs, resulting in strong IO coupling 517 

due to weak CN inhibition. Cue stimulus binding with IO gap-junctions causes strong 518 

synchrony in neuronal populations that operate in the conditions in which they are engaged, 519 

e.g., TC1 in HIT trials and TC2 in FA trials. For other conditions, e.g., TC1 in FA trials and TC2 520 

in HIT trials, the cue stimulus causes weak excitation (PSTHs of TC1-2 in Fig S5C), fails to 521 

inhibit CN inhibition, and consequently is unable to strongly couple IO neurons, resulting in 522 

weak synchrony.  One may also expect that there are no common inputs across TC populations 523 

so that the electrical couplings remain decoupled among them. Together, as indicated by 524 

previous theoretical and experimental studies15,33,39,41,46,83,84, these results suggest that common 525 

inputs and positive feedback to IO cells are the key structures that organize neuron populations, 526 

induce changes in their cue responsiveness, resulting in changed behavior. Because 527 

synchronization within components is larger than synchronization across components and 528 

anatomical zones, and because even individual neurons multiplex several components, we 529 

suggest that components self-organize85–87 as a result of interaction between electrical synapses 530 

in the IO and positive feedback and lateral inhibition implemented by loop dynamics between 531 

PC, CN, and IO (Fig 7A). 532 

 533 

Why does CF synchrony change in an opposite direction among neuron populations, e.g., TC1 534 

vs. TC2? We have two possible explanations for this. One mechanistic explanation could be 535 

different synaptic plasticity rules between AldC-positive and -negative zones. Note that TC1 is 536 

mainly distributed in AldC-positive zones9. Another functional hint may come from the desired 537 

outputs of cerebellar coding in a particular process. Enhanced CS synchrony in TC1 would 538 
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induce synchronous activation of Purkinje cell ensembles, which in turn, would tune 539 

downstream systems to facilitate initiation and coordination of precise timing control of 540 

movement. In contrast, strong CF synchrony in TC2 neurons at the initial learning stage would 541 

reduce the dimensionality of high-dimensional cognitive error signals for fast learning. At later 542 

stages, low CF synchrony would increase the dimensionality of cerebellar output for fine and 543 

sophisticated learning15,88 (Fig 7B). 544 

 545 

In conclusion, combining two-photon recordings of the mouse cerebellum in an auditory 546 

discrimination Go/No-go task with a hyperacuity algorithm of spike-timing estimation and 547 

tensor-component analysis, we demonstrated that motor and cognitive functions were learned in 548 

distinct neuronal populations. Compartmental representations of these populations align well 549 

with functional and anatomical boundaries between medial and lateral parts of the cerebellar 550 

hemisphere, as well as expression of AldC. Furthermore, CF synchrony is a plausible 551 

mechanism to induce changes in both cue responsiveness and compartmental representation 552 

along with learning. Bidirectional synchronous response-associated changes in CF activities 553 

finely constructed on compartmental structure could provide a flexible learning scheme in 554 

diverse cerebellar functions. 555 

    556 
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 557 

Figure 7: Schematic illustrations of dynamic functional organization in the cerebellum. A: Scheme for 558 

self-organization of activator-inhibitor with diffusion system in the cerebellum. The closed-loop of IO, PC 559 

and CN could form a positive feedback circuit via double-inhibition from PC to CN and CN to IO. Also, 560 
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inhibitory interneurons in the molecular layer (MLIs) inhibit themselves as well as PCs by either 561 

feedforward or lateral inhibition89,90. Furthermore, both MLIs and IO neurons form densely electrically 562 

coupled neuronal networks via their gap-junctions35,91,92. Hence, cerebellar modules could self-organize 563 

their activity via a reaction-diffusion process with IO-PC-CN and MLIs acting as activator and inhibitor, 564 

respectively, and spatial diffusion is realized by their gap-junction couplings. Note that electrical 565 

interactions through gap junctions can be mathematically formulated as spatial diffusion in spatial 566 

continuity limit. When perturbed by a weak stimulus, a module maintains its stable steady state between 567 

activator and inhibitor. However, a stronger stimulus leads to promotion of the activator and destabilizes 568 

the basic state. Since the activator promotes the inhibitor, a higher activity of the inhibitor is also formed 569 

in the same region. The inhibitor inhibits surrounding activator peaks but promotes further growth of the 570 

local activator peak due to the local decrease of the inhibitor. Other activation peaks are formed by the 571 

same mechanism. The overall process could lead to formation of complicated spatiotemporal patterns, in 572 

which different spatial profiles are assumed to reflect the difference in diffusivity of the activator and 573 

inhibitor as well as stimulus strength. Here, we note that each module may selectively react to specific 574 

types of stimuli (e.g., Go or No-go cues). Thus, in the context of this study, we may regard each TC as an 575 

individual functional module, as well as a stable and non-trivial solution of the reaction-diffusion 576 

equation. B: Scheme of opposite changes in CF synchrony during learning of more precise timing control 577 

in TC1 and decreased cognitive error signals in TC2. Increased CF synchrony of TC1 caused by 578 

electrical currents flowing through gap junctions of IO neurons could stabilize timing of the synchronized 579 

motor commands and lead to more precise timing control of licks with less temporal fluctuations. By 580 

contrast, the cerebellum controls the DOF of error-based learning by synchronous CF activities of TC2 581 

depending upon the stage of learning. In the initial stage, the error signal is large and distributed broadly 582 

in the cerebellar cortex. Strong CF synchrony with low DOF quickly reduces the error signal for fast 583 

learning. Later on, the error signal is small and distributed only within a restricted region. 584 

Desynchronized CF activity with high DOF is beneficial for more sophisticated learning. 585 

 586 

 587 

 588 
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Methods 589 

All experiments were approved by the Animal Experiment Committees of the University of 590 

Tokyo (#P08-015) and the University of Yamanashi (#A27-1). They were conducted in the same 591 

way as reported in Tsutsumi et al. (2019)50. Briefly, 17 adult male heterozygous Aldoc-tdTomato 592 

mice49 and adult male wild-type mice (Japan SLC, Inc, n = 5) at postnatal days 40–90 were 593 

used.  A cranial window was created over the left Crus II of mice anesthetized with isoflurane 594 

(5% for induction). Two-photon imaging was performed during the following Go/No-go task 595 

phase at a scanning rate of 7.8 Hz, using a two-photon microscope (MOM; Sutter Instruments) 596 

equipped with a 40x objective lens (Olympus) controlled by ScanImage software (Vidrio 597 

Technologies. Imaging data were analyzed using MATLAB (R2018a; MathWorks). Two-photon 598 

recording experiments were conducted once daily for 4-7 consecutive days, for a total of 236 599 

sessions, each containing 13-43 trials.   600 

 601 

Two-photon recordings of climbing fiber responses 602 

Each trial with two-photon recording data was categorized as HIT, FA, CR, or MISS, according 603 

to licking behavior within a response period of 1 s to the two cues, i.e., correct lick in response 604 

to the go cue, unwarranted lick in response to the No-go cue, correct response rejection to the 605 

No-go cue, or response failure to the Go cue, respectively. Each session was also categorized 606 

according to the fraction correct of mouse performance, i.e., the ratio of correct responses (HIT 607 

and CR) to all trials of the session. Categories included the 1st, 2nd, and 3rd stages of learning 608 

with the fraction correct <0.6, 0.6 - 0.8, and >0.8, respectively. The fraction correct for the Go 609 

cue was evaluated as the ratio of HIT trials to Go trials. The fraction incorrect for No-go cue 610 

was evaluated as the ratio of FA trials to No-go trials (Fig 1C). For each session, on average, 611 

there were approximately 30 neurons simultaneously recorded while more than 30 trials of 612 

Go/No-go cues were randomly presented. In total, there were 59, 83, and 94 recording sessions, 613 

1462, 2405, and 2578 neurons and 1552, 2731, and 3692 trials in the 1st, 2nd, and 3rd stages, 614 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.12.05.518634doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.05.518634
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

respectively (see Tables S1-2 for more details). 615 

 616 

Calculation of licking variables associated with cues 617 

We evaluated two licking variables associated with learning of Go and No-go cues in the early 618 

response window (0 – 0.5 s after cue onset). Lick-latency was estimated as the difference in 619 

timing of the first lick onset and the cue onset. We found that, during learning, there were no 620 

systematic changes in the mean of lick-latency, but its fluctuation from the mean was 621 

significantly reduced (Fig S1A). To account for slight variations in lick-latency across training 622 

sessions, we fitted the lick-latency as a function of the trials, sorted by training session, by a 4th 623 

order polynomial curve for individual mice, which is the best model among 0 to 5th order 624 

polynomial models with Akaike Information Criterion. The lick-latency fluctuation of a single 625 

trial was then calculated as the absolute difference between the lick-latency and the fitted curve, 626 

normalized by the mean of lick-latency for individual mice (Fig S1B). Lick-latency fluctuation 627 

was computed only for HIT and FA trials, omitting MISS and CR trials, for which there were no 628 

licks in the early response window. The early lick rate was counted as the number of licks in the 629 

early response window. For each animal, we fitted lick-latency fluctuation in Go and number of 630 

early licks in No-go trials using two linear models of trials, respectively; hence, their slopes 631 

indicated the corresponding learning effects, i.e., negative slopes for less fluctuation in lick-632 

latency after Go cue and less erroneous licks after No-go cue. 633 

 634 

Reconstruction of spike events 635 

Ca signals in Purkinje cell dendrites were evaluated for regions-of-interest (ROIs) of the two-636 

photon images selected by Suite2p software93. Spike trains were reconstructed for 6,445 637 

Purkinje cells sampled in the 17 mice, using hyperacuity software51 (HA_time) that detected 638 

spike activities for Ca signals of two-photon imaging with a temporal resolution of 100 Hz. The 639 

mean CF firing rate (1.1 ± 0.4 spikes/s) and cross-correlograms (CCGs) of CFs across neurons 640 
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within individual Ald-C compartments were consistent with those for previous studies using 641 

electrical recordings in behaving65 and anesthetized35 mice (Fig S2B&C). Furthermore, 642 

simulations of observed Ca signals using GCaMP6f dye showed that the HA_time was capable 643 

of detecting roughly 90% of the spikes (Fig S2D). Together, these results guaranteed the 644 

reliability of HA_time in detecting CF spike timing with high temporal precision. We note that 645 

to compensate for small jitters of spike timing estimation as well as to increase the signal-to-646 

noise ratio, we used 30-ms bins for evaluating the synchrony and 50-ms bins for constructing 647 

the peri-stimulus time histograms of CF activity (see below). 648 

 649 

CF responsiveness to cue stimulus  650 

For evaluating the CF responsiveness of AldC compartments to the cue stimulus, we 651 

constructed the peri-stimulus time histogram (PSTH) of CF activity with a time bin of 50 ms. 652 

PSTHs were constructed for individual Purkinje cells and averaged across Purkinje cells in the 653 

same AldC compartment (Fig 2A-D). We also evaluated response strength as cumulative PSTHs 654 

for 0-300 ms after cue onset, since the peaks of PSTHs were mostly 200-300 ms. To 655 

demonstrate opposite response changes between HIT and FA of medial and lateral parts of Crus 656 

II, for each neuron, we computed the difference in response strengths between HIT and FA trials 657 

(i.e. HIT - FA). We then selected the top 100 neurons in each AldC 5+ and 6- with highest and 658 

lowest values, respectively.     659 

 660 

Synchrony analysis of CF activity 661 

In this study, we evaluated synchronization of CF activities by two indices, one on a trial basis 662 

(we named it “instantaneous synchrony”) and the other across trials in the same recording 663 

session (“synchrony strength”). For the former, we estimated the instantaneous synchrony in 664 

each trial by the total number of synchronous spike pairs (co-activated in time bins of 30 ms) in 665 

the window of 300 ms before the first lick, normalized by the number of cell pairs. Suppose that 666 
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10 neurons were simultaneously measured and together they produced 20 spikes within the time 667 

window. Further suppose that 4 neurons are co-activated in one time bin and 2 neurons were co-668 

activated in another time bin (the other 14 spikes fired in separated time bins). Then 669 

instantaneous synchrony was calculated as !!
""!""

!#$"
= 0.15. For this example, the spike count was 670 

20/10 = 2. We note that for the CR and MISS trials, for which no early lick was generated, the 671 

time window was fixed as 0-300 ms after cue.  672 

 673 

We also measured the synchrony strength across trials in two different neurons by the cross-674 

correlogram. The spike train of a neuron was represented by X(i), where i represents the time 675 

step (i = 1, 2, …, N). X(i) = 1 if spike onset occurs in the i-th time bin; otherwise, X(i) = 0. Y(i) 676 

was the same as X(i), but for the reference neuron. The cross-correlation coefficient at time lag t, 677 

C(t), was calculated as follows: 678 

 679 

𝐶(𝑡) =
∑ 𝑋(𝑖)𝑌(𝑖 − 𝑡)#
$%&

/∑ 𝑋(𝑖)#
$%& ∑ 𝑌(𝑖)#

$%&

	680 

 681 

A 10-ms time bin was used; thus, for two spikes to be considered synchronous, their onsets must 682 

occur in the same 10-ms bin. Synchrony strength was defined as the sum of C(t) in a window of 683 

±10 ms around the zero-lag time bin C(0). Cross-correlation caused by spike synchronization to 684 

the task event stimulus was evaluated as a CCG, for which the spike time of the reference 685 

neuron was shifted by one trial period94,95. 686 

 687 

Tensor component analysis 688 

Since most CFs reduce their activity to baseline 2 s after the auditory cue, we conducted tensor 689 

component analysis52 on PSTHs sampled from -500 ms to 2 s from cue onset (bin size, 50 ms) 690 

of all Purkinje cells (n = 6,445) in the four cue-response conditions, i.e., HIT, FA, CR, and 691 
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MISS. Each PSTH was subtracted from its baseline activity, defined as the mean value of the 692 

PSTH in the range of [-2, -1] s before cue onset. We note that if the number of trials of a specific 693 

cue-response condition in a recording session is less than 5, we fix the corresponding PSTHs of 694 

the neurons in that session to 0. 695 

 696 

Let xntk denote the PSTH of neuron n at time step t within cue-response condition k. TCA yields 697 

the decomposition 698 

𝑥'() ≈ 𝑥3'() =4𝜆*𝑤'*𝑏(*𝑎)*
+

*%&

	699 

, where R is the number of tensor components, 𝑤'*, 𝑏(* and 𝑎)*  are the coefficients of the neuron, 700 

temporal, and response condition factors, respectively. Those coefficients were scaled to be unit 701 

length with the rescaling value 𝜆*  for each component r. We introduced a non-negative 702 

constraint of those coefficients (𝑤'* ≥ 0, 𝑏(* ≥ 0 and 𝑎)* ≥ 0 for all r, n, t and k). Figure 3 703 

showed the coefficients 𝑤'*, 𝑏(* and 𝑎)*  for each of the tensor component r=1,2,3,4. 704 

 705 

TCA iteratively estimated the coefficients with an alternating least-squares algorithm; thus, its 706 

results are dependent on random initial values. The number of tensor components was 707 

systematically examined with R=1-10, each with 100 random initializations. For each R, we 708 

selected the optimal solution as the one that was obtained most frequently among 100 709 

initializations. To evaluate the fitting performance, the original PSTHs, x, and those 710 

reconstructed from TCA coefficients, 𝑥3, 0-1 second after cue onset were first low-pass filtered 711 

(cut-off frequency of 2 Hz). Then variance accounted for (VAF) was computed as follows 712 

𝑉𝐴𝐹 = 1 −
𝑣𝑎𝑟(𝑥 − 𝑥3)
𝑣𝑎𝑟(𝑥)

	713 

 714 

For each value of R, we further inspected the similarity of the optimal solution and the solutions 715 

obtained from the other 10 random initializations. We selected R=4 which accounted for more 716 
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than 50% of total variance and provided stable solutions (see Fig S4A-B). We noted that 717 

increasing R=1-3 to 4 added meaningful components, i.e., segregation of TC4 from TC2 718 

specific for CR trials. However, further increasing R separated the components with slight 719 

differences observed only in temporal profiles (Fig S4C).  720 

 721 

Sampling neurons by TCA coefficients 722 

For further detailed analyses of the four tensor components retrieved by TCA, we sampled 723 

neurons that were best represented by each component as follows. First, at each learning stage 724 

(1st - 3rd stages), we selected the top 300 neurons that had the largest coefficients for each of 725 

the four components. Then, neurons that were sampled by more than one component, i.e., that 726 

overlapped, were excluded (Fig S5A). As a result, we sampled 2,096 neurons for the four tensor 727 

components. Note that, because different numbers of neurons were recorded across learning 728 

stages (Table S1), we also sampled the top 10-20% of TC neurons using the above process and 729 

found identical PSTHs of TCs (Fig S5C).    730 

 731 

Spike-triggered lick response 732 

To investigate the correlation of CF activity and licking behavior, we sampled spikes and lick 733 

onsets in the three windows of each trial: 0-0.5 second (early lick), 0.5-2 second (reward lick) 734 

and 2-4 second (succeeding lick) after cue onset. Then, the spike-triggered lick response was 735 

constructed across trials with a time bin of 100 ms, normalized by the total number of trials. We 736 

note that for TC1 and TC2 (c.f. Fig 5), we examined lick responses for synchronous spikes, 737 

those that were co-activated (in the time bin of 30 ms) with at least one spike of the other 738 

neurons of the same TC in the same recording session. For TC3 and TC4, since their synchrony 739 

changes were modest (Fig S6), we examined all sampled spikes (Fig S10). 740 

 741 

Regression analysis of synchrony and licking variables  742 
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We fitted a multiple linear regression model on a trial basis, with the synchrony of each TC as 743 

an explanatory variable and two licking variables as response variables. The formula of this 744 

model specification was shown by Wilkinson notation as  745 

 746 

y ~ synTC1 + synTC2 + synTC3 + synTC4 + fraction correct 747 

 748 

in which y was either lick-latency fluctuation or the number of early licks, synTC1-TC4 were 749 

synchrony of TC1-4 neurons of the same trial, and fraction correct was common across trials in 750 

the same recording session. fraction correct was introduced to represent general learning effects, 751 

except neural synchrony. Note that the variable synTC1-TC4 of a particular trial was set to 0 if 752 

there were no selected neurons as TC1-4 in that trial. For example, suppose that there were 2 753 

and 4 neurons selected as TC1 and TC2 for a single trial, respectively. Then synTC1 and synTC2 754 

were computed as the number of synchronous spikes of 2 and 4 neurons for that trial, 755 

respectively, and synTC3 = synTC4 = 0. Due to the neural sampling process, there existed 2,465 756 

trials for which none of the neurons was selected by any of the four TCs. We excluded those 757 

trials from the analyses. As a result, the multiple regression was conducted for 3,080 trials. We 758 

note that the linear mixed-effects model with random effects for intercept grouped by animal, 759 

i.e, y ~ synTC1 + synTC2 + synTC3 + synTC4 + fraction correct + (1|animal), with animal=1..17 as 760 

the mouse index, showed little difference from the above model, indicating that there was no 761 

across-mice effect.    762 

 763 

We constructed added variable plots, in which variables were adjusted for visualizing partial 764 

correlations between licking response variables and an individual explanatory variable 765 

(predictor) conditional on other explanatory variables (c.f. Fig 5 and Fig S7). Adjusted values 766 

are equal to the average of the explanatory variable plus the residuals of the response variable 767 

reconstructed by all explanatory variables except the selected explanatory variable. Note that the 768 
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coefficient estimate of the selected predictor for the adjusted values is the same as in the full 769 

model that includes all predictors. Multiple regression fitting and added variable plots were 770 

conducted using MATLAB functions, fitlm and plotAdded, respectively. 771 

 772 

Statistics 773 

All statistical analyses were performed using MATLAB software. Unless otherwise stated, data 774 

are presented as means ± SD. The non-parametric Kruskal-Wallis one-way analysis of variance 775 

test was used to determine whether data groups of different sizes originate from the same 776 

distribution. Significance level: n.s, p > 0.05; * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 777 

0.0001. 778 

 779 
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Supplemental Information 1013 

Examination of the hyperacuity algorithm (HA_time) by simulations  1014 

We examined HA_time by simulating Ca signals that reproduce those observed in two-photon 1015 

recordings. In particular, spike events were generated according to a Poisson distribution with a 1016 

mean firing rate of 1 Hz. Ca responses were simulated by convolving the double exponentials 1017 

with the spike events. The rise time constant was fixed at 10 ms, while the decay time constant 1018 

was 300 ms corresponding to that of the GCaMP6f dye. Gaussian noise was added to reproduce 1019 

the SNR (SNR = 10 dB) of experimental data. A total of 5 cells each with 100 spikes were 1020 

generated for testing HA_time performance (Fig S2). 1021 

 1022 

For performance evaluation, a correct hit case was defined as one in which the time difference 1023 

between an estimated spike and a true one was smaller than the sampling interval (100 ms in 1024 

simulations). This process was repeated to find all hit cases between two spike trains. 1025 

Remaining spikes in the true spike train were counted as missed spikes while spikes remaining 1026 

in the estimated spike train were false-positives. We used the f1-score, the arithmetic mean of 1027 

the sensitivity and precision, to evaluate spike detection performance.  1028 

 1029 

sensitivity = hit / (hit + miss) 1030 

precision = hit / (hit + false positive) 1031 

f1-score = 2 x (sensitivity x precision) / (sensitivity + precision) 1032 

 1033 

Decoding analysis  1034 

We conducted a decoding analysis to test whether synchronous spikes of TC1-2 neurons could 1035 

predict the occurrence of lick events in the 0-1s window better than the other three models - 1036 

including all spikes of TC1-2 neurons, all spikes from all neurons in the same recording session, 1037 

and a “chance” model for which there was no spike-lick correlation. 1038 
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 1039 

We first constructed a common spike-triggered lick response for the entire spike and lick events 1040 

in HIT and FA trials (Fig S9A). From a probabilistic view-point, this spike-triggered lick 1041 

response could be considered as the probability of a lick event l given a single spike s in the 1042 

same trial, p(l | s). With an assumption that a single spike caused a lick independently, the 1043 

probability of a lick event given a spike collection SM of the model M follows: 1044 

 1045 

𝑝(𝑙|𝑆,) = C 𝑝(𝑙|𝑠)
∀.∈0%

 1046 

 1047 

for the chance model independent of spike sequences, p(l | SM) = 1/dt0, where dt0 is the 1048 

sampling rate of licking events (Fig S9B). Finally, the total log-likelihood of the model M was 1049 

computed for the entire licking events L as  1050 

 1051 

log 𝑝(𝐿|𝑀) = 4 log 𝑝(𝑙|𝑆,)
∀1∈2

 1052 

 1053 

As a result, synchronous spikes of TC1-2 predicted occurrence of lick events (total log-1054 

likelihood for all lick events, -32541 and -7603 for TC1 in HIT trials and TC2 in FA trials, 1055 

respectively, Fig S8) statistically better than all spikes of TC1-2 neurons (-32825 and -7657), all 1056 

spikes of all neurons in the same recording session (-33494 and -7751) and the chance level for 1057 

which no correlation between spike and lick events was assumed (-35312 and -8146). Note that 1058 

the probabilities were trial-wise and that all lick and spike events were sampled in 0–1 second 1059 

after cue onset.   1060 
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Supplemental Figures 1061 

 1062 

 1063 

Figure S1: Licking behavior in the early response window for individual mice. The lick-latency (A) and 1064 

lick-latency fluctuation (B) in HIT trials, early licks in No-go (CR and FA) trials, estimated from a 1065 

window of 0-500 ms after cue, of 17 mice. Trials were sorted by training session. The red traces in A-C 1066 

indicated polynomial fits of the variables as the functions of trials (4th order for A and 1st order for B and 1067 

C).  1068 

 1069 

 1070 

 1071 
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 1072 

Figure S2: Illustration of CF reconstruction by HA_time and its examination. A: The spike model 1073 

(inset) was estimated for Ca signals (top trace) of two-photon recordings by Bayesian inference, 1074 

assuming size and shape constancy of spikes. Spike candidates (red short bars) were selected by 1075 

thresholding (threshold = 1 SD, red dashed line) matching scores of Ca signals (bottom trace) with the 1076 

spike model, and spikes were selected by SVM from spike candidates. We optimized the threshold for 1077 

matching score so as to maximize the f1-score so that it was >0.8 (black arrow Fig. S2D). Finally, spike 1078 

timings (black short bars) were estimated with temporal resolution of 100 Hz, so as to minimize residuals 1079 

of observed and predicted Ca signals by the model51. B: spike rates of estimated CFs by HA_time across 1080 

the AldC compartments. The mean firing rate (1.1 ± 0.4 spikes/s) agrees with electrical recordings in 1081 

behaving mice65. C: population CCG of spikes estimated by HA_time in a recording session of the AldC 1082 

compartment 5+ (red histogram, n = 20 cells) is consistent with that of multichannel electrical recording 1083 

of Purkinje cells (black histogram, n = 25 cells) reported in Blenkinsop and Lang (2006)35. D: Upper: 1084 

simulation of the Ca response (blue trace) was generated by convolution of the spike model and Poisson 1085 

spikes (rate, 1 Hz, short blue bars), adding Gaussian noise (SNR = 10). Lower: f1-score estimated by 1086 

HA_time with the threshold values varied from 0 to 2SD in spike candidate selection. Simulated Ca 1087 

responses of a total of 5 Purkinje cells indicated that HA_time was capable of detecting roughly 90% of 1088 

the spikes. 1089 

 1090 

 1091 

 1092 
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 1093 

Figure S3: Synchrony dynamics and associated synchrony-response bidirectional changes in AldC 1094 

compartments 5+ and 6-. A: synchrony analysis of representative sessions for 5+/HIT and 6-/FA trials. 1095 

Upper: snapshots of synchronous firings in HIT trials at the boundary 5+/5- of two representative 1096 

sessions in 1st and 3rd stages. Reference cells (black arrows) are those that show the largest difference in 1097 

HIT-FA responses. Stair-plots indicate CCGs between the reference cell and the proximal cell (open 1098 

arrows) that has the highest pairwise synchrony strength in the session. Lower: similar plots of 1099 

representative sessions for 6-/FA trials. B: population CCGs for all sampled cell pairs in 5+/HIT (upper) 1100 

and 6-/FA trials (lower) for the 1st and 3rd stages. Red traces in CCGs indicate shift predictors estimated 1101 

for the correlation solely to cue stimuli. C: scatter plots of averaged spike counts and instantaneous 1102 

synchrony across all trials, both estimated in the window of 300 ms before the first lick, for HIT (left 1103 

column) and FA (right column) trials in three stages of learning for two representative AldC 1104 

compartments 5+ (upper row) and 6- (lower row). Thick black trace indicates correlation of the two 1105 

quantities. Summary statistics of instantaneous synchrony and spike count were shown by horizontal and 1106 

vertical box plots, respectively. For each box plot, the bar indicates the 25% and 75% and the central 1107 

mark indicates the median. The whiskers extend to the most extreme data points not considered outliers. 1108 

Asterisks indicate significant level of one-way ANOVA: n.s, p > 0.05; * p < 0.05; **** p < 0.0001. 1109 

 1110 
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 1111 

Figure S4: Tensor component analysis of population PSTHs with a varied number of tensor 1112 

components. A: the fitting performance of TCA, which estimates variance accounted for (VAF) of the 1113 

reconstructed data using the optimal solutions (see Methods for details), with the number of tensor 1114 

components varied from R=1-10. Arrows indicate values at R = 4. B: similarity scores, which measure 1115 

the similarity between solutions of 10 random initializations (black dots) with the optimal solution, for 1116 

each of the number of tensor components R. C: optimal TCA solutions for R = 3, 4, 5 showed the 1117 

segregation of TCs while increasing R. Dashed arrows were drawn by visual inspection of the similarity 1118 

in temporal profile, cue-response condition and zonal distribution, between the TCs.  1119 

 1120 

 1121 
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 1122 

Figure S5: Neural sampling by TCA. A: At each learning stage, we sampled 300 neurons whose 1123 

coefficients were highest for each of the tensor components, TC1-4. The Venn diagram shows the number 1124 

of overlapping neurons by this sampling. We excluded overlapping neurons from further analysis in the 1125 

main results. B: The response explained was estimated by the ratio of accumulated responses of sampled 1126 

neurons for 1 s after cue onset to the accumulated response of a total of 6,445 neurons. Black and red are 1127 

for selected neurons without overlapping ones and overlapping neurons. C: PSTHs in the four cue-1128 

response conditions of selected neurons without overlapping neurons.  1129 
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 1132 

Figure S6: Synchronous firings of TCs. A: averaged number of co-activated neurons following Go and 1133 

No-go cues of the four TCs. Averaged instantaneous synchrony across trials. B: population CCGs of 1134 

sampled TC neurons in the 1st (first column) and 3rd (second column) learning stages. C: histograms of 1135 

synchrony strength of sampled TC neurons for Go (blue) and No-go (red) cues. These results indicate that 1136 

synchrony was high in cue-response conditions that are maximally associated with TC activities.   1137 
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 1141 

Figure S7: Multiple regression analysis for two lick variables (lick-latency fluctuation – A and early lick 1142 

rate – B) and synchrony of TC1-4 (see Methods for details). The top and bottom rows in A and B are for 1143 

Go and No-go cues, respectively. The four columns are for TC1 – TC4 neurons. Only significant 1144 

correlations (p < 0.05) are shown by black lines with slope values. The ordinate and abscissa were 1145 

adjusted to show partial correlations of lick variable and synchrony of single TCs (see Methods for more 1146 

details). Note that the slopes for fraction correct variable were all significant (p < 0.0001), but negative 1147 

for lick-latency fluctuation/Go (top row in A) and early-lick-rate/No-go (bottom row in B) and positive for 1148 

lick-latency fluctuation/No-go (bottom row in A) and early-lick-rate/Go (top row in B) combinations. 1149 

These results are consistent with the behavioral results that there was no learning in reduction of lick-1150 

latency fluctuation for No-go trials or early lick rate for Go trials. 1151 
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 1153 

Figure S8: Decoding analysis of lick events. A: spike-triggered lick response for entire spike and lick 1154 

events sampled from 0-1 second after the cue onset in HIT and FA trials. B: Likelihood estimation of a 1155 

lick given different kinds of spike events in a representative HIT trial. Spike events were sampled 1156 

according to the three spiking models, including synchronous spikes of TC1 neurons (blue), all spikes of 1157 

TC1 neurons (orange), and all spikes of all neurons in the same recording session (yellow). Note that 0.01 1158 

indicates the chance level (black) to correctly predict the occurrence of a single lick at 100-Hz precision. 1159 

Black dots indicate licking events. C: For each single lick event, the best model was determined for the 1160 

maximal likelihood among the four models. Pie charts indicated the percentage of the best model for the 1161 

entire TC1/HIT (left) and TC2/FA (right) trials.      1162 
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 1164 

Figure S9: Effect of muscimol injection on lick timing precision. A: Lick-latency in HIT trials for saline 1165 

(left) and muscimol (right) conditions of 5 animals. Red traces showed 4th order polynomial fits of the 1166 

lick-latency as functions of trials. B: increases of mean lick-latency fluctuation (ordinate, see Methods for 1167 

more details) in 4 out of 5 animals indicated that muscimol effectively reduced the precision of lick timing 1168 

compared with saline conditions. 1169 
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 1172 

Figure S10: Possible functions of TC3 and TC4. A: spike-triggered lick response for TC3 neurons for 1173 

Go trials in the three response windows: early lick (0 – 0.5 s), reward lick (0.5 – 2 s) and succeeding lick 1174 

(2 – 4 s). Lick responses were largest for the reward window with a balanced distribution of negative-1175 

positive values, suggesting that TC3 is equally related to sensory feedback and motor control of reward 1176 

licks. B: change in numbers of trials with (filled bars) and without licks (open bars) during learning, and 1177 

mean firing rate per trial of TC4 neurons for No-go cues. C: spike-triggered lick responses of TC4 1178 

neurons plotted for No-go cues (including FA and CR trials, left) and separately for CR trials (right) in 1179 

the window -2 to 2 s after cue. Note that according to the experimental design, the subsequent trial was 1180 

delayed by 1 s from the last lick if the mouse continued to lick. Thus, to compute the spike-triggered lick 1181 

response of TC4 in -2 to 2s of No-go trials, the transition period of -1 to 0 s, during which there were no 1182 

licks, was ignored. 1183 
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AldC compartment 7+ 6- 6+ 5- 5+ 5a- 5a+ 4- Sum 

1st 74 227 273 218 295 222 104 49 1462 

2nd 118 333 502 527 383 317 164 61 2405 

3rd 206 243 279 434 503 444 341 128 2578 

Sum 398 803 1054 1179 1181 983 609 238 6445 

Table S1: The number of CFs sampled in individual AldC compartments at different learning stages. 1192 

 1193 

Learning stage 1st 2nd 3rd Sum 

HIT  599 1357 1832 3788 

FA 677 795 285 1757 

CR 158 543 1528 2229 

MISS 118 36 47 201 

Sum 1552 2731 3692 7975 

Table S2: The number of trials for each cue-response condition at different learning stages.  1194 

 1195 

Supplemental Movie M1: CF firings in 10-ms bins of Ald-C compartment 5+ neurons for 1196 

HIT trials in two representative sessions of the 1st and 3rd learning stages. Detailed description 1197 

for the elements can be found in Figure 4C. 1198 
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Supplemental Movie M2: Relationship of TC coefficient, synchrony strength and 1200 

instantaneous synchrony within individual Ald-C compartment for HIT trials in the 1st and 3rd 1201 

learning stages of TC1. For each Ald-C compartment (column), the neuron which has highest 1202 

TC1 coefficients (bottom row) was selected as a reference neuron. Instantaneous synchrony in a 1203 

single trial (top row) and synchrony strength (second row) were estimated between the reference 1204 

neuron and other neurons in the same compartment. While synchrony strength was static within 1205 

session, instantaneous synchrony varies trial-to-trial with strong values observed for HIT trials 1206 

but not trials of the other cue-response conditions. 1207 
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