
 

1 
 

 
 

From internal models toward metacognitive AI 
 

Mitsuo Kawato and Aurelio Cortese 
ATR Brain Information Communication Research Group,  

Computational Neuroscience Laboratory, Hikaridai, Kyoto Japan 619-0288 
 
 

Abstract 
In several papers published in Biological Cybernetics in the 1980s and 1990s, Kawato and 
colleagues proposed computational models explaining how internal models are acquired in the 
cerebellum. These models were later supported by neurophysiological experiments using 
monkeys and neuroimaging experiments involving humans. These early studies influenced 
neuroscience from basic, sensory-motor control to higher cognitive functions. One of the most 
perplexing enigmas related to internal models is to understand the neural mechanisms that 
enable animals to learn large-dimensional problems with so few trials. Consciousness and 
metacognition -- the ability to monitor one’s own thoughts, may be part of the solution to this 
enigma. Based on literature reviews of the past 20 years, here we propose a computational 
neuroscience model of metacognition. The model comprises a modular hierarchical 
reinforcement-learning architecture of parallel and layered, generative-inverse model pairs. In 
the prefrontal cortex, a distributed executive network called the “cognitive reality monitoring 
network” (CRMN) orchestrates conscious involvement of generative-inverse model pairs in 
perception and action. Based on mismatches between computations by generative and inverse 
models, as well as reward prediction errors, CRMN computes a “responsibility signal” that 
gates selection and learning of pairs in perception, action, and reinforcement learning. A high 
responsibility signal is given to the pairs that best capture the external world, that are competent 
in movements (small mismatch), and that are capable of reinforcement learning (small reward-
prediction error). CRMN selects pairs with higher responsibility signals as objects of 
metacognition, and consciousness is determined by the entropy of responsibility signals across 
all pairs. This model could lead to new-generation AI, which exhibits metacognition, 
consciousness, dimension reduction, selection of modules and corresponding representations, 
and learning from small samples. We may also develop a new scientific paradigm that enables 
the causal study of consciousness by combining CRMN and decoded neurofeedback. 
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(1) Introduction 
 
Internal models are neural networks in the brain that simulate dynamics of some aspects of the 
external world. In the context of sensory-motor control, two kinds of internal models of a 
controlled object, a forward model and an inverse model, are possible to simulate objects of 
motor control. Examples of controlled objects are a robotic manipulator and a human body. A 
controlled object receives motor commands, such as joint torques and muscle tensions, and 
outputs a movement trajectory, in the form of joint angles and muscle lengths. A forward model 
is an internal model of the controlled object with the same “from-input-to-output” direction as 
the controlled object. Thus, a forward model receives a motor command and predicts a 
movement trajectory. In a neuroscience context, a forward model receives an efference copy of 
a motor command, and predicts the resulting sensory feedback caused by executed movements. 
An inverse model is also a model of the controlled object, but with the opposite “from-input-to-
output” direction; thus, it receives a desired trajectory as input and computes a motor command 
necessary to realize the desired trajectory. Connected in tandem, the inverse model and the 
forward model become an identity function, which is the reason that the inverse model can 
compute the necessary motor command, and may serve as an ideal feedforward controller. 
    Kawato and colleagues proposed that lateral and medial parts of the cerebellum acquire 
inverse and forward models of controlled objects through motor learning, and that they are 
hierarchically arranged (Kawato et al., 1987; Kawato and Gomi, 1992). Forward internal models 
are incorporated within internal feedback control loops, and inverse models are placed as 
feedforward controllers on top of the feedback loops. Forward models may also be utilized for 
optimal control of either kinematic or dynamic optimization objectives (Kawato 1999; Uno et 
al., 1989; Todorov and Jordan 2002). Supervised learning of forward models is straightforward 
because sensory feedback furnishes teaching signals in learning. However, learning of inverse 
models is difficult because we cannot assume the presence of “teaching signals”, i.e., ideal 
motor commands in the brain. Feedback-error learning of inverse models postulated that 
feedback motor commands generated by either internal or external feedback loops could be used 
as approximate error signals for training inverse models (Kawato et al., 1987). Mathematical 
proofs of its stability and convergence were developed (Nakanishi and Schaal, 2004), and 
robotic applications demonstrated its practical utility (Miyamoto et al., 1988; Atkeson et al., 
2000). Various experimental studies supported cerebellar internal models, especially inverse 
models, and its special case of feedback-error learning (Yamamoto et al., 2007). They include 
recording of simple spikes and complex spikes of monkey Purkinje cells during ocular 
following responses (Shidara et al., 1993; Kawato 1999; Kobayashi et al., 1998; Gomi et al., 
1998; Yamamoto et al., 2002), and humans learning a new tool (fMRI study) (Imamizu et al. 
2000). 
    In sensory-related cortices, fast visual computation by forward and inverse optics models 
was proposed (Kawato et al., 1993), motivated by Grossberg and Mingolla (1985) and Mumford 
(1992). Here, we use the word “optics” as the image generation process from properties of the 
three-dimensional external world including surface properties, object shapes, and light sources. 
The inverse optics model infers these latent variables related to the external world from visual 
images. The forward-inverse optics model explains very fast computation in the human visual 
system, while solving the inverse-optics or vision problem (Marr 1982; Poggio et al., 1985). 
Solving complicated nonlinear inverse problems usually requires many iterative computations, 
which is incompatible with human studies showing fast visual processing (Thorpe et al., 1996). 
The areas higher in the hierarchy of sensory cortices were assumed to represent the external 
world more abstractly, and those lower in the hierarchy, rawer representations of the external 
world. Feedback neural connections from higher to the lower visual area provide a forward 
optics model, or a generative model from latent variables to image data in recent terminology. A 
forward optics (generative) model reconstructs the rawer representation (e.g., sensory signals) 
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from the more abstract representation (e.g., latent variable) of the external world. In contrast, 
feedforward neural connections from the lower area to the higher area are assumed to provide 
an inverse optics model, or an inference model in recent terminology, in other words, analytic 
one-shot computation estimating higher-order representations from lower-order representations. 
Because the inverse optics model provides an approximate solution to the inverse problem 
(vision) using a one-shot computation, the whole computation of vision can be fast. The forward 
optics model, on the other hand, guarantees accurate and stable solutions using iterative 
computations. Recurrent computations between the forward and inverse optics model were laid 
out in the laminar structures within hierarchical sensory cortices (Fig 1B of Kawato et al., 1993, 
also see Fig. 3a). Errors between the two models were proposed to be sent to higher cortices 
again, while filtered by the inverse optics model. This scheme was named “predictive coding” 
by Rao and Ballard (1998) and Friston and Kiebel (2009). 
 

 

 
Fig. 1 a. Numbers of PMC papers published each year, as shown by PubMed searches for the keyword 
“internal model”. The ordinate shows the number of published papers and the abscissa shows the year of 
publication.  b Numbers of publications per year with combinations of “internal model” AND “motor 
control” (blue), “cognition” (green), or “cerebellum” (red). The search was conducted on 4 August 2021. 
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These early models were incorporated in subsequent studies and influenced sensory-motor 
control (Ito 2008; Shadmehr et al., 2010; Wolpert et al., 1998; Wolpert and Kawato 1998) and 
perceptual studies (Friston 2005, 2010; Friston et al., 2006; Kawato 1997; Lee and Mumford 
2003; Olshausen and Field, 1996; Rao and Ballard, 1998). The original papers and related 
reviews on internal models were cited several thousand times each (Kawato 1999; Kawato et al., 
1987; Wolpert et al., 1998). Figure 1a shows a rapid increase of the number of publications with 
the keywords “internal model”, and 1b shows those with “internal model” AND “motor 
control”, “cognition”, or “cerebellum.” The rapid increase was especially marked for “internal 
model” and “cognition”. In the following sections, we discuss one of the remaining fundamental 
problems with internal models: how internal models of large, complicated objects can be 
learned with a small number of trials. Finally, based on the proposed model of metacognition, 
we speculate how we can develop a new consciousness research paradigm: causal study of 
consciousness. 
 
 
(2) Literature on learning from small samples 

 
We review several lines of studies relevant to the topic of learning from small samples, where 
appropriate generalization can be achieved while utilizing limited training experiences. 
Generalization error is defined as the error in unseen test data (validation set), used as an 
objective performance measure of generalization for a learning algorithm. According to 
mathematical theories of learning, the generalization error can be estimated by several factors, 
including degrees of freedom of the learning system and the amount of data used for training. A 
classical evaluation provides that the generalization error is given as the degrees of freedom 
divided by twice the number of training samples (Watanabe 2009). Based on this evaluation, we 
know that a learning system with a small number of parameters can generalize even with a small 
number of training samples. More recent estimations, motivated by success of deep learning, 
provided a much weaker constraint on the number of necessary training samples (Suzuki 2018). 
However, these formulas are asymptotic estimates, and common sense suggests that we need 
hundreds of thousands of training samples for a learning machine with hundreds of thousands of 
learning parameters, e.g., the number of modifiable synapses. Human brains contain 1014 
synapses, and if they require a comparable number of training samples, life expectancy of 
organisms is not sufficient to account for their capacity to learn. Even for a single cerebellar 
microzone, there are at least 10,000 Purkinje cells and ≥109 plastic synapses. If one training 
sample is collected every second, this requires more than 30 years of training. A human body 
possesses at least ten million muscle fibers and millions of motor neurons; thus, motor learning 
problems are huge. However, animals can learn new movements, skills, and tasks within a few 
hundred trials, and even learn to avoid ingesting a toxin after just one trial in the case of taste 
aversion (Nikolaus et al., 1983, Roper & Redston 1987). Previous studies have offered several 
possible mechanisms for the remarkable ability of animals to learn large-scale problems from 
small samples. While discrimination between two stimuli can be learned with a single 
experience, the problem is also computationally simpler than learning an internal model. The 
latter is more difficult because it involves learning some dynamic aspect of the world, and as 
such, requires a much higher number of units and parameters. Here we review the following 
factors: modular and/or hierarchical structures, feature selection and/or dimensional reduction, 
and metacognition and/or consciousness.  
    The basic idea behind the modular architecture is to divide and conquer. By partitioning a 
huge problem into many small-task pieces, each learning module can deal with a tractably small 
piece. Modular neural-network models started with the pioneering “mixture-of-experts 
(MoEXP)” model (Jacobs et al., 1993). The MoEXP model was extended to the MOSAIC 
model, which contains both forward and inverse models (Wolpert and Kawato 1998; Haruno et 
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al., 2001), and was further developed into reinforcement learning MOSAIC (RL-MOSAIC; 
Doya et al., 2002; Sugimoto et al., 2012a, 2012b). Hierarchy is another architecture that is based 
on the “divide and conquer” strategy. In the upper hierarchy, dimension reduction of the task is 
possible with coarse-grained representations of states and actions, while in the lower hierarchy, 
the task space is partitioned into small subregions in which solving the task is tractable. 
Hierarchical reinforcement learning was one of the strong theoretical fields with this 
computational objective (Wiering and Schmidhuber 1997; Parr et al., 1997), and Samejima and 
colleagues combined hierarchical reinforcement learning with multiple internal models 
(Samejima et al., 2003, 2006; Kawato and Samejima 2007). In the neuroscience of motor 
control, hierarchical models (Kawato et al., 1987) and uniform and flat models (Todorov and 
Jordan 2002) were proposed, and there have been oscillations back (Scott 2004) and forth 
(Franklin et al., 2008; Osu et al., 2015; Babič et al., 2016; Ikegami et al., 2021). In robotics and 
artificial intelligence, hierarchical reinforcement learning has been explored for almost 20 years 
(Morimoto and Doya 2001), and recently it has regained popularity (Sugimoto et al., 2012a; 
Merel et al., 2019). Kawato and colleagues proposed a cerebellar hierarchical reinforcement 
learning model based on these previous theoretical models, explaining recent experimental 
findings in the cerebellum (Kawato et al., 2020).  
    Finally, several researchers independently proposed that higher cognitive functions, 
especially consciousness (Bengio 2017) and metacognition (Cortese et al., 2019), serve very 
important functions in feature selection and dimension reduction, which are beneficial for 
learning from small samples in hierarchical structures of the brain. Consciousness and 
metacognition are in fact intimately related, and might even share common neural mechanisms 
(Brown et al., 2019, Morales & Lau 2021). Of interest here is that both consciousness and 
metacognition could be linked to higher-order representations; reflection, or re-representations 
of first-order sensory representations (Lau & Rosenthal 2011, Brown et al., 2019). Such higher-
order representations are presumed to be abstract and low-dimensional (in content space), and 
are essential to feature selection and dimension reduction (Cortese et al., 2019, Fleming 2020). 
Recent theoretical work has discussed consciousness as a system invented for the brain’s need 
to constantly discriminate what is internally generated from what is a true representation of the 
external world -- an internal mechanism of perceptual reality monitoring (Lau 2019). In similar 
fashion, Gershman (2019) suggested that generative adversarial networks (GAN, Goodfellow et 
al., 2014) provide a striking analogy for how the brain operates in metacognition and 
consciousness. The key idea in the context of consciousness is a discriminator of GAN between 
true and internally generated. The discriminator maps onto the higher-order representations, 
which are effectively belief states about lower-level representations. 
 
 
(3) Metacognition accelerates reinforcement learning 
 
It is always very difficult to estimate how much genetic information is utilized when animals 
learn a huge dimensional problem from a small sample. For example, foals stand immediately 
after birth, and this capability must come largely from genetic hardwiring of motor neural 
circuits, but such estimation is difficult in neuroscience, for example, when humans learn to use 
new tools. As the first step to identify possible neural mechanisms of learning from small 
samples, we need to show that animals (humans) can learn big problems from small samples 
when genetic information or prior knowledge is not available.  

Cortese and colleagues achieved this seemingly very difficult task by arbitrarily separating 
brain states into two domains, using a binary decoding technique. They prepared a 
reinforcement learning task in which participants had no clue about the reinforcement learning 
state (Cortese et al., 2020). This was made possible by extending the fMRI decoded 
neurofeedback method (Shibata et al., 2011, 2018; Watanabe et al., 2017), and by constructing a 



 

6 
 

novel and innovative reinforcement-learning task. Multi-voxel decoding was used to separate 
the brain state into two domains, each associated with an optimal action that, if selected, would 
lead to high probability of reward. The decoding utilized about 200 voxels, but participants 
were unaware of which brain area was targeted for decoding and how these voxels were 
selected. Furthermore, fMRI BOLD signals used for this decoding were measured during inter-
trial intervals of the reinforcement-learning task, during which there was no task for participants 
nor stimulus given. Consequently, participants had no prior information about the reinforcement 
learning state; thus, genetic information could not help to solve the reinforcement-learning task. 
Nevertheless, to our surprise, participants learned to select optimal actions within several 
hundred trials in just two days of the three-day experiment. This study clearly demonstrated that 
humans can learn gigantic problems (equivalent to ~10,000 voxels, and possibly 1014 synapses) 
from small samples, independent of genetic information. Experimental results obtained from the 
fMRI data demonstrated that the search space for the reinforcement-learning state started from 
the whole brain, and then rapidly shrank to very limited regions of the brain, including the basal 
ganglia and the prefrontal cortex (PFC). Metacognition proved important for this learning from 
small samples, based on the following three findings. First, participants with better 
metacognitive capability solved reinforcement learning more effectively, i.e., were more likely 
to select the optimal option; hence, they obtained larger rewards.  Here, metacognitive 
capability is defined according to how well each participant can estimate correctness of their 
perceptual decisions on motion directions by their subjective confidence ratings. Second, when 
the confidence rating was high, then optimal choices as well as smaller reward prediction errors 
were observed more often. That is, there was information coupling between the confidence and 
the reward prediction errors. Finally, as learning progressed, the above information coupling 
between confidence decoded in the PFC and reward prediction errors decoded in the basal 
ganglia became stronger. That is, for later learning stages, when decoded confidence was 
greater, the decoded reward prediction error was smaller. The functional relationship between 
the two brain regions became stronger and stronger during three days of learning (Cortese et al., 
2020).  

In the next section, we propose a computational neuroscience model of metacognition. 
This model basically reproduces the aforementioned experimental data, and leads to next 
generation artificial intelligence with metacognition, consciousness, and learning from small 
samples. This computational model is an expansion and integration of the lines of research that 
were introduced in the previous section. First, the metacognition model contains multiple 
generative-inverse models. So, it is a natural extension of internal model theories (Kawato 1997, 
1999; Kawato et al., 1993, 1987, 1992), forward-inverse optics models (Kawato et al., 1993), 
the MoEXP model (Jacobs et al., 1993), and MOSAIC (Wolpert and Kawato 1998; Haruno et 
al., 2001). Second, it is a modular-hierarchical reinforcement learning model; thus, it is an 
extension of RL-MOSAIC (Doya et al., 2002; Sugimoto et al., 2012a, 2012b). Third, the 
metacognition model was inspired by the hypothesis of perceptual reality monitoring (Lau 
2019), as well as the model of consciousness by Gershman, based on a generative adversarial 
network (GAN) (Goodfellow et al., 2014; Gershman 2019). 

 
 

(4) A computational model of metacognition  
 
The proposed model constitutes a hierarchical modular structure of the cerebral cortex. Within a 
given module at a certain hierarchy, a pair of generative and inverse models constitute an 
element. Pairs of conjugate models are arranged in hierarchy, as well as in parallel (Figs. 2 and 
3a). In sensory related cortices (Fig. 2a), feedback neural connections from the higher area to 
the lower area provide a forward optics model (Forward: 𝑔), in other words, a generative model 
of the rawer representation (Eqs. 1, 2). In contrast, feedforward neural connections from the 
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lower area to the higher area provide an inverse optics model (Inverse: 𝑓), in other words, an 
analytical, one-shot computation estimating higher-order representations (Eqs. 3, 4) (Kawato et 
al., 1993). In this paper we use deterministic formulas for simplicity, but one can develop the 
corresponding stochastic formulas (Friston 2010; Gershman 2019). 
𝑥$! = 𝑔!(𝑥" , 𝑥$")                             (1)  
𝑥$" = 𝑔"(𝑥"" , 𝑥$"" 	)                        (2) 
𝑥" = 𝑓!(𝑥! , 𝑥$!)                              (3) 
𝑥"" = 𝑓"(𝑥" , 𝑥$")                           (4) 
Here, LL, L, H, HH denote one level lower than lower in hierarchy, lower level in hierarchy, 
higher level in hierarchy, higher than higher level in hierarchy, respectively. Within a cortical 
region, top-down computational outcomes from a generative model 𝑥$	and bottom-up 
computational outcomes from an inverse model 𝑥	are compared, and the mismatch between the 
conjugate-pair estimates is computed as in Eqs. 5,6.  
∥ 𝑥"𝐻 − 𝑥𝐻 ∥                                   (5) 
∥ 𝑥"𝐿 − 𝑥𝐿 ∥                                    (6) 
This mismatch may originate from several factors. The first and most obvious is that the brain 
region in a hierarchy does not match the relevant aspect of the external world. If animals need to 
discriminate between their prey and predators based only on odors in total darkness and from 
remote distances, then visual or somatosensory modules would have large mismatches. This is 
because top-down and bottom-up computations largely diverge in these irrelevant sensory 
modalities. Secondly, large prediction errors are induced by inaccurate predictive, forward, and 
generative models when the models are not learned well. The third involves computation errors 
by inappropriate inverse models when they are poorly suited to a specific perceptual domain. 
In parallel with this mismatch error between paired models, the reward prediction error 	𝛿%& 
utilizing the representation of that (i,k) cortical region is computed through communication with 
the basal ganglia (Fig. 3a). Here, i represents the number of modalities of modules, and k 
represents the depth in hierarchy and is designated as LL, L, H, HH in eqs. (1)~(6). For all 
conjugate-model pairs, mismatch errors and reward prediction errors are computed, and their 
weighted summation is used by the cognitive reality monitoring network (CRMN) in the PFC 
(Fig. 3a).   
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Fig. 2 a) Hierarchical and recurrent arrangements of conjugate-model pairs in higher and lower levels of 
sensory cortices. Forward and inverse models in the pair are a generative, forward optics model and its 
inverse in the case of vision. The mismatches between forward and inverse computations are calculated 
(open circles in the figure), and are used as inputs to forward models, as well as sent to the prefrontal 
cortex. 𝑥: A representation of the external world computed by feedforward one-shot, and analytical, 
inverse models (bottom up), 𝑥": representation of the external world computed by feedback, iterative, 
generative, forward models (Top down); H: higher level in hierarchy; L: lower level in hierarchy; HH: 
higher than higher level in hierarchy. b) Hierarchical and recurrent arrangements of conjugate-model 
pairs in higher and lower levels of sensory-motor cortices. Forward and inverse models in the pair are a 
predictive, forward model and an inverse model of a controlled object at that level of representation. The 
mismatches between forward and inverse computations are calculated (open circles in the figure), and are 
used as inputs to inverse models, as well as sent to the prefrontal cortex. 𝑥: state; 𝑥": predicted state by 
forward model; 𝑥!: desired state; 𝑢: motor command; H: higher level in hierarchy; L: lower level in 
hierarchy; LL: one level lower than lower 
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Fig. 3. a Whole brain parallel, hierarchical structure, having loop communications with the basal ganglia. 
Neural circuits within laminar structures of cerebral cortices are redrawn 12 times according to those in 
Fig. 1B of Kawato et al. (1993). Each hierarchy in each modality contains both forward and inverse 
models. The upper hierarchy represents motor cortices and the lower hierarchy represents sensory 
cortices. Note that forward models and inverse models are bottom-up (feedforward) and top-down 
(feedback) directions in the motor cortices, but they are reversed in the sensory cortices. CRMN in the 
PFC contains cognitive prediction errors 𝑒"#, likelihoods 𝐿"#, responsibility signals 𝜆"#	and their priors 
𝜆'"#. The basal ganglia compute reward prediction errors 𝛿"# for all modality and hierarchy (i, k). Here, 𝑖 
represents the modality, such as vision, audition, somatosenses. 𝑘 represents the level in hierarchy, and 
corresponds to LL, L, H, HH.  b. An autoencoder network when feedforward (ff) and feedback (fb) neural 
connections in a are unfolded in the right and left sides of the PFC, respectively. Here, for simplicity, the 
schematic representation only depicts V1 (early visual cortex), but the same mapping applies to any 
sensory or motor area. 𝑥: state; 𝑥": predicted state by forward model; 𝑥!: desired state; 𝑢: motor 
command; H: higher level in hierarchy; L: lower level in hierarchy; LL: one level lower than lower. 𝑒"# ,	
𝐿"# , 𝜆"# , 𝜆'"# ,𝛿"#: cognitive error signal, likelihood, responsibility signal, responsibility-signal prior, and 
reward prediction error of RL for (i, k) module 

 
In motor-related cortices (Fig. 2b), computations similar to those in sensory-related 

cortices are executed utilizing sensory-motor conjugate-model pairs. Ultimately, the mismatch 
error and the reward prediction error are computed and weighted for summation, as in sensory 
cortical areas. The most marked differences between the sensory and motor cortices are 
directions of input-output of forward and inverse models. We set the higher level of the 
hierarchy for both sensory and motor cortices with more abstract representations, and the higher 
level is closer to the PFC. The lower level of hierarchy is characterized with rawer 
representations, and is closer to sensors, muscles, and the body. The inverse model (controller: 
Inverse: 𝑓) in motor cortices computes the motor command from the desired state, so its input-
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output direction is from top to bottom, which is the reverse of those of sensory inverse models. 
The important assumption is that the motor command of the higher level 𝑢! is identical to the 
desired state of the lower level 𝑥"#. 
𝑥"#=𝑢!=𝑓!(𝑥"! , 𝑥"! , 𝑥"#)                    (7) 

𝑥"## = 𝑢# = 𝑓#(𝑥"# , 𝑥"# , 𝑥"##)               (8) 
The forward model (state predictor: Forward: 𝑔) in sensory-motor cortices predicts the state 
from the motor command and the current state, so its input-output direction is from bottom to 
top, which is the reverse of sensory forward models. 
𝑥"! = 𝑔!(𝑥"# ,𝑢!)                  (9) 

𝑥"# = 𝑔#(𝑥"## ,𝑢#)                  (10) 
    The mismatch of conjugate models is the difference of the desired state computed by the 
inverse model and the estimated state computed by the forward model. 
∥ 𝑥"! − 𝑥"! ∥                   (11) 

∥ 𝑥"# − 𝑥"# ∥                   (12) 
The mismatch is expected to be small, provided that the module is relevant for current actions, 
that the inverse model is appropriate for motor control, and that prediction by the forward model 
is accurate. If the task requires eye movement, while the module is about foot movement, the 
mismatch should be large.  
    Again, the reward prediction error 𝛿$% is computed for the representation, and is weighted by 
a weighting factor w and summed with the above mismatch. Here, 𝑖 represents the modality, 
such as vision, audition, or somatosenses. 𝑘 represents the hierarchical level, and corresponds to 
LL, L, H, HH in previous notations, and takes larger values for higher levels of the hierarchy. 
𝛿$% 	is the difference between the predicted reward utilizing the (𝑖,𝑘) representation and the 
actual reward. 

The weighted summation will be used by CRMN.	We call this weighted summation of the 
two kinds of errors “cognitive prediction error” 𝑒%&. Eqs. 13 and 14 are for motor and sensory 
conjugate pairs, respectively. 
𝑒$%		'	 =∥ 𝑥$%" − 𝑥"$% ∥2+𝑤𝛿$%'                  (13) 

𝑒$%		'	 =∥ 𝑥$% − 𝑥"$% ∥2+𝑤𝛿$%'                  (14) 

The cognitive prediction error is not simply a sensory prediction error, a motor command error, 
or a reward prediction error, but contains all three types of errors. That is why we use the term 
“cognition” for this error. 

The whole architecture is basically hierarchical reinforcement learning with multiple 
modules. One of the new features is that conjugate-model pairs constitute each hierarchy of 
each modality. Another feature is gating by CRMN, as explained below. The likelihood 
(𝐿%&:	𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑	𝑜𝑓	𝑖 − 𝑡ℎ	𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙	𝑚𝑜𝑑𝑢𝑙𝑒	𝑎𝑛𝑑	𝑘 − 𝑡ℎ	ℎ𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦) is a soft max function of 
the cognitive error. 
𝐿$% =

()*	(,($%
& /.&)

∑'(	()*1,('(
& /.&2

                  (15)  

 ∑$% 	𝐿$% = 1                         (16) 
The responsibility signal 𝜆$% is equal to 𝐿%& 	for small and intermediate k, but is defined as the 
product of the likelihood and a prior estimate of the responsibility signal, based on 
representations in all modules at high levels of the hierarchy.  
𝜆$% = 𝜆5$% 	. 𝐿$% 		, 𝑘 >> 1                        (17) 
The terminology “responsibility signal” was borrowed from the MoEXP and MOSAIC 
literature. For a given task and state of the world, there may exist a well-suited module to cope 
with them. The gating network and CRMN select an appropriate module which is “responsible” 
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for the task and the state, and computes the degree of this appropriateness by the responsibility 
signal. If it is large, the module is more appropriate and more heavily recruited for perception, 
action, and learning. 

    The prior estimate of the responsibility signal 𝜆5$% roughly corresponds to the gating network 
of MoEXP architecture, as well as a discriminator network of GAN. 𝜆5$% could be initialized as a 
flat vector or with random numbers. The function h in Eq. 18 is incrementally updated (learned) 
with the 𝜆$% as a teaching signal. 

𝜆5$% = ℎ:𝑥$3" , 	𝑥; $3 , 𝑥$3 	<		, 𝑙 >> 1, 𝑘 >> 1                   (18) 

The responsibility signal 𝜆$% uses cognitive error signals of all levels of the hierarchy for its 
computation, but its prior 𝜆5$% does not use cognitive error signals, and instead can be estimated 
from abstract information sent by feedforward pathways, so by inverse models in sensory 
streams and forward models in motor streams, as well as abstract information broadcasted away 
by feedback pathways, so by forward models in sensory streams and inverse models in motor 
streams. Only high-level representations are used for the prior, as indicated by l>>1. Without 
depending on cognitive error signals, just by examining dimension-reduced abstract 
representations, CRMN can determine that some modules are most likely appropriate for 
representing the sensory world and the executed action, but that other modules are 
inappropriate. Based on the responsibility signal, the PFC selects the best conjugate-model pair 
for motor control and perception. This is a computational account for metacognition in the sense 
that the PFC “attends” to and “adopts” the selected module and hierarchy. The responsibility 
signal is used for perceptual attention and action selection, as well as gating learning of 
corresponding conjugate-models and reinforcement learning. The responsibility signal also acts 
as a teaching signal for its prior estimate. The CRMN in the PFC consists of the prior estimate 
network for the responsibility signal, a soft max to compute the responsibility signal, and 
computation of entropy S of the responsibility signals as follows: 
𝑆 = −𝛴	𝜆𝑖𝑘 ln(𝜆$%)                     (19)  

Because information collected by CRMN is a very small subset of all representations in all 
modules and hierarchy, CRMN reduces data dimensions, and conducts module and feature 
selection by the responsibility signal. If we graphically expand feedforward and feedback 
pathways of conjugate model pairs in the right and left sides to the PFC, the whole neural 
network looks like an autoencoder network (hourglass model) and CRMN corresponds to its 
bottleneck with the smallest intermediate layer (Fig. 3b).  

The most novel proposal for CRMN is its metacognition and consciousness explanations in 
addition to selection of modules for action, perception, and module-learning, as well as 
reinforcement learning. This is motivated by the experimental findings of the negative 
correlation between the decoded confidence and the decoded reward-prediction error in Cortese 
et al. (2020). We postulate that consciousness is determined by entropy S of responsibility 
signals (Eq. 19), which is compatible with a previous coherence proposal of consciousness 
(Kawato 1997). If all responsibility signals are similarly small and almost uniform, entropy is 
large, and neither metacognition nor consciousness emerges. If one responsibility signal is much 
larger than other responsibility signals, then entropy becomes small, and metacognition of the 
cognitive process, which is executed by the module with the largest responsibility signal, 
emerges. The participant becomes conscious of corresponding perception and action 
representations. The function of the discriminator in GAN in (Gershman 2019) is replaced by 
the responsibility-signal entropy in CRMN. GAN’s discriminator helps to train GAN’s 
generator in a self-supervised fashion (Goodfellow et al., 2014). Someone first needs to train the 
GAN’s discriminator with real data and false data. Separation of the data into the two classes 
necessitates either human involvement, or other brain parts, or homunculus. In the GAN 
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algorithm, a teaching signal for discriminating between real and false data is necessary (here we 
note the presence of training data in GAN as the supervised learning for clarity), but we cannot 
afford to assume such a luxury in biological brains. If we make such an assumption, it is almost 
identical to assuming the homunculus who tells some neural activities representing the external 
world and others not. Instead of the supervised learning paradigm of GAN, reinforcement 
learning based on rewards and miniimization of responsibility-signal entropy are driving forces 
for all kinds of learning in CRMN architecture. This learning involves conjugate-model pairs, 
reinforcement learning, and the responsibility-signal prior estimator. For rigorous computation 
of the responsibility signals, the mismatch at each hierarchy and module should be computed. 
The responsibility signals can be approximated by the responsibility estimator that uses only the 
high-level top-down and bottom-up signals. Thus, in CRMN, the cognitive error signals are 
"teaching" signals in supervised learning, and the responsibility estimators are learned with this 
supervision. In this sense, CRMN was inspired by Gershman’s proposal of GAN discriminator 
for reality monitoring and turned it into a self-supervised learning framework (Goodfellow et 
al., 2014; Gershman 2019; Lau 2019). 

 
 
 
(5) Relationships to previous models 
 
CRMN is based on several lines of previous artificial neural network models and computational 
neuroscience models. In this section, we discuss how the proposed metacognition model 
explains various enigmas associated with learning from small samples in relation to previous 
studies. First of all, the PFC in CRMN serves as the bottleneck layer of the autoencoder neural 
network in dimension reduction, as explained in the previous section (Fig. 3b). Dimensional 
reduction in the PFC and selection of a module are the main mechanisms enabling learning from 
small samples. Because the huge original problem is transformed into many small and tractable 
problems with reduced dimensions, the PFC and the selected module can learn from a small 
sample. 

Conjugate-model pairs were proposed as forward and inverse models for cerebellar internal 
models (Kawato et al., 1987), as well as in MOSAIC (Wolpert and Kawato, 1998; Haruno et al., 
2001), and proposed as essential elements in the coherence model of consciousness (Kawato 
1997). In the perceptual domain, Kawato and colleagues (1993) proposed forward and inverse 
optics models for fast visual computation. The MoEXP model incorporated competition and 
cooperation between multiple modules in selection and learning (Jacobs et al., 1991). CRMN 
extends these previous models and incorporates generative-inverse model pairs as well as 
competition and cooperation between them, and is more general in the sense that perception and 
motor control are coherently managed. The novel feature of CRMN is its selection and gating 
mechanism. In previous models, a module with better learning performance (MoEXP), or a 
module containing a forward-model with better sensory prediction (MOSAIC) is selected. Thus, 
gating requires comparison of each module’s output and teaching signal (MoEXP) or the state 
of the external world (MOSAIC). This may be possible within a shallow hierarchy, but would 
be practically impossible in brains with deep hierarchies. CRMN instead utilizes consistency of 
conjugate-model-pair predictions for gating, which can be evaluated within each level of 
hierarchy without reference to the global teaching signal or the sensory inputs. Our basic 
assumption is that the cascade of a generative model and its inverse should be an identity 
function; thus, the mismatch between corresponding outputs should be zero if the model pair is 
suited for a given context and is perfectly accurate (Fig. 2). 

Furthermore, CRMN is also based on a second stream of theoretical and computational 
studies: hierarchical and modular reinforcement learning. CRMN proposes that reinforcement 
learning occurs in parallel while utilizing individual representations for each module in the 
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hierarchy with its specific conjugate-model pair. Therefore, if the brain contains 10,000 
different representations, and 10,000 different value functions, policies and reward prediction 
errors are estimated simultaneously and in parallel by loop computations between the basal 
ganglia and each module in the hierarchy (Fig. 3a). Module selection in CRMN is based not 
only on the consistency between conjugate-model pair computations, but also appropriateness 
of its representation for reinforcement learning. Thus, CRMN selects and recognizes a cognitive 
process not only by its perceptual consistency or motor-control competence, but also based on 
its optimality in maximizing long-term rewards. CRMN is closely related to RL-MOSAIC 
(Doya et al., 2002; Sugimoto et al., 2012a, 2012b) in the hierarchical-reinforcement learning 
literature in the sense that prediction goodness selects the appropriate module. While only 
goodness of forward-model prediction is considered in RL-MOSAIC, consistency of forward 
and inverse models is a criterion for selection, and is generalized to both perceptual and sensory 
motor domains in CRMN. CRMN also incorporates the reward prediction error in selecting an 
appropriate module, and this is a new feature, compared with MoEXP, MOSAIC, and RL-
MOSAIC.  

Computation of responsibility signals from cognitive prediction errors transpires in the 
PFC, and is the most novel feature of CRMN. This computation is closely related to the gating 
functions of MoEXP architecture, and the responsibility signal of MOSAIC. Estimation of the 
responsibility prior is related to prior estimation in MoEXP, and the discriminator network of 
GAN. If entropy of the responsibility signals is large, CRMN believes that all modules are 
inappropriate for perceptual interpretation of the current world, or for behavioral adequacy in a 
given task. This corresponds to a state in which the discriminator of GAN believes that the input 
is artificial. The small entropy of CRMN corresponds to a state in which the discriminator of 
GAN believes that the input is real. CRMN, as a model of metacognition and consciousness, is 
highly motivated by theories of Lau (2019) and Gershman (2019). A new aspect of CRMN is 
entropy of responsibility signals based on model mismatch and reward prediction errors, which 
can theoretically abolish the necessity of teaching signals for the GAN discriminator. Gershman 
(2019) explicitly proposed the prefrontal discriminator of GAN, which is a centralized 
consciousness model (higher-order theory). Our model is half centralized as responsibility 
signals and its predictor converge in the PFC, but half distributed (first-order theory) because 
computations of mismatches are individually executed at each hierarchy and module all over the 
cerebral cortices. The feedback generator and feedforward generator of Figure 1 in Gershman 
(2019) correspond to our forward optics (generative) model and inverse optics (inference) 
model (Fig. 2), respectively. The usage of “forward” and “feedback” are just opposite in both, 
and we note this just to avoid possible confusion. 

Because CRMN is based on hierarchical-modular reinforcement learning, MOSAIC, and 
MoEXP, its origin lies in optimal action selection, and supervised and reinforcement learning. 
Thus, its ancestry had nothing to do with phenomenal consciousness or metacognition. But once 
CRMN is laid out, it could be a model of phenomenal consciousness, even though not a model 
of accessibility or access consciousness or attention. We propose that only when responsibility 
signal entropy S is low, participants become consciously aware of representations with high 
responsibility signals. This is because all representations at several hierarchical levels are 
coherent, consistent and stable; thus, the PFC abstract representations are very well connected to 
first-order representations. 

 
 

(6) DecNef experimental support for CRMN 
 
In this section, we discuss how the proposed metacognition model explains experimental results 
of decoded neurofeedback (DecNef), especially experimental results of Cortese and colleagues 
(2020). In the CRMN model, the search space of the reinforcement-learning state for any new 
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task starts from all brain areas, and proceeds to very limited regions selected by CRMN, based 
on responsibility signals. This accords well with the experimental finding that brain areas 
correlated with the reward prediction error were widespread and covered the entire brain on the 
first day, but shrank very quickly to a few areas, including the basal ganglia and the PFC during 
the following two days. Participants with higher metacognitive capability learned faster in the 
reinforcement-learning task. Moreover, better actions were taken when participants were more 
confident about their perceptual judgments. If CRMN performs well, both metacognition and 
gating by the responsibility signal are efficient. Thus, the association between metacognition 
and learning found in the experiment is compatible with CRMN. Interestingly, in this study, 
participants could discriminate the correctness of their brain state inference (perceptual choice), 
but they were not conscious of the brain state itself. For the CRMN, to be conscious we need to 
have a high responsibility signal across the distribution of representations that span the entire 
hierarchy – lower-level representations must match higher-level ones. Nonetheless, for 
metacognition the responsibility signal is about a single module; thus, even with a relatively 
low, but graded responsibility signal, this could be sufficient to have metacognitive insight, 
while failing to reach consciousness. As learning progressed, confidence decoded from PFC 
multi-voxel patterns showed larger information coupling with reward prediction errors decoded 
from basal-ganglia multi-voxel patterns. CRMN performs several functions simultaneously and 
coherently, based on responsibility signals. Functions include gating modules for metacognition, 
perception, and action, and both conjugate-model learning and reinforcement learning. Thus, 
experimental results are compatible with predictions from CRMN. 
    CRMN can explain the “consciousness enigma” of DecNef experiments (Shibata et al., 2011; 
Cortese et al., 2016, 2021a). Although decoded fMRI neurofeedback in these experiments 
induced strong brain representations and caused significant behavioral changes with medium to 
large effect sizes (Watanabe et al., 2017), participants remained unaware of the information 
induced in their own brains (Shibata et al., 2018; Cortese et al., 2021a). CRMN predicts that 
strong neural representations in a module and hierarchy are not sufficient to induce 
consciousness. Feedforward and feedback computations by conjugate-model pairs should be 
compatible as a prerequisite for consciousness. However, the target area of DecNef was isolated 
from other areas regarding viewpoints of the induced information (Shibata et al., 2011, Amano 
et al., 2016). Furthermore, although the induced information was strong enough to change 
related behaviors, no relevant sensory stimulus or motor task was given to participants; thus, 
neither generative models nor inverse models receive appropriate inputs related to the induced 
information from lower and/or higher levels of the hierarchy. Without relevant inputs, neither 
model can accurately predict information representations in the targeted area in DecNef. 
Consequently, mismatches between the conjugate model-pair should be quite large and the 
corresponding responsibility signal should be small. In this case, CRMN asserts that the 
information representation in that area does not reach the level of consciousness, even though it 
is strong enough to change behavior. Consequently, CRMN explains why participants in 
DecNef did not become conscious of the information induced in their own brains that was 
strong enough to cause behavioral changes.  
 

 
(7) Relationship to phenomenal consciousness 

 
In this section, we discuss how the proposed metacognition model explains experimental results 
of a broad array of phenomena in metacognition, consciousness, and sense of agency. On the 
same basis of larger mismatch signals introduced in the previous section, CRMN explains why 
spontaneous brain activities (Berkes et al., 2011; Kenet et al., 2003; Luczak et al., 2009), brain 
activities induced by working memory, or brain activities induced by mental imagery, are not 
necessarily brought above consciousness. Brain activities under these conditions may contain 
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strong information representations in some brain areas (Albers et al., 2013; Mendoza-Halliday 
and Martinez-Trujillo, 2016), but these areas lack either feedforward or feedback neural inputs 
or both, regarding relevant representations from lower and higher levels in the hierarchy. Thus, 
the mismatch within the conjugate-model pair is large and responsibility signals of the areas are 
small. During working memory and mental sensory imagery, top-down signals are sent from the 
PFC to sensory cortices, but bottom-up signals are absent because of the lack of corresponding 
sensory stimuli. Therefore, mismatch signals should be large at many levels of the hierarchy, 
and especially at lower levels. In the CRMN framework, large mismatch signals imply 
nonconscious representations. Nevertheless, persistent local recurrence between generative and 
inverse models at some intermediate levels may generate internal signals travelling upward to 
middle and high levels of the hierarchy, leading to small mismatch with top-down signals 
(conscious representations). These cases may correspond to conscious experiences for some 
participants. Thus, CRMN predicts that the efficiency of recurrent computations between the 
forward and inverse models and their levels in the hierarchy determines how strongly a 
participant is conscious about working memory or mental imagery content.  
    Top-down signals sent from the PFC through feedback pathways in the sensory stream and 
top-down pathways in the motor stream cannot tell whether downstream representations are real 
or not. Let us take a thought experiment. The motor center sends a rightward finger movement 
intention, but actually a participant is involved in a sense of agency experiment, and is shown a 
leftward finger movement video. Accordingly, sensory representations of the rightward 
movement inferred from the motor command are not real. We can think of similar mismatches 
between working memory and visual imagery top-down signals and real bottom-up sensory 
signals. An important proposal of CRMN is that only if the brain examines compatibility of top-
down and bottom-up signals, can it discriminate real from spurious representations of the 
external world and executed task. 

The peculiar cases of aphantasia and blindsight offer important tests for the CRMN model. 
People with aphantasia can perform mental imagery, but lack conscious awareness of the 
imagery content (Pounder et al., 2021). In blindsight, people are unable to consciously 
experience visual stimuli due to damage to the visual cortex. Yet, they are able to objectively 
discriminate between visual stimuli (Weiskrantz 1996; Stoerig, Cowey 1997). CRMN can 
accommodate both conditions. In aphantasia, the lack of consciousness may result from weaker 
recurrent local interactions between the generative model and its inverse model, or deficits in 
the CRMN. In blindsight, bottom-up signals are weak; thus, high-level representations are not 
formed, and top-down signals are absent, so mismatch signals are large. However, the weak 
low-level signals may still be used to perform tasks that involve unconscious processing, such 
as forced choices, Pavlovian and instrumental conditioning, reinforcement learning (Hamm et 
al., 2003; Takakuwa et al., 2017; Kato et al., 2021).  

Based on similar reasoning, CRMN provides an explicit computational account of “sense 
of agency” (Haggard 2017) and its deterioration in brain disorders (Biran, Chatterjee 2004; 
Fried et al., 2017). Mirror neurons of monkeys and the mirror-neuron system of humans are 
activated both in movement control and observations of related movements executed by other 
agents (Di Pellegrino et al., 1992; Iacoboni et al., 1999; Rizzolatti 2004). Wolpert and 
colleagues proposed that forward models in MOSAIC can be utilized to infer intentions of other 
agents from observations of their movements (Wolpert et al., 2003). Even though neural 
representations of one’s own movements and movements executed by others could be similar in 
motor related cortices, we can well discriminate the two types, i.e., we have capability of sense 
of agency. Who executes the movements observed by the sensory system? Myself or someone 
else? CRMN explains the difference between these two cases by inverse models and top-down 
neural connections. When one visually observes a video of arm movements, for example, 
bottom-up neural connections carrying visual information and resulting forward model 
computations could be similar to those generated by one's own movements. However, because 
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there is no movement intention in higher motor cortical areas, top-down neural connections do 
not carry much control input to inverse models; thus, the mismatch between the inverse models 
and forward models becomes large. Then, CRMN rejects the hypothesis that neural 
representations in premotor or motor cortices are generated by one's own movements, and the 
sense of agency does not emerge. In visual cortical areas, the mismatch could be small and 
participants may be consciously aware of arm movements. This capability is compromised in 
patients with psychosis (Blakemore et al., 2000), and we can explain this either by deficits in 
CRMN, mismatch computation, or within forward (Blakemore et al., 1998) or inverse models. 
Conscious perception is also similarly compromised in schizophrenia (Berkovitch et al., 2017). 
Finally, based on similar CRMN mechanisms, brain activities induced by mental motor imagery 
and spontaneous brain activities are rejected for representing actual movements, even if they 
have similar motor representations in some brain areas. Because CRMN is based on a single set 
of computations, it can offer a simple unifying explanation for the seemingly different 
phenomena of psychosis, schizophrenia, conscious perception and agency. 

We assume that, in the PFC/CRMN, an abstract representation of conscious content exists 
(regardless of whether it is 𝐿%&s or vectorial representations), and only if this content is 
compatible with first-order content in the sense of high responsibility signals. Then conscious 
awareness of the content emerges. In this paper, we did not consider several interesting 
phenomena in conscious vision, including peripheral inflation, binocular rivalry, masking, weak 
stimuli, but most of these may be explained by the interplay (mismatch between the conjugate 
pair or coherence between first-order and higher-order representations) between generative and 
inference models and their monitoring (in the way of more abstract representations and 
responsibility signals) by the PFC. It is one of our future research plans to systematically 
consider these interesting cases from the theoretical framework of CRMN. 
 
 
 
(8) Discussion 
 
Here, we discuss the proposed model of metacognition in the context of several previous 
theories of consciousness. We further speculate how this computational neuroscience model 
could lead to next-generation artificial intelligence, which possesses metacognition and 
consciousness (Dehaene et al., 2017), and is able to learn gigantic problems from small samples. 
To conclude, we illustrate how this model, at the intersection of neuroscience and artificial 
intelligence, may also inspire new experiments to causally induce consciousness in humans.  

CRMN provides an implementable computational algorithm for higher-order theories 
(HOT) of consciousness (Brown et al., 2019). In general HOT, the PFC monitors a cognitive 
process as a requisite of metacognition. However, it has not been computationally specified 
what kinds of neural information are monitored. It is also not evident whether this monitoring 
mechanism is fundamentally different from a homunculus observing a cognitive process. In 
CRMN, the PFC monitors coarse-grained information representations, mismatch signals, and 
reward prediction errors from each area. Of note, while monitoring is about coarse-grained 
information, what the agent will be consciously aware of are representations associated with 
small entropy, which can correspond to coarse- or fine-grained information. Thus, the PFC 
monitors only very limited information and computes responsibility signals in an algorithmic 
way, so it cannot be a homunculus. In CRMN, we explicitly propose that consciousness has 
important functional contributions to survival and learning from small samples. CRMN clarifies 
the relationship between metacognition and consciousness with a concrete algorithm. Both 
result from one underlying mechanism, but metacognition is defined over one cognitive process, 
and consciousness is defined over distributed variables (responsibility signals) of all cognitive 
processes and its entropy. As long as responsibility signals are large, the PFC can 
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simultaneously accommodate metacognition of multiple cognitive processes. Because 
consciousness is determined by the entropy of all responsibility signals, it is a state determined 
by all modules, and different from metacognition.  

CRMN is also consistent with a second major hypothesis of consciousness in some 
regards. The prerequisite of consciousness in CRMN is a low mismatch, leading to a high 
responsibility signal between a generative model and its inverse model. Such a situation can 
only be attained if the two paired models are consistent and signals circulating between them are 
self-consistently maintained in that brain area. This accords with the basic assumption of 
recurrent processing theory (Lamme et al., 2000; Lamme 2018, Malach 2021). Recurrent neural 
connections within and between areas are essential to maintain neural activities above 
consciousness. One-shot feedforward computations across hierarchical brain areas are not 
sufficient for consciousness in the recurrent processing theory or in CRMN. With this note, one 
may notice that CRMN could not be perfectly classified as a higher-order theory because the 
computations of mismatch signals and reward prediction errors, both of which are at the heart of 
the responsibility signal computation, are done in a distributed manner by every level of the 
hierarchy and modality, and by their loop connections with the basal ganglia. In that sense, 
CRMN may be regarded as a blend of first-order theory and higher-order theory. As 
prerequisites of consciousness, CRMN requires two conditions: that a first-order representation 
of some module and some level in the hierarchy have a small mismatch, and that the PFC 
detects it by a small entropy of the responsibility signals. 

In CRMN, the PFC is an information hub. Information from all cerebral cortical areas is 
collected in the PFC, which sends responsibility signals back to all cerebral cortical areas in 
return. Thus, communications between the PFC and all cerebral cortical areas are essential for 
consciousness to be established in CRMN, as in global neuronal workspace theory, another 
major theory of consciousness (Dehaene and Naccache 2001). Yet, a delicate difference in 
nuance of information broadcasts may exist. Widespread information broadcasts between 
several areas of key cognitive functions are not essential in CRMN, although they might be in 
global neuronal workspace theory.  

One of the core proposals of the self-organizing mental representational account (SOMA) 
theory by Cleeremans et al. (2019) is that learning of a metarepresentation of first-order 
representations is essential for consciousness. If we can assume that higher level representations 
with generative and inference model pairs at higher and more abstract levels of CRMN roughly 
correspond to metarepresentation of SOMA, the two theories are related. 

Currently CRMN does not explicitly include the default mode network (DMN). We have 
the following hypothesis regarding partition of labor in reinforcement learning (RL) between 
task positive networks versus task negative networks or DMN. The former is mainly for on-line 
currently experienced trials for RL, while the latter is for off-line, off-policy, mental simulations 
of RL. The responsibility signals and learning rates of on-line trials should be generally larger 
than those of off-line trials. Furthermore, different values of other RL hyperparameters should 
be chosen for on-line and off-line RL trials. Thus, the ventromedial PFC and the dorsolateral 
PFC may contain different architectures of CRMN for selection and gating of modules in DMN 
and the task-positive network, respectively. The DMN is heavily involved in social cognitive 
functions; thus, it seems to be involved especially in off-line social simulations of RL. Wolpert 
et al. (2003) proposed that conjugate model pairs are utilized to understand the intention of 
actions by others. In this context, the expanded CRMN seems related to a proposal by Graziano 
and Kastner (2011) and Fleming (2020) that the same mechanisms/brain areas involved in 
attributing agency to others are potentially involved in generation of consciousness in a given 
agent. Further, multiple accounts of metacognition have modeled self-reflection as an inference 
about others’ performance or mental states (Fleming, Daw 2017; Shea et al., 2014). 

Bengio (2017) noted that language is important in the consciousness prior for artificial 
intelligence. Language allows complex sensory information to be represented at a symbolic 
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level. Previous human imaging studies suggest continuous transitions from sensory-motor 
domains to language. We demonstrated that the human cerebellum contains multiple internal 
models of tools (Imamizu et al., 2000, 2003; Higuchi et al., 2007), and also showed that 
representations of language and tools overlap in Broca’s area, supporting the tool-origin theory 
of language (Higuchi et al., 2009). Beyond dimensionality reduction and selection of the best 
modules or representations, the architecture proposed here would endow an artificial agent with 
an additional advantage. A scheme that updates multiple internal models in parallel for each 
acquired data point would enable the agent to modify its internal states even in modalities that 
are not immediately relevant. This seems particularly important in the real world, where 
relevant data are often sparse and delayed, and environments are stochastic. What is 
unnecessary now might be crucial an hour later. The CRMN implements two aspects of human 
reasoning: hypothesis testing that probably happens at the conscious level, but also keeping 
track of multiple alternatives subconsciously. Engineering implementations of generative 
models, their inverses, and estimators of responsibility signals with deep neural networks may 
inaugurate new-generation artificial intelligence with metacognition, consciousness, and 
learning capability from small samples. As a small step in this direction, we plan to 
computationally simulate a simplified CRMN as a MoEXP architecture. To this end, we will 
model participant learning behaviors observed in Cortese et al., (2021b). In that experiment, 
participants were able to learn an abstract representation for reinforcement learning from a small 
sample. The fact that participants’ confidence was significantly correlated with their ability to 
select the correct abstraction is a strong indicator of its involvement in accelerating learning. 
Our ultimate, and possibly long-term scientific goal is to cause phenomenal consciousness by 
decoded neurofeedback without sensory stimuli or motor tasks. Knotts et al. (2019) obtained 
intriguing results toward this direction, finding that reinforcing mental representations of high 
confidence and a stimulus feature (e.g., the color red) was associated with a higher chance of 
making false alarms. Yet, this study also showed that the goal of generating phenomenal 
consciousness is probably too difficult without explicit computational models like CRMN. With 
multi-voxel decoding of responsibility signals based on CRMN, a “causal study of 
consciousness” may be within our reach. 
  



 

19 
 

References 
Albers AM, Kok P, Toni I, Dijkerman HC, de Lange FP (2013) Shared representations for working 

memory and mental imagery in early visual cortex. Curr Biol. 23:1427-
1431.https://doi.org/10.1016/j.cub.2013.05.065 

Atkeson CG, Hale J, Pollick F, Riley M, Kotosaka S, Schaal S, Shibata T, Tevatia G, Vijayakumar S, 
Ude A, Kawato M (2000) Using humanoid robots to study human behavior. IIEEE Intell Syst: 
Special Issue on Humanoid Robotics, 15(4):46-56. https://doi.org/10.1109/5254.867912 

Babiˇc J, Oztop E, Kawato M (2016) Human motor adaptation in whole body motion. Scient Reports. 
6(32868). https://doi.org/10.1038/srep32868 

Bengio Y (2017) The consciousness prior. arXiv: arXiv:1709.08568. 
Berkes, P., Orban, G., Lengyel, M., Fiser, J., 2011. Spontaneous cortical activity reveals hallmarks of an 

optimal internal model of the environment. Science 331, 83–87. 
https://doi.org/10.1126/science.1195870 

Biran I, Chatterjee A (2004) Alien hand syndrome. Arch Neurol. 61(2): 292–294. 
pmid:14967782 

Blakemore SJ, Wolpert DM, Frith CD (1998) Central cancellation of self-produced ticke sensation. Nat 
Neurosci 1(7):6350640. https://doi.org/10.1038/2870 

Blakemore SJ, Wolpert DM, Frith CD (2000) Why can’t you tickle yourself? NeuroReport. 11(11): R11-
16. https://doi.org/10.1097/00001756-200008030-00002 

Brown R, Lau H, LeDoux JE (2019) Understanding the higher-order approach to consciousness. Trend 
Cog Sci 23(9):754-768. https://doi.org/10.1016/j.tics.2019.06.009 

Cleeremans A, Achoui D, Beauny A, Keuninckx L, Martin JR, Muñoz-Moldes S, Vuillaume L, de 
Heering A (2019) Learning to be conscious. Trend Cog Sci 24(2)112-123.  

Cortese A, Amano K, Koizumi A, Kawato M, Lau H (2016) Multivoxel neurofeedback selectively 
modulates confidence without changing perceptual performance. Nat Commun 7:13669. 
https://doi.org/10.1038/ncomms13669 

Cortese A, De Martino B, Kawato M (2019) The neural and cognitive architecture for learning from a 
small sample. Curr Opin Neurobiol 55:133-141. https://doi.org/10.1016/j.conb.2019.02.011 

Cortese A, Lau H, Kawato M (2020) Unconscious reinforcement learning of hidden brain states 
supported by confidence. Nat Commun. 11(1):4429. https://doi.org/10.1038/s41467-020-17828-8 

Cortese A, Tanaka SC, Amano K, Koizumi A, Lau H, Sasaki Y, Shibata K, Taschereau-Dumouchel V, 
Watanabe T & Kawato M (2021a) The DecNef collection, fMRI data from closed-loop decoded 
neurofeedback experiments. Sci Data 8:65. https://doi.org/10.1038/s41597-021-00845-7 

Cortese A, Yamamoto A, Hashemzadeh M, Sepulveda P, Kawato M, De Martino B (2021b) Value 
signals guide abstraction during learning. eLife. 10: e68943 https://doi.org/10.7554/eLife.68943 

Dehaene S, Naccache L (2001) Towards a cognitive neuroscience of consciousness: basic evidence and a 
workshpace framework. Cognition. 79(1-2):1-37. https://doi.org/10.1016/s0010-0277(00)00123-2 

Dehaene S, Lau H, Kouider S (2017) What is consciousness, and could machines have it? Science 
358(6362): 486–92. https://doi.org/10.1126/science.aan8871 

Di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a 
neurophysiological study. Exp Brain Res 91(1):176-180. https://doi.org/10.1007/BF00230027 

Doya K, Samejima K, Katagiri K, Kawato M (2002) Multiple model-based reinforcement 
learning. Neural Comput. (6):1347-69. https://doi.org/10.1162/089976602753712972 
Fleming SM., Daw ND (2017) Self-Evaluation of Decision-Making: A General Bayesian 
Framework for Metacognitive Computation. Psychological Review 124 (1): 91–114. 
http://dx.doi.org/10.1037/rev0000045 

Fleming SM (2020) Awareness as inference in a higher-order state space. Neuroscience of Consciousness 
2020 6(1) https://doi.org/10.1093/nc/niz020 

Franklin D, Burdet E, Peng T, Osu R, Meng C, Milner T, Kawato M (2008) CNS learns stable accurate 
and efficient movements using a simple algorithm. J Neurosci. 28(44):11165-73. 
https://doi.org/10.1523/JNEUROSCI.3099-08.2008 

Fried I, Haggard P, He BJ, Schurger A (2017) Volition and action in the human brain: Processes, 
pathologies, and reasons. J Neurosci. 37(45): 10842–10847. pmid:29118213 

Friston KJ (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci. 360:815-836. 
https://doi.org/10.1098/rstb.2005.1622 



 

20 
 

Friston KJ (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci. 11(2):127-38.  
https://doi.org/10.1038/nrn2787. 

Friston KJ, Kiebel S (2009) Cortical circuits for perceptual inference. Neural Netw. 22:1093-1104. 
https://doi.org/10.1016/j.neunet.2009.07.023 

Friston KJ, Kilner J, Harrison L (2006) A free energy principle for the brain. J Physiol Paris. 100:70-87. 
https://doi.org/10.1016/j.jphysparis.2006.10.001 

Shea N, Boldt A, Bang D, Yeung N, Heyes C, Frith CD (2014) Supra-Personal Cognitive Control and 
Metacognition. Trends in Cognitive Sciences 18 (4): 186–93. 
https://doi.org/10.1016/j.tics.2014.01.006 

Gershman SJ (2019) The generative adversarial brain. Front Artif Intell. 2:18. 
https://doi.org/10.3389/frai.2019.00018. 

Gomi H, Shidara M. Takemura A, Inoue Y, Kawano K, Kawato M (1998) Temporal firing patterns of 
purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys. 
I.simple spikes. J Neurophysiol. 80(2):832-48. https://doi.org/10.1152/jn.1998.80.2.832. 

Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y 
(2014). Generative adversarial networks. arXiv. arXiv:1406.2661v1. 

Graziano MSA, Kastner S (2011) Human consciousness and its relationship to social neuroscience: A 
novel hypothesi. Cogn Neurosci. 2(2): 98–113. https://doi: 10.1080/17588928.2011.565121 

Grossberg S, Mingola E (1985) Neural dynamics of form perception: Boundary completion, illusory 
figures, and neon color spreading. Psychol Rev. 92(2):173-211. 

Haggard P (2017) Sense of agency in the human brain. Nat Rev Neurosci. 18:196-207. 
https://doi.org/10.1038/nrn.2017.14 

Hamm, Alfons O., Almut I. Weike, Harald T. Schupp, Thomas Treig, Alexander Dressel, and Christof 
Kessler. 2003. “Affective Blindsight: Intact Fear Conditioning to a Visual Cue in a Cortically Blind 
Patient.” Brain 126 (Pt 2): 267–75. https://doi.org/10.1093/brain/awg037 

Haruno M, Wolpert DM, Kawato M (2001) MOSAIC model for sensorimotor learning and 
control. Neural Comput. 13(10):2201-2. https://doi.org/10.1162/089976601750541778 

Higuchi S, Chaminade T, Imamizu H, Kawato M (2009) Shared neural correlates for language and tool-
use in Broca's area.  Neuroreport. 20(15):1376-81. 
https://doi.org/10.1097/WNR.0b013e3283315570. 

Higuchi S, Imamizu H, Kawato M (2007) Cerebellar activity evoked by common tool-use execution and 
imagery tasks: an fMRI study. Cortex. 43(3):350-8. https://doi.org/10.1016/s0010-9452(08)70460-
x 

Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms 
of human imitation. Science 286(5449):2526-2528. https://doi.org/10.1126/science.286.5449.2526 

Ikegami T, Ganesh G, Gibo TL, Yoshioka T, Osu R Kawato M (2021) Hierarchical motor adaptations 
negotiate failures during force field learning, PLoS Comput Biol. 17(4): e1008481. 
https://doi.org/10.1371/journal.pcbi.1008481 

Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M (2003) Modular organization of internal 
models of tools in the human cerebellum. Proc Natl Acad Sci U S A. 100(9):5461-6. 
https://doi.org/10.1073/pnas.0835746100 

Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Puetz B, Yoshioka T, Kawato M (2000) Human 
cerebellar activity reflecting an acquired internal model of a new tool. Nature. 403(6766):192-5. 
https://doi.org/10.1038/35003194 

Ito M (2008) Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 9:304-
313. https://doi.org/10.1038/nrn2332 

Jacobs RA, Jordan MI, Hinton GE (1991) Adaptive mixture of local expert. Neural Comput. 3(1):79-87. 
https://doi.org/10.1162/neco.1991.3.1.79 

Kenet T, Bibitchkov D, Tsodyks,M, Grinvald,A, Arieli,A. (2003). Spontaneously emerging cortical 
representations of visual attributes. Nature. 425(6961):954-6. https://doi.org/10.1038/nature02078 

Kawato M (1997) Bidirectional theory approach to consciousness. Ito M, Miyashita Y, ET Rolls (Eds.) 
Cognition, Computation and Consciousness. Oxford University Press, Oxford, pp.223-248. 

Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol. 
9(6):718-27. https://doi.org/10.1016/s0959-4388(99)00028-8. 

Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-network model for control and learning 
of voluntary movement. Biol Cybern. 57(3):169-85. https://doi.org/10.1007/BF00364149 



 

21 
 

Kawato M, Gomi H (1992) A computational model of four regions of the cerebellum based on feedback-
error-learning. Biol Cybern. 68(2):95-103. https://doi.org/10.1007/BF00201431 

Kawato M, Hayakawa H, Inui T (1993) A forward-inverse optics model of reciprocal connections 
between visual cortical areas. Network-Comp Neural. 4(4):415-422. https://doi.org/10.1088/0954-
898X_4_4_001 

Kawato M, Ohmae S, Hoang H, Sanger TD (2020) 50 years since the Marr, Ito, and Albus models of the 
cerebellum. Neuroscience. 462:151-174. https://doi.org/10.1016/j.neuroscience.2020.06.019  

Kawato M, Samejima K (2007) Efficient reinforcement learning: computational theories, neuroscience 
and robotics. Curr Opin Neurobiol. 17(2):205-12. https://doi.org/10.1016/j.conb.2007.03.004 

Kato R, Zeghbib A, Redgrave P, Isa T (2021) Visual Instrumental Learning in Blindsight Monkeys. 
Scientific Reports 11 (1): 14819. https://doi.org/10.1038/s41598-021-94192-7 

Knotts JD, Cortese A, Taschereau-Dumouchel V, Kawato M, Lau H (2019) Multivoxel patterns for 
perceptual confidence are associated with false color detection, bioRxiv, doi: 
https://doi.org/10.1101/735084 

Kobayashi Y, Kawano K, Takemura A, Inoue Y, Kitama T, Gomi H, Kawato M (1998) Temporal firing 
patterns of purkinje cells in the cerebellar ventral paraflocculus during ocular following responses 
in monkeys. II.complex spikes. J. Neurophysiol. , 80(2), 832-848. 
https://doi.org/10.1152/jn.1998.80.2.832 

Lamme VAF, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent 
processing. Trends Neurosci. 23(11):571-9. https://doi.org/10.1016/s0166-2236(00)01657-x 

Lamme VAF (2018) Challenges for theories of consciousness: seeing or knowing, the missing ingredient 
and how to deal with panpsychism. Philos Trans R Soc Lond B Biol Sci. 373(1755):20170344. 
https://doi.org/10.1098/rstb.2017.0344 

Lau H (2019) Consciousness, metacognition, & perceptual reality monitoring. PsyArXiv. 
https://doi.org/10.31234/osf.io/ckbyf  

Lau H, Rosenthal D (2011) Empirical support for higher-order theories of conscious awareness. Trend 
Cog Sci. 15(8):365-373. 

Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. J Opt Soc Am A. 
20(7):1434-48. 

Luczak A, Bartho P, Harris KD (2009) Spontaneous events outline the realm of possible sensory 
responses in neocortical populations. Neuron. 62(3):413-25.  
https://doi.org/10.1016/j.neuron.2009.03.014. 

Malach R (2021) Local neuronal relational structures underlying the contents of human conscious 
experience. Neuroscience of Consciousness (2). https://doi.org/10.1093/nc/niab028. 

Marr D (1982) Vision: A computational investigation into the human representation and processing of 
visual information (Marr D) WH Freeman & Co. 

Mendoza-Halliday D, Martinez-Trujillo JC (2017) Neuronal population coding of perceived and 
memorized visual features in the lateral prefrontal cortex. Nat Commun. 8:15471. 
https://doi.org/10.1038/ncomms15471 

Merel J, Botvinick M, Wayne G (2019) Hierarchical motor control in mammals and machines. Nat 
Commun. 10(1):5489. https://doi.org/10.1038/s41467-019-13239-6 

Miyamoto H, Kawato M, Setoyama T, Suzuki R (1988) Feedback-error-learning neural network for 
trajectory control of a robotic manipulator. Neural Netw. 1(3):251-265. 
https://doi.org/10.1016/0893-6080(88)90030-5  

Morales J, Lau H (2021) Confidence Tracks Consciousness. In Qualitative Consciousness: Themes from 
the Philosophy of David Rosenthal, edited by Josh Weisberg. Cambridge University Press. 

Morimoto J, Doya K (2001) Acquisition of stand-up behavior by a real robot using hierarchical 
reinforcement learning. Rob Auton Syst, 36(1):37-51. https://doi.org/10.1016/S0921-
8890(01)00113-0 

Mumford D (1992) On the computational architecture of the neocortex. II. The role of cortico-cortical 
loops. Biol. Cybern. 66(3):241-51. https://doi.org/10.1007/BF00198477. 

Nakanishi J, Schaal S (2004) Feedback error learning and nonlinear adaptive control. Neural Netw. 
17(10):1453-1465. https://doi.org/10.1016/j.neunet.2004.05.003. 

Olshausen BA, Field DJ (1996) Emergence of simple cell receptive field properties by learning a sparse 
code for natural images. Nature. 381:607–609. https://doi.org/10.1038/381607a0. 

Osu R, Morishige K, Nakanishi J, Miyamoto H, Kawato M (2015) Practice reduces task relevant variance 
modulation and forms nominal trajectory. Sci Rep. 5:17659. https://doi.org/10.1038/srep17659 



 

22 
 

Parr R, Russell S: Reinforcement learning with hierarchies of machines. Proceedings of the 10th 
International Conference on Neural Information Processing Systems (NIPS'97). MIT press, MA, 
USA. pp.1043-1049.  

Poggio T, Torre V, Koch C (1985) Computational vision and regularization theory. Nature. 317:314-319. 
https://doi.org/10.1038/317314a0. 

Pounder Z, Jacob J, Evans S, Loveday C, Eardley A, Silvanto J (2021) Individuals with congenital 
aphantasia show no significant neuropsychological deficits on imagery-related memory tasks. 
PsyArXiv. https://doi.org/10.31234/osf.io/gqayt. 

Rao RP, Ballard DH (1998) Predictive coding in the visual cortex: a functional interpretation of some 
extra-classical receptive field effects. Nat Neurosci. 2(1):79-87.  https://doi.org/10.1038/4580. 

Rizzolatti G, Craighero L (2004) The mirror-neuron system. Ann Rev Neurosci.  27:169-92. 
https://doi.org/10.1146/annurev.neuro.27.070203.144230. 

Samejima K, Doya K, Kawato M (2003) Inter-module credit assignment in modular reinforcement 
learning. Neural Netw. 16(7):985-94. https://doi.org/10.1016/S0893-6080(02)00235-6. 

Samejima K, Katagiri K, Doya K, Kawato M (2006) Sybolization and imitation learning of motion 
sequence using competitive modules. Electron Comm Jpn Pt 3. 89(9): 42–53. 
https://doi.org/10.1002/ecjc.20267 

Scott SH (2004) Optimal feedback control and the neural basis of volitional motor control. Nat Rev 
Neurosci. 5(7):532-46. https://doi.org/10.1038/nrn1427  

Shadmehr R, Smith MA, Krakauer JW (2010) Error correction, sensory prediction, and adaptation in 
motor control. Ann Rev Neurosci. 33:89-108.  https://doi.org/10.1146/annurev-neuro-060909-
153135. 

Shibata K, Lisi G, Cortese A, Watanabe T, Sasaki Y, Kawato M (2018) Toward a comprehensive 
understanding of neural mechanisms of decoded neurofeedback, Neuroimage. 188:539-556. 
https://doi.org/10.1016/j.neuroimage.2018.12.022 

Shibata K, Watanabe T, Sasaki Y, Kawato M (2011) Perceptual learning incepted by decoded fMRI 
neurofeedback without stimulus presentation. Science. 334(6061):1413-5. 
https://doi.org/10.1126/science.1212003 

Shidara M, Kawano K, Gomi H, Kawato M (1993) Inverse-dynamics model eye movement control by 
purkinje cells in the cerebellum. Nature. 365(6441):50-2. https://doi.org/10.1038/365050a0 

Stoerig P, Cowey A (1997) Blindsight in Man and Monkey. Brain 120 (3): 535–59. 
https://doi.org:/10.1093/brain/120.3.535/ 

Sugimoto N, Haruno M, Doya K, Kawato M (2012a) MOSAIC for multiple-reward environments. Neural 
Comput. 24(3):577-606. https://doi.org/10.1162/NECO_a_00246 

Sugimoto N, Morimoto J, Hyon S, Kawato M (2012b) The eMOSAIC model for humanoid robot control. 
Neural Netw. 29-30:8-19. https://doi.org/10.1016/j.neunet.2012.01.002 

Suzuki T (2018) Fast generalization error bound of deep learning from a kernel perspective. Proceedings 
of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS) 2018, Lan- 
zarote, Spain. PMLR 84:1397-1406.  

Takakuwa N, Kato R, Redgrave P, Isa T (2017) Emergence of Visually-Evoked Reward Expectation 
Signals in Dopamine Neurons via the Superior Colliculus in V1 Lesioned Monkeys. eLife 6 (June). 
https://doi.org/10.7554/eLife.24459. 

Thorpe SJ, Fize D, Marlot C (1996) Speed of processing in the human visual system. Nature. 
381(6582):520-522. https://doi.org/10.1038/381520a0. 

Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat Neurosci. 
5(11):1226-35. https://doi.org/10.1038/nn963.  

Uno Y, Kawato M, Suzuki M (1989) Formation and control of optimal trajectory in human multijoint arm 
movements – minimum torque-change model -. Biol. Cybern. 61, 89–101. 
https://doi.org/10.1007/BF00204593 

Watanabe S (2009) Algebraic Geometry and Statistical Learning Theory. Cambridge University Press, 
UK 

Watanabe T, Sasaki Y, Shibata K, Kawato M (2017) Advances in fMRI real-time neurofeedback, Trends 
Cogn Sci. 21(12):997-1010. https://doi.org/10.1016/j.tics.2017.09.010 

Weiskrantz L (1996) Blindsight Revisited. Current Opinion in Neurobiology 6 (2): 215–20. 
https://doi.org/10.1016/S0959-4388(96)80075-4 

Wiering M, Schmidhuber J (1997) HQ-learning. Adaptive Behavior. 6(2):219-246. 
https://doi.org/10.1177/105971239700600202 



 

23 
 

Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and 
social interaction. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 358(1431): 593–602. 
https://doi.org/10.1098/rstb.2002.1238 

Wolpert D, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural 
Netw. 11(7-8):1317-29. https://doi.org/10.1016/s0893-6080(98)00066-5 

Wolpert D, Miall C, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci. 2(9):338-47. 
https://doi.org/10.1016/s1364-6613(98)01221-2 

Yamamoto K, Kobayashi Y, Takemura A, Kawano K, Kawato M (2002) Computational studies on 
acquisition and adaptation of ocular following responses based on cerebellar synaptic plasticity. J 
Neurophisol. 87(3):1554-71.  https://doi.org/10.1152/jn.00166.2001. 

Yamamoto K, Kawato M, Kotoaska S, Kitazawa S (2007) Encoding of movement dynamics by purkinje 
cell simple spike activity during fast arm movements under resistive and assistive force fields. J 
Neurophysiol. 97(2):1588-99.  https://doi.org/10.1152/jn.00206.2006.   

 


