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LETTER TO THE EDITOR 

A forward-inverse optics model of reciprocal connections 
between visual cortical areas 
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$ Laboratoly of P d l e l  Distribuled Processing. Research Institute for Electronic Science, 
Holdtaido University, Sapporo. Hokkaido 060, Japan 

Laboratory for Psychology, Faculty of  Literature, Kyoto Unlvcpity, Kyoto 606. Japan 

Received 11 October 1993 

Abstract. We propose that the f&fonVard connection from the lower visual cortical area to 
the higher visual cortical area provides an approximated inverse model of the imaging process 
(optics), while the backprojection connection f" the higher area to the lower area provides 
a forward model of the optics. By mathematical analysis and computer simulation, we show 
that a small number of relaxation computations circulating pis forward-inverse optics hiemchy 
achieves fast and reliable integration of vision modules, and therefore might resolve the following 
problems. (i) How are parallel visual modules (multiple visual cortical areas) integrated to allow 
a coherent scene perception? (ii) How can ill-posed vision problems be solved by the brain within 
several hundreds of milliseconds? 

Recent findings on multiple visual cortical areas (van Essen et al 1990) which represent 
distinct visual cues such as colour, motion and shape, and their parallel organization all 
the way through from the retina to the visual association cortices (Hubel and Livingstone 
1987) pose a difficult'computational problem: how are parallel visual modules (Julesz 1971) 
integrated to allow a coherent scene perception within a short time? 

Visual images I are generated when light rays reflected from 3D objects in the visual 
world hit a ZD image sensor such as the retina, CCD or film. The imaging process R,  which 
we call 'optics', compresses 3D objects into 2D images and thus loses information; hence 
a mwy-to-one mapping. Consequently, the early vision problems which estimate different 
aspects S of~the geometrical structure in the 3D world from 2D images cannot be properly 
solved unless some constraints are given beforehand (Man 1982, Poggio et a1 1985) because 
they are one-to-many mappings. That is, the early vision problems are each computationally 
characterized as an inverse process of optics and a priori knowledge about the visual 
world is introduced as the constraint required. Accordingly, in many computational vision 
algorithms, the following sum J of two objective functions is minimized to find the best 
visual-world representation S which explains the image data I as well as satisfies the a 

(1) 

where the first term requires that the reconstruction of the image R(S) from the 
representation S using the optics operator R be compatible with the real data I ,  and the 
second term imposes the a priori knowledge about the visual world, such as smoothness of 
the representation. Minimization is especially difficult when R or Q is strongly nonlinear, 
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priori knowledge (Ballad et al 1983, Poggio et a1 1985): 

J = /IR(S) - I l l z +  lIQ(S)llz 

.~ 
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it can, however, be done by a kind of steepest descent method: the stochastic relaxation 
algorithm (Geman and Geman 1984, Poggio et al 1985) or its recurrent neural network 
(mean-field approximation) version (Koch et a1 1986). However, a large number of 
iterations (usually more than a few hundred) is required, and no explanation exists for 
the typical visual information processing time in humans ( l W 0 0  ms) (Potter 1976, Inui 
and Miyamoto 1981) . Thus, hitherto, recurrent neural network models have been rejected 
as fast visual computational mechanisms ( M m  and Poggio 1979, Thorpe and Imbert 1989, 
Rolls 1989). 

In the present letter, we propose a hierarchical computational model for interaction 
between visual cortical areas which solves the above two problems. First, a fundamental 
hierarchical model is presented and several testable predictions are also made. Then a 
comprehensive model of interactions between visual areas is presented. As an example, the 
shape-from-shading problem is simulated using the proposed model. 

Pattems of anatomical connections within visually-related areas must form the structural 
basis for solving these difficulties (Zeki and Shipp 1988). A hierarchical flow of connections 
is characterized by a specific organization of a laminar origin and termination of reciprocal 
cortico-cortical connections (Pandya and Yeterian 1988) (figure 1B). Rostrally-dire&ed 
feedforward connections originate mainly from neurons in layer III and terminate in 
and around layer IV of the higher areas. In contrast, caudally-directed (backprojection) 
connections originate in layers V and VI and, to a lesser extent, in layer JJIa and terminate 
mainly in layer I. From single-cell recordings, it is shown that a high-level description S 
of the three-dimensional world is represented in higher visual cortices, e.g. the colour of 
an object irrespective of the illumination (V4), and the motion of an object as opposed to 
component motions (MT), (Movshon et a1 1986). An intermediate representation S between 
abstract representation S and image I is represented in the primary visual cortex (Vl). That 
is, the activity in VI is more directly correlated with the raw image data. 

A 

Twodmensional 
image data 

Low-level description of 
three-dimensional visual 

process world 

Figure 1. Fundamental forwad-inverse optics model. (A) Model for reciprcd interactions 
telween VI and the higher visual wmx (HVC). In the lower half of the figure, the optics 
operation R in the outer world is dewmposcd into a lower and a higher part, RI and R2. A 
model of this hierarchy in the brain is shown in the upper half of the figure. (B) Layered-neural- 
circuit model of the hierarchical interaction between Vi and HVC. Filled neurons are exoilatory 
and a hollow neuon is inhibitory. 

We propose that the backprojection connections provide a forward model of the optics 
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process, while the feedfonvard connections between the two areas provide an approximated 
inverse model of that optics process. The simple fonvard-inverse optics model of figure 
1 will be extended to the more realistic model shown in figure 2. Although there exists 
no unique inverse optics operation, by taking account of the two terms in equation ( I )  to 
some extent, it is always possible to derive some approximate inverse optics operations, 
which compute a rough estimation of S from the image data I by one-shot calculation, 
in the form of feedfonvard neural connections. See the appendix for a derivation using 
linearization and, for examples, see Kersten et al (1987), Wang et al (1989) and Hurlbert 
and Poggio (1988). These inverse optics computations are only approximately valid under 
very restricted conditions; thus, if only they were to be used, the brain would not be able 
to generally execute correct vision computations. On the other hand, such computations by 
themselves can solve simple and easy vision tasks. 

When new image data impinges on the retina, a rough estimate of the higher 
representation is first calculated by using only the feedfonvard connections. ,This 
higher representation is then transformed back to an intermediate representation by the 
backprojection connections, and then compared with the current representation in VI to 
calculate the error. The error is filtered by the approximated inverse operation and sent 
again to the higher visual cortex to modify the higher representation. Intrinsic connections 
within VI aid higher visual cortices (Gilbert and Wiesel 1983) make the estimates more 
compatible with a priori knowledge about the structures in the 3D visual world. Figure 1B 
gives a detailed explanation of the proposed relaxation computation based on the known 
laminar structures. 

P1 neurons in the upper layer of VI receive three kinds of synaptic inputs, from layer 
IVc, via recurrent intrinsic connections (broken curve) and from HVC. Their states S change 
according to the following dynamics: . 

di ( t ) /d t=  R ~ ( I ) - i - a l l Q , ( S ) I I ’ / a i + R z ( S )  -s .  (2) 

The image data impinging on the retina is transformed into Rf(Z) by the retinal circuit, the 
lateral geniculate nucleus, and the synaptic weights in layer IVc. ,The intrinsic recurrent 
connections produce the third term -311 Q1(i);)112/ai which renders S compatible with the a 
priori knowledge about i. P1 neurons receive synaptic inputs Rz(S)  by the backprojection 
neural connections from the pyramidal cells in the deep (P4) and upper layers (F‘5) of the 
HVC. States S of the P3 neurons in the upper layer of the HVC change according to the 
following dynamics: 

P2 neurons in the upper layer of VI calculate S-Rz(S)  based on two kinds of inputs: i from 
P1, and feedback input -Rz(S) from HVC via inhibitory interneurons. The feedforward 
signal calculated by P2 is then transformed into the synaptic input R i [ i  - Rz(S)} to P3 in 
the upper layer of HVC by stellate cells in the intermediate layer of HVC. -all Q~(s)ll*/aS, 
which implements the a priori knowledge about S, is calculated by the intrinsic recurrent 
loop within HVC, shown by the broken curve. P4 and P5 in HVC receive synaptic inputs 
regarding S from P3, and send them back to the superficial layer of VI by the backprojection 
connections. 

The proposed computation finds the maximum a posteriori estimation of the 3D world, 
which best accounts for the image data based on the a priori knowledge. In a quite 
general situation, we can theoretically guarantee convergence to the (local) optimal solution 
(Kawato el al 1991, Hayakawa et al 1992, Wada and Kawato 1993). The required iteration 
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number is dramatically reduced and the relaxation reaches its equilibrium during the inter- 
saccade period because the initial guess calculated by the approximate inverse optics is 
much better than no initid guess. Although several previous theories (Grossberg and 
Mingolla 1985, Fukushima 1986, Carpenter 1987, Harth et ai 1987, Thorpe and Imbert 
1989, Rolls 1989, Mumford 1992, Finkel and Sajda 1992) postulate similar functional roles 
to the forward optics model for backprojection connections, the present theory is unique in 
ascribing an approximate inverse optics model to feedforward connections and introducing 
forward-inverse optics into the relaxation calculation. They are essential to solve the above 
difficulties. 

We give some circumstantial evidence and testable predictions. First, anatomical studies 
demonstrated that feedback connections in VI contact inhibitory neurons (see a hollow 
neuron in V1 of figure 1B) as well as excitatory neurons (Johnson and Burkhalter 1991), in 
the manner supporting the required connection circuit in figure 1B. Second, in the steady 
state, even if the layer III pyramidal neurons in the higher visual cortex fire vigorously, 
layer IV stellate neurons should be silent in the latter half of the inter-saccadic interval. For 
they do not receive inputs because in VI there is no discrepancy between the intermediate 
representation 9 and the reconstructed representation R(S). This counter-intuitive prediction 
has indirect support from statistical analysis of the temporal firing pattems of neurons in 
IT. Richmond and Optican (1987) showed that all of the neurons analysed had principal 
components that were either phasic or tonic in response to two-dimensional pattems. This 
suggests that analysed neurons receive major inputs either from layer IV stellate neurons 
or the pyramidal neurons. The prediction could be directly tested by laminar markings of 
recorded cells. Finally, temporal pattems of firing must be quiie different between simple 
images and complicated images which are ambiguous or difficult to interpret; e.g. a simple 
square with uniform colour and luminance as opposed to overlapping transparent squares. 
The receptive field of examined neurons should be chosen in the midst of the pattem. 
Stellate neurons must stop firing 150-200 ms after stimulus presentation in the former case 
due to ‘filling-in’ between pyramidal neurons, but not in the latter case. 

Fast and reliable integration of vision modules can be achieved in the forward-inverse 
architecture shown in figure 2 containing multiple visual areas, multiple hierarchical levels 
(e.g. VI V2 U V4 IT) and parallel information flows. The model also 
encompasses previous experimental and conceptual studies, as well a s  our speculative 
working hypotheses of representations by different visual areas and the functions of their 
connections. Whether these hypotheses are well supported by experimental data or not is 
not critical to our theory. What is essential is that somewhat different representations of 
the visual world are encoded by different areas and each area cannot determine its output 
unless all connected areas provide information to it. 

A major difficulty in module-integration is that each representation in a different 
area cannot be simultaneously or independently estimated without knowledge of other 
representations. In most of the previous models providing integration of different vision 
modules, integration occurs after the calculation of each module, leading to combinatorial 
explosion problems and illusatory conjunction problems (Ballard et ai 1983, Malsburg 
1988). Untying the intermingled relationship in this chicken-and-egg problem requires 
the modular hierarchical structure of distinct modules and the usage of forward and 
approximate inverse optics. That is, each module initially estimates a rough and approximate 
representation based on default assumptions of other modules’ outputs through approximated 
inverse optics. Then. the backprojection connections transform abstract and distinct 
representations in higher visual cortices into image-like representations at the lower visual 
cortex, where they are compared for the pupose of inconsistency detection. This error 
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Figure 2. The forward-inverse optics model adapted to a parallel and hierarchical srmcture 
of visual conices. We do not literally propose that each area represents purely a physically 
identifiable quantity. Connections without arrows show reciprocal neural connections. Intensive 
integration of colour, stereo, shape and motion could a e  place by using discontinuity (Poppi0 
el 01 1988) possibly represented in interstripes of V2. Definitions of symbols me as follows. 
A G * l :  convolution integral of the image with the Laplacian Gaussian function. d l  and d21: first 
and second derivatives of the image along with specific directions. uL: local velocity component 
in the direction with the maximum change of image intensity. sd: surface depth calculated fmm 
stereo disparity. r(A): reflectance of poinfs on the visible surface of a light of wavelength A. 
L: discontinuities such BS occluding COOUIUR and junctions of different ohjecfs. md: depth 
and Orientation of the visible surface calculated by various monocular cues. U: location of the 
light source and its wavelength distribution. C: 3 0  locations of objects segregated by L. A: 
various attributes of a distinct object such as colour and texture. V: velocity vector representing 
tlandation and rotation of objects. N: velocity vectors of the body. head and eyes of the 
ohsewer. 0: memorized images of ID objens. 

is again filtered by the approximate inverse optics and several modules’ outputs are made 
more compatible. 

As an illustrative example, we selected the so-called shape-from-shading problem where 
one needs to guess the three-dimensional structure of an image from shading information 
only. The task is to simultaneously estimate the surface orientation. discontinuity in 30 
objects such as occluding contours or edges, and light source direction only from image 
intensity data such as that in figure 3B. The model in figure 3A is comprised of three 
modules, for surface orientation (middle: N module), discontinuity detection (left: L 
module). and light source direction (right: U module), which might schematically correspond 
to V3, V2, and V4 in figure 2, respectively. The following a priori knowledge about the 
visual world was used for each vision module: surface orientation is smooth other than 
on ridgelines in the N module, discontinuity (like ridgelines) is continuous (Geman and 
Geman 1984) in the L module, and light source is uniform for the whole image in the 
U module. Approximated inverse optics computations in each module are as follows: the 
surface orientation is constrained orthogonal to the detected discontinuity within the image 
plane and the tilt estimation is constrained to its previous value (N); discontinuity is simply 
detected from the image intensity gradient ( L ) ;  and light source direction is estimated from 
a blurred image ( v ) .  

Within 20 iterations. which is biologically plausible, the model estimated the ridge lines 
and occluding contours (figure 3C), the light source direction (figure 3D arrow) and the 
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Figure 3. Simulation m~ultS of shape-from-shading problem. (A) 
Fonvard-inverse optics model for simultaneous estimation of surface 
orientation. discontinuity lacation and direction, and light source direction 
in the shape-from-shading problem. The model i s  "prised of three 
modules: the discontinuity module (left). Ihe surface orienlation module 
(middle), and the light source direction module (right). (B) A natural 
intensity image of a mountain landscape. (C) Detected discontinuity 
locations. (D) Reconstructed intensity data wilh the estimated direction of 
the light ~ourze (arrow). (E) Depth map reconstructed from the surface 
orientation shown as a grey level (brighter: higher; darker: lower). 
(F) Depth map reconstructed from the surface onenlalion shown as a 
perspective view. 

! 

~ 
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depth (figures 3E, F) from the intensity data (figure 3B) for a natural mountain landscape 
image. The reconstructed intensity image (D) was fairly close to the given intensify data (B) 
and the estimated surface was quite smooth (F) other than at discontinuity locations (C). We 
also confirmed that surface orientation, discontinuity locations, and light source direction 
were accurately estimated for synthesized images of spheres, ellipsoids and polyhedrons 
(Hayakawa et al 1992). Furthermor& the model was much faster and much more stable 
tha3 conventional computer vision algorithms (Hom 1977). The forward-inverse optics 
architecture, therefore, under quite general conditions, can simultaneously estimate different 
representations of the 3D world within a small number of iterations by integrating different 
vision modules. 

This work is supported by Human Frontier Science Project Grants to Mitsuo Kawato and 
Toshio Inui. 

Appendix 

For simplicity, we  show^ that a linear approximated inverse optics operator R’ is obtained 
by linearizing the original nonlinear objective function (1) around a particular representation 
SO. Let us define S = SO + AS. Then, equation (1) can be approximated to the first order 
of AS. as follows: 

~J IIR’(So)AS - (1 - R(so)lllz + IlQ’(so)As + Q(so)II’ (4) 

where R’ and Q’ are derivatives of R and S. Then, S which gives the minimum of the 
modified objective function can be calculated by a simple linear, one-shot calculation as 
follows: 

R”((I) So + AS 
= so + IR’(S~)’R’(S~) + Q’(s~)~Q’(s~)I+  

xtR’(So)‘V - WO)) - Q’(s~)~Q(so)l 
where + denotes the Moore-Penrose pseudo inverse matrix. 
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