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Abstract 

The objective diagnostic and stratification biomarkers developed with resting-state 

functional magnetic resonance imaging (rs-fMRI) data are expected to contribute to 

more effective treatment for mental disorders. Unfortunately, there are currently no 

widely accepted biomarkers, partially due to the large variety of analysis pipelines for 

developing them. In this study we comprehensively evaluated analysis pipelines using a 

large-scale, multi-site fMRI dataset for major depressive disorder (MDD) (1162 

participants from eight imaging sites).  We explored the combinations of options in four 

subprocesses of analysis pipelines: six types of brain parcellation, four types of 

estimations of functional connectivity (FC), three types of site difference harmonization, 

and five types of machine learning methods. 360 different MDD diagnostic biomarkers 

were constructed using the SRPBS dataset acquired with unified protocols (713 

participants from four imaging sites) as a discovery dataset and evaluated with datasets 

from other projects acquired with heterogeneous protocols (449 participants from four 

imaging sites) for independent validation. To identify the optimal options regardless of 

the discovery dataset, we repeated the same procedure after swapping the roles of the 

two datasets. We found pipelines that included Glasser’s parcellation, tangent-

covariance, no harmonization, and non-sparse machine learning methods tended to 
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result in high classification performance. The diagnosis results of the top 10 biomarkers 

showed high similarity, and weight similarity was also observed between eight of the 

biomarkers, except two that used both data-driven parcellation and FC computation. We 

applied the top 10 pipelines to the datasets of other mental disorders (autism spectral 

disorder: ASD and schizophrenia: SCZ) and eight of the ten biomarkers showed 

sufficient classification performances for both disorders, except two pipelines that 

included Pearson correlation, ComBat harmonization and random forest classifier 

combination. 
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 Highlights 

 We evaluated the analysis pipelines of rsFC biomarker development. 

 Four subprocesses in them were investigated with two multi-site datasets. 

 Glasser's parcellation, tangent covariance, and non-sparse methods were preferred. 

 The weight patterns of eight of the top 10 biomarkers showed high commonality. 

 Eight of the top 10 pipelines were successful for developing SCZ/ASD biomarkers.
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1. Introduction 

  Most psychiatric disorders, including major depressive disorder (MDD), are 

diagnosed based on the Diagnostic & Statistical Manual of Mental Disorders, such as 

DSM-5 or the International Classification of Diseases (ICD). Their diagnosis is based 

on visible symptoms and medical interviews. Although the overlapping phenotypes 

among multiple psychiatric disorders complicates selecting appropriate treatment at an 

early stage, no objective, practical marker yet leads to more refined diagnoses and 

targeted treatment (Arnow et al., 2015; Kapur et al., 2012).  

Non-invasive brain imaging techniques are expected to elucidate the patterns of brain 

structure and function, that is, neurophenotypes, which characterize these disorders 

(Craddock et al., 2013; van Essen and Ugurbil, 2012). In particular, acquiring a resting-

state fMRI (rs-fMRI) is easy and can be used to develop classification markers between 

healthy and psychiatric or developmental disorder populations (Clare Kelly et al., 2008; 

van Essen and Ugurbil, 2012), such as Alzheimer’s disease (Chen et al., 2011; Greicius 

et al., 2004), schizophrenia (Calhoun et al., 2012; Garrity et al., 2007; Jafri et al., 2008; 

Yoshihara et al., 2020; Zhou et al., 2007), autism spectrum disorder  (Plitt et al., 2015; 

Yahata et al., 2016), depression (Craddock et al., 2009; Ichikawa et al., 2020; Yamashita 
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et al., 2020), and attention-deficit hyperactivity disorder (Milham et al., 2012). In recent 

years, several worldwide projects have acquired large-scale, rs-fMRI data  (Koike et al., 

2021; Martino et al., 2013; Tanaka et al., 2021; van Essen et al., 2013), and the 

understanding of psychiatric disorders and the development of markers is progressing. 

Unfortunately, no practical diagnostic markers have been identified yet (Castellanos et 

al., 2013; Kapur et al., 2012), perhaps explained by two factors: the absence of optimal 

pipelines and the lack of generalization capability. 

The development of classification biomarkers using rs-fMRI is comprised of several 

processes, and there are multiple methods in every process as well as innumerable 

pipelines (Arbabshirani et al., 2017; Brown and Hamarneh, 2016; Wolfers et al., 2015). 

The diversity of pipelines has a sizable effect on the diagnostic and generalization 

performance, and only a few reports have searched for the best ones (Dadi et al., 2019; 

Mellema et al., 2022; Pervaiz et al., 2020). The absence of standard pipelines reduces 

the reliability of rs-fMRI biomarkers. Since no widely accepted standard pipeline has 

been established for optimal biomarker development (Carp, 2012), the identification of 

a suitable pipeline in the field of psychiatric disorders is critical to develop diagnostic 

markers for rs-fMRI.  
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  Since the majority of older biomarkers were made based on single-site data to avoid 

unknown effects of the heterogeneity of discovery datasets, they often exhibit a lack of 

generalization capability. The differences of scanners, imaging procedures, and 

instructions to participants might also affect rs-fMRI data. To develop markers with 

high generalization capability, discovery datasets must be comprised of large-size, 

multi-site data; such methods must be devised. Cross-validated modeling is an effective 

approach to avoid overfitting. After developing a marker using a multi-site dataset, it 

must be validated using an independent multi-site dataset. This validation test enhances 

the marker’s reliability. Several methods have minimized the inter-site differences of rs-

fMRI, including ComBat (Fortin et al., 2018, 2017; Johnson et al., 2007; Yu et al., 2018) 

and traveling-subject harmonization (Yamashita et al., 2019).  These methodological 

approaches are also expected to enhance the generalization capability of markers. 

Our aim in this study is to explore an optimal pipeline to develop an MDD diagnostic 

biomarkers with high classification performance for an independent validation dataset 

using a large-size, multi-site rs-fMRI dataset. In this study, we also verified the 

effectiveness of the state-of-the-art methods (Glasser’s surface-based parcellation and 

distance correlation) and a site-difference harmonization method, which were not 

compared in previous exploratory studies, and prepared an independent dataset for the 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.17.584538doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.17.584538
http://creativecommons.org/licenses/by-nc-nd/4.0/


validation of a marker’s generalization capability. By swapping the roles of the 

discovery and validation datasets, we also confirmed that a pipeline’s effectiveness  did 

not depend on the discovery dataset.  
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2. Materials and methods 

 Ethics statement 

Every participant in all the datasets provided written informed consent. All the 

recruitment procedures and experimental protocols were conducted in accordance with 

the Declaration of Helsinki and approved by the institutional review boards of the 

principal investigators’ respective institutions (Advanced Telecommunications Research 

Institute International [approval numbers: 13-133, 14-133, 15-133, 16-133, 17-133, and 

18-133], Hiroshima University [E-38], Kyoto Prefectural University of Medicine 

[RBMR-C-1098], Showa University [SWA] [B-2014-019 and UMIN000016134], the 

University of Tokyo [UTO] Faculty of Medicine [3150], Kyoto University [C809 and 

R0027], and Yamaguchi University [H23-153 and H25-85]). 

2.1. Patients and subjects 

We analyzed the same datasets previously presented in Yamashita et al., 2020: (1) 

Dataset I contained data from 713 participants (564 healthy controls (HCs) from four 

sites and 149 MDDs from three sites); (2) Dataset II contained data from 449 

participants (264 HCs and 185 MDDs from four independent sites); (3) Dataset III 

contained data from 231 participants (125 with autism spectrum disorder (ASD) from 
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two sites and 106 with schizophrenia (SCZ) from three sites). For more details on the 

dataset, see Tables 1 and 2 and Supplemental Table 1. 

2.2. Preprocessing 

We preprocessed the rs-fMRI data using fMRIPrep version 1.0.8 (Esteban et al., 

2019). The first 10 s of the data were discarded to allow for T1 equilibration. The 

following are the preprocessing steps: slice-timing correction, realignment, 

coregistration, distortion correction using a field map, segmentation of the T1-weighted 

structural images, normalization to Montreal Neurological Institute (MNI) space, and 

spatial smoothing with an isotropic Gaussian kernel of 6-mm full width at half 

maximum. “Fieldmap-less” distortion correction was performed for dataset II due to a 

lack of field-map data. For more details on the pipelines, see 

http://fmriprep.readthedocs.io/en/1.0.8/workflows.html. For the data of six participants 

in dataset II, coregistration was unsuccessful, and so we excluded them from further 

analysis. 

2.3. Parcellation 

We considered six methods for extracting the brain’s regions of interest (ROIs): five 

pre-defined parcellations, which were actually used for the development of depression 
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diagnosis and stratification biomarkers (Ichikawa et al., 2020; Tokuda et al., 2018; 

Yamashita et al., 2020; Yoo et al., 2018), and one data-driven parcellation that was 

reported as the best choice (Dadi et al., 2019, Figure 1). 

Pre-defined parcellation: 

1) Glasser’s surface-based method: 379 ROIs, including 360 cortical parcels and 19 

subcortical parcels (Glasser et al., 2016), utilized by ciftify toolbox version 2.0.2-2.0.3 

(Dickie et al., 2019). 

2) Glasser’s volume-based method [https://figshare.com/articles/dataset/HCP-

MMP1_0_projected_on_fsaverage/3498446], which has only 360 cerebral cortex  ROIs. 

3) Shen’s atlas, derived on a group-wise spectral clustering algorithm, which has 268 

ROIs (Shen et al., 2013). 

4) Brainvisa, anatomically defined in the Brainvisa Sulci Atlas (BSA atlas), which has 

anatomically-defined 145 ROIs covering the entire cerebral cortex [http://brainvisa. 

Info; Perrot et al., 2011]. 

5) FIND lab’s parcellation (Shirer et al., 2012), based on functional (rather than 

structural) ROIs from which we selected 78 ROIs, excluding cerebellum-related ROIs 

Data-driven parcellation: We defined ROIs using a linear decomposition method: 

dictionary learning (Mensch et al., 2016). A data-driven atlas was constructed using the 
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discovery dataset. We fixed the number of components to dim = 80, which is the 

optimal number  (Dadi et al., 2019). 

2.4. Functional connectivity (FC) matrix 

We considered four FC calculation methods (Figure 1): Pearson’s full correlation 

coefficient, tangent-space covariance (Varoquaux et al., 2010), partial correlation, and 

distance correlation (Yoo et al., 2019). For each participant, the FC was calculated from 

rs-fMRI BOLD signals across the ROIs for each parcellation. All the FCs were 

calculated using Nilearn Python library version 0.6.1 

[https://nilearn.github.io/stable/index.html]. We used the FC values of the lower 

triangular matrix of the connectivity matrix and applied Fisher’s z-transformation to 

each FC, except for the tangent-space covariance.  We calculated the tangent-space 

covariances both of the discovery and validation datasets, based on the group mean 

values of the former. 

2.5.Preprocessing for ROI time series  

Physiological noise regressors were extracted by applying CompCor (Behzadi et al., 

2007). To remove several sources of spurious variance, we used a linear regression with 

12 regression parameters: six motion parameters, average signals over the whole brain, 
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and five anatomical CompCor components. 

We applied a temporal bandpass filter to the time series using a second-order 

Butterworth filter with a pass band between 0.01 and 0.08 Hz to restrict the analysis to 

low-frequency fluctuations, which are characteristic of rs-fMRI BOLD activity (Ciric et 

al., 2017). 

A scrubbing process based on head motion was conducted using frame displacement 

(FD, Power et al., 2014), which was calculated using Nipype 

(https://nipype.readthedocs.io/en/latest/). We removed the volumes with FD > 0.5 mm, 

unlike a previous study (Power et al., 2014). Using this threshold, 6.3% ± 13.5 volumes 

(mean ± SD) were removed per rs-fMRI session from all the datasets. Subjects whose 

ratio of excluded volumes by scrubbing exceeded the mean + 3 SD were removed, 

resulting in 48 participants being removed from all the datasets. Thus, we included 683 

participants (545 HCs and 138 MDDs) in dataset I, 444 participants (263 HCs and 181 

MDDs) in dataset II, and 218 participants (116 ASDs and 102 SCZs) in dataset III. 

2.6. Harmonization 

  We utilized three options as site difference harmonization methods in the discovery 

dataset (Figure 1): traveling-subject harmonization, ComBat, and no correction. 
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Traveling-subject harmonization (TS method) enables us to estimate measurement bias 

(m) by controlling participant bias (p) using the traveling-subject dataset (Supplemental 

Table 2), in which multiple participants traveled to multiple recording sites that 

recorded their rs-fMRIs with identical recording protocols (Yamashita et al., 2019). For 

each connectivity, the regression model can be written: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  𝒙𝒙𝑚𝑚 𝒎𝒎𝑇𝑇 + 𝒙𝒙𝑝𝑝 𝒑𝒑𝑇𝑇 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑒𝑒, 

𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 � 𝑝𝑝𝑗𝑗
9

𝑗𝑗
= 0,� 𝑚𝑚𝑘𝑘 = 0

4

𝑘𝑘
, 

where m represents the measurement bias (4 sites × 1), p represents the participant 

factor (nine traveling subjects × 1), const represents the average FC values across all the 

participants from all sites, and 𝑒𝑒 ~ 𝒩𝒩(0, 𝛾𝛾−1) represents noise. xm and xp are vectors 

represented by 1-of-K binary coding. xm for measurement bias m belonging to site k is a 

binary vector where all the elements equal zero, except for element k, which equals 1. 

Measurement biases were removed by subtracting the estimated measurement biases. 

Thus, the harmonized FC values were set: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻  = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 −  𝒙𝒙𝑚𝑚 𝒎𝒎�𝑇𝑇 , 

which represents the estimated measurement bias. More detailed information was 

previously described (Yamashita et al., 2019). ComBat: the ComBat harmonization 

method (Dansereau et al., 2017; Fortin et al., 2018, 2017; Johnson et al., 2007) 2007) is 
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a well-known control for site differences in FC. Although the TS method requires that 

the traveling-subject dataset is acquired in advance, the ComBat approach allows site 

differences to be corrected using only discovery data. We performed ComBat 

harmonization to correct only for site differences while keeping fc correlated with two 

biological covariates, age and sex. No correction: The deleterious effect of site 

differences for prediction accuracy decreased as the total sample size increased 

(Dansereau et al., 2017). We did not apply harmonization to the validation dataset to 

determine the effects of harmonization on biomarker construction. 

2.7.Machine learning 

  We considered five supervised machine learning methods (Figure 1): 1) least absolute 

shrinkage and selection operator (LASSO) was performed using the “lassoglm” 

function, and we set “NumLambda” to 25 and “CV” to 10.  λ was determined 

according to the one standard error rule in which we selected the largest λ within the 

standard deviation of the minimum prediction error. 2) Sparse Logistic Regression 

(SLR) was performed using the “biclsfy_slrvar” function, and we set “nlearn” to 300 

and “usebias” to 1 (https://bicr.atr.jp/~oyamashi/SLR_WEB.html, Yamashita et al., 

2008). 3) RIDGE was performed using the “fitclinear” function, and we set “Solver” to 
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{“sgd”, “lbfgs”}, “OtimizeHyperparameters” to “Lambda” and “Kfold” to 10. 4) 

Support Vector Machine (SVM) was performed using the “fitcsvm” function, and we 

set “KernelScale” and “Boxconstraint” to the optimization parameters derived from the 

“bayesopt” function. 5) Random Forest was performed using the “TreeBagger” 

function, and we set “NumTrees” to 1000 and “PredictorSelection” to “interaction-

curvature”. All the functions described here were executed in MATLAB (R2018b, 

Mathworks, USA). 

2.8.Constructing and validating a MDD classifier 

We constructed a diagnostic brain network biomarker for MDD that classified 

between HCs and MDDs using the discovery dataset, e.g., dataset I, based on each FC 

value (Supplemental Figure 1). To avoid overfitting issues, we used the 10-fold nested 

cross-validation (CV) method, which is based on a previously proposed method 

(Yamashita et al., 2020) with a slight modification to the standardization of the 

validation datasets. We first divided the whole dataset I into a training set (9 of 10 

folds), which was used for training a model, and a test set (1 of 10 folds), which was 

used for testing it. To prevent bias due to the differences in the numbers of the two 

groups, we used an undersampling method to equalize the numbers between the MDD 
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and HC groups (Wallace et al., 2011). Since only a subset of the training set is used after 

undersampling, we repeated the random sampling procedure ten times (i.e., 

subsampling). When we performed the undersampling, we matched the mean ages 

between the MDD and HC groups in each undersampling and standardized both the 

undersampled training subset and the test set with the mean and the standard deviation 

values of each FC in each undersampling. We then fit a model to each subsample and 

created ten classifiers. The mean classifier-output value (diagnostic probability) was 

indicative of the classifier output. Subjects with a diagnostic probability greater than 0.5 

were considered MDD patients. 

We tested the generalization capability of the diagnostic markers using the 

validation dataset, e.g., dataset II. Then the diagnostic probability of each subject was 

calculated after the FC was standardized by the mean value and the standard deviation 

of the training subset. 

2.9.Evaluation criteria 

We calculated the area under the curve (AUC), the accuracy, the sensitivity, the 

specificity, and the Matthews correlation coefficient (MCC, Chicco, 2017). 

Furthermore, since using only AUC may not accurately compare the classification 
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performance for the imbalanced data, we calculated a “composite score” that combined 

AUC and the scale-adjusted MCC: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  0.5 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴 + 0.5 ∗ (𝑀𝑀𝑀𝑀𝑀𝑀 + 1)
2� . 

We also quantified the instability of the classification results between the 10-fold CV 

result for the discovery dataset and the application result for the validation dataset and 

defined “instability”: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

=  ��𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣�
2

+ �𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣�
2

. 

2.10. Confirmation of pipeline stability 

We confirmed the pipeline stability by dataset-role swapping. We constructed MDD 

diagnostic biomarkers using identical pipelines, except for the traveling-subject 

harmonization method when dataset II was used as the discovery dataset and dataset I as 

the validation dataset. We calculated their composite scores, instability, and diagnostic 

probabilities on each marker. The correlation coefficient was calculated of the marker’s 

diagnostic probabilities before and after dataset-role swapping. 
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2.11. Marker and pipeline ranking 

  For the 240 pipelines to which both datasets can be applied as discovery datasets, 

we standardized the composite scores and instability values before and after the dataset-

role swapping and the correlation coefficient values of the diagnostic probability. The 

final pipeline ranking was determined by the sum of these five standardized values 

(Table 5). 

2.12. Evaluation of similarity of important functional connectivity 

   We examined the network-level similarity of the important functional connectivity 

among the top 10 highest diagnostic performance MDD biomarkers. Since each 

diagnostic marker has 100 classifiers, the contribution of each FC to the diagnostic 

marker can be quantified by the sum of the absolute values of the weight values or the 

out-of-bag predictive importance. To compare the similarity of FC patterns between 

markers constructed using different parcellation options, we applied the FCs extracted 

as the top 5% of high contribution FCs in each marker to the same atlas of seven brain 

networks (Buckner et al., 2011; Choi et al., 2012; Thomas Yeo et al., 2011). The ROIs 

that comprised each FC were counted where they were classified on each brain network 

label and divided by twice the total number of the top 5% high contribution FCs. Since 
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biases exist in the number of ROIs classified into each network depending on the 

parcellation, we calculated the existence probability of the ROIs of all the FCs on the 

brain network for each parcellation and divided the existence probability of the top 5% 

FCs by the existence probability of the whole FCs. The correlation coefficient of the 

brain network utilization between any two markers’ high contribution FCs was used as a 

quantitative index of marker similarity. The similarity is important if the correlation 

coefficient among two different utilization rates was significantly higher than a 

randomness threshold. We randomly selected an arbitrary 5% of the FCs from each 

parcellation and calculated the corrected utilization rate on Yeo’s brain network and the 

correlation coefficient between these two utilization rates. We conducted this operation 

10,000 times and set a statistical significance at a certain threshold (permutation test, P 

< 0.05, 1-sided).  

2.13. Evaluation of pipelines for other disorders 

Using the top 10 pipelines suitable for constructing diagnostic markers for MDD, we 

confirmed the applicability of those pipelines to other two disorders: schizophrenia 

(SCZ) and autism spectrum disorders (ASD). We developed diagnostic biomarkers for 

SCZ and ASD using the same process as for the MDD diagnostic biomarkers. The same 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.17.584538doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.17.584538
http://creativecommons.org/licenses/by-nc-nd/4.0/


data as the HCs of Section 2.1 were used for the HC and typical development (TD) 

subjects, and all the data were collected in the DecNef Project Brain Data Repository 

(https://bicr.atr.jp/decnefpro/data; Tables 1 and 2, 564 HC or TD, 106 SCZ, and 125 

ASD patients).  
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3. Results 

3.1. Comparison of diagnostic performances with all markers 

Focusing on the four steps of the whole marker construction processes (Figure 1), we 

searched for the optimal pipeline for the construction of MDD diagnostic biomarkers 

with superior classification performance for both the discovery dataset and the 

validation dataset (Supplemental Figure 1). We utilized 360 different pipelines and 

constructed 360 different brain network markers for MDD and distinguished between 

HCs and MDDs using dataset I as a discovery dataset. Then we applied all the markers 

in the validation dataset (dataset II). For each one, we obtained the area under the curve 

(AUC) and the Matthews correlation coefficient (MCC), and the sensitivity and 

specificity were obtained for the discovery and validation datasets. Furthermore, we 

calculated “composite scores” by combining the AUCs and the scale-adjusted MCCs to 

compare the diagnostic performances and the “instability” index, which is the distance 

between two sensitivities and two specificities, to evaluate the stability of the 

discrimination result between the discovery and validation datasets. 

According to the composite scores, we first studied the importance of the choice of 

each development process in the marker pipelines: the choice of parcellations, 
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functional connectivity, harmonization, and machine learning (Figure 1). In the 

parcellation process (Figure 2A), Glasser + 19 ROIs (379) and dictionary learning (80) 

showed higher composite scores for both dataset I (discovery) and dataset II 

(validation). In the functional connectivity process (Figure 2B), Pearson’s full 

correlation and tangent-space covariance outperformed the rest. In the harmonization 

process (Figure 2C), some markers using pipelines with the traveling-subject 

harmonization approach scored very high, although those using traveling-subject 

pipelines generally scored slightly lower than markers with pipelines that did not apply 

any inter-site correction. On the other hand, the diagnostic performances of the markers 

in the discovery dataset using a pipeline containing the ComBat option were 

significantly lower than other markers. Last, in the machine learning process (Figure 

2D), the non-sparse methods, RIDGE and SVM, showed higher composite scores, and 

some of the markers constructed using the pipeline, including the random forest 

method, showed very high diagnostic performance for dataset II. 

Since significant differences were identified between the options in the composite 

score of dataset I (discovery) in the inter-site harmonization process (Figure 2E), we 

investigated with markers that were constructed using only 240 pipelines that did not 

use ComBat as a harmonization option in the following analysis of effective methods in 
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each development process. We considered the optimum method for each development 

process by comparing the composite scores of the markers of all the pipelines, which 

can be determined when the option in a certain process is fixed to one choice. We used a 

multiway analysis of variance to evaluate the effects of multiple factors on the averaged 

composite scores using the ANOVAN function in MATLAB (Table 3, MathWorks, 

R2018b). The averaged composite score was the mean value of the composite scores of 

both datasets and reflected the marker’s generalization capability. In this multiple 

comparison for a four-way ANOVA, the averaged composite scores were standardized. 

Except for the parcellation and harmonization combination, all four main terms and five 

of the six interaction terms seemed to significantly affect the averaged composite score. 

Regarding parcellation, surface-based parcellation (Glasser + 19 ROIs (379)) and data-

driven parcellation (dictionary learning (80)) led to maximal performance (Figure 3A). 

Tangent-space covariance and Pearson’s full correlation as a functional connectivity 

tended to outperform the partial and distance correlations. Indeed, they performed better 

on average (Figure 3B). Regarding the harmonization approach, we found no significant 

difference between the no-correction option and traveling-subject harmonization (Figure 

3C). As a machine learning method, the result shows that non-sparse linear classifiers, 

including support vector machine (SVM) and RIDGE, outperformed the other 
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approaches (Figure 3D). Based on this analysis, the recommended methods for each 

process are summarized in Table 4.  

3.2. Evaluation of pipeline generality by dataset-role swapping 

We identified the markers that show high diagnostic performance even for the 

validation dataset and the pipelines for constructing them.  In view of the data 

dependency of machine learning, we constructed and verified markers using dataset II 

as a discovery dataset to check the generality of the results regarding marker 

performance rankings and important factors (Supplemental Figures 1 & 2A). Since 

dataset II, unlike dataset I, was acquired with multiple protocols, it is not just a cross 

validation. We constructed MDD diagnostic biomarkers using all the pipelines, except 

those that include traveling-subject harmonization because dataset II has no such 

corresponding traveling-subject dataset. We obtained AUC, MCC, sensitivity, and 

specificity from both datasets and calculated the averaged composite scores and 

instabilities. For each subject, the diagnostic probabilities were calculated by two 

markers that were constructed using the same pipeline before and after dataset-role 

swapping to evaluate the stability of the discrimination results. After comparing the 

averaged composite scores before and after dataset-role swapping, the effectiveness of 
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surface-based Glasser parcellation became remarkable, although a similar tendency was 

observed using the datasets in the original role (Figure 4A). For FC, the effectiveness of 

Pearson’s full correlation and tangent-space covariance was again confirmed (Figure 

4B). For the harmonization process, the effectiveness of the no-correction option 

compared to ComBat remained the same, although their differences became smaller 

(Figure 4C). There was no change in the effectiveness of the non-sparse method in the 

machine learning process (Figure 4D). Each pipeline was comprehensively ranked 

based on its averaged composite score and the instability value of the diagnostic 

markers constructed before and after dataset-role swapping and the correlation 

coefficient of the diagnostic probability (Table 5). All five indicators used for the 

rankings were standardized in all the pipelines, and the signs of the instability values 

were inverted. 

3.3. Evaluation of marker similarity 

We investigated the similarities among diagnostic biomarkers constructed from the 

top 10 identified pipelines. The mean ± SEM of the composite scores in the discovery 

dataset for the top 10 markers was 0.724 ± 0.010 (Figure 5A). The corresponding AUC, 

accuracy, sensitivity, specificity, and MCC scores were 0.775 ± 0.006, 0.682 ± 0.012, 
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0.761 ± 0.009, 0.663 ± 0.011, and 0.345 ± 0.014 (Supplemental Table 3). On the other 

hand, the mean ± SEM of the composite scores in the independent validation dataset 

was0.710 ± 0.005. The corresponding AUC, accuracy, sensitivity, specificity, and MCC 

scores were 0.743 ± 0.005, 0.674 ± 0.005, 0.711 ± 0.018, 0.649 ± 0.015, and 0.355 ± 

0.010. The diagnostic results of any pair of top 10 diagnostic markers showed a very 

high concordance rate (Figure 5B, Sorensen-Dice coefficient index: 0.791 ± 0.008, 

mean ± SEM). Each marker has 100 classifiers and 100 kinds of weight or importance 

values for each functional connectivity. The summation of the absolute weights or the 

importance of each marker was regarded as the degree of its contribution for 

classification, and we confirmed whether the top 5% contribution FCs had network 

usage similarity among the markers. Since each parcellation has its own ROIs for 

dividing the brain, it is impossible to simply compare high contribution FC patterns 

among markers with different parcellations. Therefore, we put the high contribution FCs 

into a common brain map called brain networks proposed by Yeo et al. and compared 

the similarity of the usage rates of the networks to which each FC belongs 

(Supplemental Figure 3). Since the existence probability of all the FCs on the brain 

network is different for each parcellation, we compared the network utilization rates 

between any two markers after correcting them. As a result, significant higher 
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correlations were observed between the markers constructed by the pipelines, including 

all the parcellation and functional connectivity estimation patterns, except for the 

combination of dictionary-learning parcellation and tangent-space covariance (Figure 

5C, D). 

3.4. Application of pipelines to other disorders  

Finally, we tested whether the high-performance biomarkers of other mental 

disorders can be constructed with higher-ranked pipelines identified using the MDD 

datasets (Supplemental Figure 1) since these mental disorders also have no objective 

diagnostic biomarkers. Using the top 10 pipelines shown in Table 5, we verified 

whether diagnostic markers for ASD and SCZ can be constructed by the same 

procedure as that for creating diagnostic markers for MDD. In the top 10 pipelines, 

which did not contain a ComBat option, the diagnostic markers for ASD and SCZ were 

successfully constructed with equal to or higher classification performances than the 

diagnostic markers for MDD (Figure 6). 
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4. Discussion 

In this study, we conducted a comprehensive evaluation of the analysis pipelines of 

resting-state functional connectivity (rsFC) biomarkers using a large-scale, multi-site 

fMRI dataset for major depressive disorder (MDD) and healthy controls (HCs) (1162 

participants from eight imaging sites). We explored option combinations in four 

subprocesses of the analysis pipeline: six types of brain parcellation, four types of FC 

computation, three types of site difference harmonization, and five types of machine 

learning methods. In total 360 biomarkers were constructed using the SRPBS dataset 

acquired with a unified protocol (713 participants from four imaging sites) as the 

discovery dataset and their classification performances were evaluated with the dataset 

from other independent projects acquired with heterogeneous protocols (449 

participants from four imaging sites) as the validation dataset. We identified the best 

options in each of four subprocesses based on both the cross-validated classification 

performance within the discovery dataset and the classification performance for the 

validation dataset. To find the best options shared by the rsFC biomarkers constructed 

with a dataset acquired with a unified protocol and those constructed with a dataset with 

a heterogenous protocol, we repeated the same procedure after swapping the role of the 

two datasets.  We found that the pipelines tended to result in high classification 
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performance, including Glasser’s parcellation, tangent covariance, no harmonization 

and such non-sparse classifiers as ridge logistic regression and support vector machine 

(SVM). Then we investigated the diagnosis and weight similarity between the top 10 

biomarkers and observed commonality, except in two biomarkers using both data-driven 

parcellation and FC computation. Finally, we applied the top 10 pipelines to the datasets 

of other mental disorders (autism spectrum disorder and schizophrenia) and 8 of 10 

biomarkers showed sufficient classification performance. Our results support the 

construction of standardized pipelines for multi-site and multi-disorder biomarkers. 

Regarding brain parcellation, Glasser parcellation was the most effective followed by 

the dictionary learning method. Glasser parcellation is surface-based. Other studies 

reported that surface-based parcellation, which was superior for detecting brain activity 

with lower signal contamination than volume-based parcellation by 2D smoothing 

(Brodoehl et al., 2020),  increased statistical power even in lower spatial and temporal 

resolution cases (Anticevic et al., 2008; Coalson et al., 2018). This lower signal 

contamination might improve the diagnostic performance for the validation dataset, 

which consists of the fMRI data acquired with different protocols at various sites from 

the discovery dataset. The effectiveness of dictionary learning was already reported in a 

previous benchmarking study (Dadi et al., 2019). Although dictionary learning worked 
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the best when it was learned with datasets acquired with the unified protocol, its 

performance degraded significantly when it was learned with the dataset acquired with 

heterogeneous protocols. Interestingly, the number of ROIs of Glasser parcellation is 

379, the highest in our exploration; dictionary learning had only 80, the lowest. 

Regarding FC, we confirmed that Pearson’s full correlation and tangent-space 

covariance were better than the other options. The latter had slightly higher performance 

than the former, although it was not statistically significant. Tangent-space covariance’s 

effectiveness was also consistent with previous reports (Dadi et al., 2019; Yang et al., 

2022). Since Pearson’s full correlation uses the averaged fMRI signals within each ROI, 

this approach overlooks the spatial patterns of voxel-wise or vertex-wise signals within 

individual ROIs. To exploit the information of voxel patterns within each ROI, we 

tested the recently-proposed distance correlation (Yoo et al., 2019). However, the 

average performance was not good, indicating the high sensitivity of voxel patterns to 

protocol and scanner differences. 

Regarding the harmonization method, we found no performance differences between 

the traveling-subject (TS) harmonization method and the no-correction method, 

although Combat’s performance degraded when the SRPBS dataset was used as 
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discovery datasets. When we trained the biomarkers with the heterogeneous datasets 

where Combat is the only method for harmonization, we did not find a difference 

between no-correction and Combat (Supplemental Figure 2B). In summary, we did not 

find a clear effect of harmonization on the classification performance. One possible 

reason is that the pattern of disease factors is sufficiently different from the pattern due 

to site differences and machine learning automatically weighs disease factors (Abraham 

et al., 2017; Yamashita et al., 2019). However, note that harmonization remains 

important when closely interpreting constructed biomarkers. For example, a previous 

study using sparse classifiers to construct MDD biomarkers showed that the number of 

relevant FCs increased after TS harmonization compared with the no-correction method 

(Yamashita et al., 2020).  

For the machine learning method, our results showed that non-sparse machine 

learning methods were preferred, a finding that is consistent with a previous report 

(Dadi et al., 2019). This result implies that the functional connectivity required for 

MDD diagnoses is spread throughout the brain. Although the non-sparse methods 

worked better as long as the classification performance was considered, sparse 

classifiers, which can select a small number of important FCs (Yamashita et al., 2020), 

are advantageous if applications target such specific FCs as FC neurofeedback (Megumi 
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et al., 2015; Yamashita et al., 2017) and the identification of drug discovery target brain 

areas (Ichikawa et al., 2020). 

The similarity analysis of the diagnosis and FC weights of the top 10 pipelines 

showed that diagnosis patterns were highly similar among the 10 markers and their 

weight patterns were highly similar among the eight biomarkers.  Two markers, which 

showed a low weight similarity to the remaining markers, used a combination of 

dictionary-learning parcellation and tangent-space covariance, both of which are data-

driven methods. With multiple data-driven methods, we can discriminate the MDD 

characteristics that are different from markers using the other pipelines. An interesting 

future study might take advantage of the different characteristics of multiple biomarkers 

using the ensemble learning framework to provide more robust discrimination results. 

Although this study carried out a search for the optimal diagnostic markers of 

construction pipelines by developing MDD diagnostic biomarkers, other mental 

disorders also require the establishment of objective biomarkers. We showed that eight 

of the top 10 pipelines might also be effective in developing diagnostic markers for 

ASD and SCZ in addition to MDD. Since diagnostic markers have been constructed for 

these three mental disorders, each subject can obtain in a single fMRI acquisition the 
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diagnostic probability for each disorder from the three diagnostic biomarkers. 

Combining multiple diagnostic probabilities based on biophysiological backgrounds is 

expected to fuel patient classifications regardless of conventional categorical diagnoses. 

We will also attempt to study patient-clustering methods using a multiple disorder 

dataset, an attempt also consistent with the RDoC concept, which seeks precision 

medicine for psychiatry (Insel, 2014). Regarding the low diagnostic performance of the 

two ASD diagnostic biomarkers, both were constructed using pipelines, including a 

combination of Pearson’s full correlation, ComBat harmonization, and the random 

forest method into a discovery dataset. Since the two discovery dataset sites consisted of 

only typical development subjects and ASD patients were concentrated in one site, 

excessive correction was caused by ComBat, and the characteristics of the ASD patients 

on FC seemed lost. In fact, if diagnostic markers are created in a pipeline containing 

ComBat for only two sites including ASD, their diagnostic performance is improved 

(Supplemental Figure 4). 

In summary, we searched for a pipeline with excellent generalization performance 

and excellent marker construction from a combination search of comprehensive 

methods based on fMRI data acquired at multiple large-scale facilities and obtained 

multiple candidates. Our identified pipeline is likely to be applicable to other psychiatric 
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disorders, and we expect that a combination of multiple fMRI markers will support new 

understanding of such disorders. We hope that the widespread use of fMRI markers in 

clinical practice will shorten the treatment period for patients and lead to the 

development of new treatment methods for those for whom no effective treatment 

method currently exists. 

 

Limitations 

In this study, although the fMRI data were acquired from multiple large-scale 

facilities, they were only in Japan. In our previous study (Yamashita et al., 2020), we 

applied our MDD biomarker to an fMRI dataset shared by OpenNeuro as an 

independent validation dataset from a foreign country. However, since half of its fMRI 

data were inexplicably replaced after the previous publication by the providers, we 

could not obtain sufficient performance when we applied any of the markers constructed 

in this study to the dataset of our latest version (Supplemental Figure 5). Although we 

carefully investigated the replaced data to identify the cause, we failed.  This fact 

suggests the urgency of data acquisition under internationally-controlled protocols and 

data sharing in a common format for investigating the cause and development of more 
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practical markers. In addition, regarding constructing autism spectrum disorder and 

schizophrenia diagnostic markers, we haven’t yet conducted a verification test using 

external validation data. 

 

Data availability 

We are a registered member of the Decoded Neurofeedback (DecNef) Project Brain 

Data Repository (https://bicr.atr.jp/decnefpro/data), and the data for this study are 

available from its website on reasonable request by qualified researchers. See Tanaka et 

al., 2021 for more detailed information about the datasets. 
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Figure Legends 

 

Figure 1. Design for comprehensive exploration of analysis pipelines of rsFC MDD 

biomarker:  After preprocessing with fmriprep-ciftify, 360 markers were constructed 

using 360 pipelines (6 parcellations × 4 functional connectivity × 3 site-bias 

harmonization × 5 machine learning). 
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Figure 2. Classification performances of markers constructed with 360 pipelines: 

A-D) Distribution of composite scores both in discovery and validation datasets for each 

process. A) Parcellation, B) Functional connectivity estimation, C) Site-bias 

harmonization, D) Machine learning. E) Distribution of composite scores of all 

diagnostic markers for each harmonization method in discovery dataset. Composite 

scores of markers constructed using ComBat show significant lower values than those 

of remaining markers (Tukey-Kramer test, ***p<0.001). 
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Figure 3. Impact of each method choice on prediction accuracy in each 

development process: Distribution of diagnostic performances for each method 

selected in each development process when excluding markers constructed using 

ComBat method. A) In Parcellation process, Glasser + 19 ROIs (379) and dictionary 

learning (80) performed better. B) In Functional connectivity process, Pearson’s full 

correlation and tangent-space covariance performed better. C) In Harmonization 

process, there is no significant difference. D) In Machine learning process, non-sparse 
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methods outperformed sparse methods. In this analysis, standardized prediction scores 

are used by standardization of averaged composite scores of both datasets (Tukey-

Kramer test, ***p<0.001, **p<0.01, *p<0.05).u 
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Figure 4. Dataset-role swapping to exclude discovery dataset-dependent pipelines. 

A-D) Distribution of averaged composite scores for each process before and after 

dataset-role swapping. 
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Figure 5. Diagnosis and weight similarity among top 10 high-performance 

biomarkers: A) Classification performance of top 10 MDD diagnostic biomarkers. 

Upper row shows correlation coefficient between top markers in diagnostic probability. 

Probability distribution for diagnosis of MDD in dataset I (discovery 10-fold CV test, 

upper) and dataset II (validation test, bottom). MDD and HC distributions are depicted 

in red and blue.  B) Correlation coefficient between top markers in diagnostic 

probability. C, D) Similarity of important FCs’ corrected network usage amount among 

top 10 markers. Two-thirds combination showed a significantly higher correlation with 

corrected network usage amount (D, permutation test, *p<0.05). 
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Figure 6. Development of ASD and SCZ diagnostic biomarkers using top 10 

analysis pipelines:  Constructing ASD and SCZ diagnostic biomarkers using top 10 

pipelines, showing high classification and generalization performances in constructing 

MDD diagnostic biomarkers. Eight of top 10 markers show high classification 

performances on composite scores. TD or HC distributions are depicted in blue, ASD in 

purple, and SCZ in green. 
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Table 1. Demographic information of participants: Dataset I contained data from 713 

participants (564 HCs from four sites and 149 MDDs from three sites). All data were 

acquired using a unified imaging protocol (SRPBS DecNef project). Dataset II 

contained data from 449 participants (264 HCs and 185 MDDs) from completely 

different four sites from four sites of dataset I. See Supplemental Table 1 for more 

detailed information protocols.  
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Table 2. Demographic characteristics of participants for other disorders: In 

development of ASD & SCZ diagnostic marker, rs-fMRI data acquired from 125 ASDs 

(two sites) and 106 SCZs (three sites) was used.  For TD and HC, the same HC as 

dataset I was used. All data were acquired using a unified imaging protocol (SRPBS 

DecNef project). 
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Table 3. Multi-way ANOVA for mean composite score except markers using 

ComBat: After eliminating markers constructed using ComBat options, four-way 

ANOVA was conducted on averaged composite scores of all markers, focusing on four 

development processes. 
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Table 4. Optimal method for development of practical biomarker 
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Table 5. Top 10 superior pipelines for development of MDD diagnostic biomarker: 

240 constructed MDD diagnostic biomarkers were respectively ranked in descending 

order of averaged composite scores and in ascending order of instability. Total ranking 

was determined by summation of composite score ranking and instability ranking. 
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