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Abstract

The ultimate aim of closed-loop brain-machine systems for pain is to directly titrate the
ongoing level of an intervention to pain-related neural activity. However pain is highly
susceptible to endogenous modulation, raising the possibility that active or passive changes
in neural activity provoked by the operation of the system could enhance or interfere with the
signals upon which it is based. We studied healthy subjects receiving intermittent pain stimuli
in a real-time fMRI-based closed-loop feedback-stimulation task. We showed that multi-voxel
pattern decoding of pain intensity could be used to train a control algorithm to learn to deliver
less painful stimuli (adaptive decoded neurofeedback). However, the system engaged two
types of endogenous processes in the brain. First, despite the inherent incentive for subjects to
enhance the neural decodability of pain, decodability was either reduced or unchanged in classic
pain-processing regions, including insula, dorsolateral prefrontal, and somatosensory cortices.
However, increased decodability was observed in a putative pain modulatory region - the
pregenual anterior cingulate cortex (pgACC). Second, we found that pain perception itself was
modulated by an endogenous computational uncertainty signal engaged as subjects learned the
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success rate of the system in reducing pain - an effect that also correlated with pgACC responses.
The results illustrate how regionally and computationally specific co-adaptive brain-machine
learning influences the efficacy of closed-loop systems for pain, and shows that pgACC acts as a
key hub in the endogenous controllability of pain.

Introduction

The eventual goal of closed-looped brain-machine interfaces for pain is to use brain activity patterns
to dynamically control a therapeutic intervention, such that the level of intervention is automatically
tuned to the level of pain (Shirvalkar et al., 2018; Zhang and Seymour, 2014). Recent studies have
showed that multivariate pattern analysis (MVPA ‘decoding’) methods can be used to discriminate
pain intensity related brain (BOLD) responses in humans with reasonable accuracy (Brodersen
et al., 2012; Marquand et al., 2010; Schulz et al., 2012; Wager et al., 2013), and so in principle
pain-related brain activity can be used to guide interventions in closed-loop settings. However, if a
person is aware that their brain is being decoded for this purpose, the incentive exists for them to try
and endogenously enhance the representation of pain-related brain activity to more accurately signal
to the machine decoder that the current intervention is working or not working. Whether this is
achievable is not known, and it remains possible that attempts to enhance pain decodability could
paradoxically interfere with it. Either way, it is clearly important for predicting the performance and
stability of closed-loop systems over time.

The issue strikes at the heart of our understanding of the basic neural mechanisms of the
endogenous control of pain. It is well recognised that the pain system is remarkably susceptible to
subjective modulation by higher brain control processes (Basbaum and Fields, 1984) . Neuroimaging
studies have consistently shown that pain-related responses in a number of brain regions are
increased or decreased in parallel with behavioural endogenous decreases (hypoalgesia) or increases
(hyperalgesia) in pain (Atlas and Wager, 2012; deCharms et al., 2005; Tracey and Mantyh, 2007;
Wiech, 2016; Woo et al., 2017). But this doesn’t necessarily imply that the discriminability of
intensity on the basis of brain responses (i.e. neural decodability) is under control. If it is, it
would indicate a much more specific dimension to endogenous modulation than previously known,
because it would imply that the informational content (i.e the signal to noise ratio) of pain-related
brain activity is under direct control, rather than a more non-specific up- or down-regulation of
pain-related activity. It also raises the question as to what influence such attempts to modulate
pain-related neural activity have on the subjective perception of pain.

To examine this issue, we designed an adaptive brain-machine interface system using real-time
functional brain imaging (rtfMRI) linked to a machine that controlled an electrical pain stimulator.
The aim of the machine was to learn to reduce the intensity of experienced pain based on decoded
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BOLD representations of pain in the brain. Specifically, the machine treated a low likelihood of
decoded pain as its goal, so success would involve learning to select a lower current intensity to the
stimulator. In this way, the machine acts in the best interests of the subject, as a protective system in
which the level electrical stimulation is the intervention under closed-loop control. Importantly,
subjects were made aware of the system architecture, creating the incentive for them to better
communicate their pain (via their brain activity) to the machine: i.e. enhancing pain representations
to better teach the machine when they are in pain (so that it would change the current intensity), or
not in pain (so that it would not change the current intensity).

Results

19 healthy participants completed the experiment, which took place over 2 days. On Day 1 (decoder
construction sessions), participants received a sequence of high and low intensity painful electrical
stimuli to the left hand, with no associated task demands other than intermittent pain ratings. For
decoding, we used BOLD responses in bilateral insula cortex (incorporating posterior, mid and
anterior insula), since this is thought to incorporate subregions that have a primary role in the coding
of pain (Craig, 2002; Geuter et al., 2017; Segerdahl et al., 2015; Woo et al., 2017). Individual
participant’s responses to high and low intensity stimuli were subsequently used to train a voxel-wise
MVPA decoder that could classify the two stimulus levels.

On Day 2 (neurofeedback adaptive control sessions), high and low pain stimulation were
embedded into a closed-loop adaptive control paradigm using real-time MVPA output as the
feedback signal. Specifically, a machine controlling the two levels of pain stimulation tried to
learn to deliver the level with the least pain based on the output of the MVPA classifier (the Day 2
scan was carefully realigned with Day 1 to allow decoder generalisation across days). The reason
for using an adaptive decision function was two-fold: to maximise the incentive for subjects to
enhance neural discriminability of pain (because the impact of successfully communicating the
output is ’remembered’ by the control algorithm for future trials); and to show that in principle,
pain-reducing interventions can be learned by an appropriate control algorithm (i.e. the machine
has no a priori knowledge that the lower current stimulus causes less pain, but is able to learn this
from trial-and-error). Specifically, stimulation was based on a reinforcement learning algorithm that
learned the values for each of the two stimulus levels, initialised at zero at the beginning of each
session. After delivering a pain stimulus, it used the prediction from the MVPA classifier as the
reward value in the RL algorithm (with lower probability of high pain equating to a more positive
reward). Therefore, given any above chance performance of the MVPA classifier, the machine
should learn to deliver low pain intensity stimuli more frequently.

To allow meaningful comparisons to be made between the brain responses on the two days,
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bearing in mind their necessary sequential order, we yoked a previous participant’s Day 2 pain
sequence as the sequence for a future participant on Day 1. Furthermore, Day 1 and 2 had the same
trial structure (Fig 1c): high or low intensity pain were delivered at the beginning of each trial,
coinciding with a ‘+’ symbol appearing on the screen below the fixation point which remained for
10s, followed by a brief inter-trial interval (ITI) of 2s showing an ‘=’ symbol (Fig 1d). On 40%
of all trials in (12 of 30 each session), the fixation point turned into an orange square, notifying
the participants that their pain ratings would be taken soon. A visual analogue scale with 0 to 10
appeared 4s after trial start, and stayed on for 6s for pain rating. Brain images from 4-10s after pain
delivery were used for both decoder training and real-time decoding. This allowed for the BOLD
delay and avoided movement contamination.

On Day 1, subjects were informed that they would receive a random sequence of pain stimuli, and
that their only task was to perform the intermittent ratings. On Day 2, subjects were fully informed
about the closed-loop operation, and how the clarity of their brain responses would help the machine
give them less pain (see instructions in Appendix). The goal was to illustrate the opportunity for
subjects to modulate their brain activity, without providing any explicit instruction of what to do.

Behavioural results

Within-subject decoder construction based on the insula ROI achieved reasonable classification
accuracy (Day 1: 10-fold cross-validated test accuracy 65%, sensitivity 60%, specificity 67%,
accuracy one-sample t-test vs 0.5 across subjects: T(18)=8.967, p<1e-7) (see also Table 1). When
this classifier was used during neurofeedback when the subject returned on Day 2, decoding accuracy
remained above chance (Day 2: accuracy 56%, sensitivity 51%, specificity 63%, accuracy t-test
vs 0.5: T(18)=4.053, p=0.0007). Specifically, the real-time decoder output following delivery of
high pain (referred to as P(pain), Fig 2a) differed significantly for the high and low pain stimuli
(repeated measure ANOVA of session and pain level effects, only pain level main effect significant:
F(1, 18)=17.41, p=0.0006, post-hoc test Bonferroni corrected P(pain) for high pain 95%CI=[0.558,
0.676], low pain=[0.434, 0.551]).

Decoder performance was therefore sufficient for the reinforcement learning control system to
learn differential values for high and low pain stimuli within a few trials in each session (Fig 2b,
mean±SEM, high pain=-0.264±0.0486, low pain=-0.0608±0.0479, paired t-test: T(18)=-3.651,
p=0.0018). Accordingly, the control system delivered significantly fewer high compared to low pain
stimuli (Fig 2c, high pain percentage: Day 1=44.123±2.394%, Day 2=43.480±2.353%, one-sample
t-test vs 50%: Day 1 T(18)=-2.455, p=0.0245, Day 2 T(18)=-2.771, p=0.0126).

An important feature of our experimental design was to yoke sequences on Day 2 (neurofeedback)
to Day 1 (decoder construction), to allow meaningful comparisons to be made. To achieve reasonable
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(a) (b)

(c)

(d)

Figure 1: Experimental paradigm. (a) Schematic illustration of the closed-loop setting. (b)
Demonstration of bilateral insula ROI generated from AAL atlas (viewed at z=0). (c) Participants
took part in a two-day decoding neurofeedback experiment. On Day 1, their functional brain images
were recorded while they were given high or low level of electrical pain at the beginning of each trial,
which were used for offline MVPA decoder training. On Day 2, participant’s probability of having
received high pain (P(Pain)) in the current trial was computed in real-time from their brain activities
by the decoder, which was then used by the pain delivery system to decide on the pain level of the
next trial. The decision function of the system was based on a reinforcement learning algorithm that
aimed to lower the participant’s decoded P(Pain). (d) For 40% of all trials in a session, participants
were asked for their pain ratings 4s after its delivery on a 0-10 VAS scale. The changed fixation
point acted as a prompt for rating. The display were identical on both days.
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Table 1: Decoder testing performance (high pain = positive, low pain = negative for sensitiv-
ity/specificity calculation; CV: 10-fold cross validation; D1: Day 1; D2: Day 2. All values are mean
(SEM), n=19)

Train D1, Test D1 (CV) Train D1, Test D2 Train D2, Test D2 (CV) Train D2, Test D1

Accuracy 0.6488 (0.0163) 0.5632 (0.0156) 0.5601 (0.0100) 0.4912 (0.0314)
Sensitivity 0.6017 (0.0258) 0.5057 (0.0159) 0.4982 (0.0313) 0.4379 (0.0258)
Specificity 0.6654 (0.0248) 0.6309 (0.0365) 0.5903 (0.0246) 0.5490 (0.0310)

# features (voxels) 24.053 (1.053) 28.737 (0.700)

classification learning, therefore, we set the decision function (i.e. by which action values determine
the actual machine choice of pain stimulation level) for the control system to be noisy, so that despite
the relatively clear difference between action values, there were sufficiently large number of high
stimuli delivered that would support decoder training performance when the sequence was used
for a subsequent subject’s Day 1 decoder construction. Note that the 3 initial subjects did not have
yoked stimulus sequences, instead they used randomly generated 50/50 high/low pain sequences.

Participants completed pain threshold testing on both days before the experiment started, with
aims to achieve VAS=1 and 8 for low/high pain respectively. Consequently, pain ratings were
significantly different between the high and low levels of pain (Fig 2d, high pain=5.92±0.356,
low pain=1.99±0.258, repeated measure ANOVA Pain levels: F(1,11)=86.00, p<1e-5), but did
not show significant differences across sessions or days (day: F(1,11)=3.173, p=0.103, session:
F(5,55)=0.470, p=0.797). There were no significant differences in the high/low pain stimulation
current levels given between days (paired t-test p=0.12 and 0.27 respectively).

We conducted a questionnaire survey after Day 2’s experiment concluded, in which participants
showed evidence of awareness of and attempt in mentally influencing the system to reduce overall
pain. 17 out of 19 (1 ambiguous) of all participants believed the machine was successful in
reading their pain and trying to reduce it, 15 out of 19 (2 ambiguous) believed that they were
successful in influencing the system to achieve that using some mental strategies. The strategies
used most frequently included a combination of mental imagery of pain, distraction from pain,
predicting/recalling stimulus sequence, and doing nothing.

Whole-brain BOLD comparison between days

Offline whole-brain analysis of fMRI data using a conventional general linear model showed evidence
of a regional day × pain level interaction (Fig 3a). Specifically, within-subject comparison (Day 2 >
Day 1) of the contrast (high pain > low pain) showed increased responses in periaqueductal grey
(PAG) (statistics in figure legend, and correction for multiple comparisons detailed in Table 2), in a
region most likely localising to dorsolateral or lateral PAG (Fig 3b), using PAG subdivision masks

6

(which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint. http://dx.doi.org/10.1101/369736doi: bioRxiv preprint first posted online Jul. 16, 2018; 

http://dx.doi.org/10.1101/369736


1 2 3 4 5 6
Session

30

40

50

60

70

80

D
ec

od
er

 p
re

di
ct

ed
 s

co
re

 (P
(p

ai
n)

*1
00

)

Low pain
High pain

(a)

0 5 10 15 20 25 30
Trial

0.4

0.3

0.2

0.1

0.0

0.1

Ad
ap

tiv
e 

pa
in

 s
ta

te
 v

al
ue

s

Q(high pain)
Q(low pain)

(b)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Participant

0

10

20

30

40

50

60

70

H
ig

h 
pa

in
 %

Day 1
Day 2

(c)

L H
0

1

2

3

4

5

6

7

8

Pa
in

 ra
tin

gs

session 1

L H

2

L H

3

L H

4

L H

5

L H

6

Day 1
Day 2

(d)

Figure 2: Behavioural results (mean ± SEM across n=19 individuals). (a) Decoder predicted
probabilities of having received high pain, P(pain), were able to distinguish high/low pain state
(calculated on Day 2 only). (b) Within-session, the control system learned to value low pain states
higher than high pain states (Q(low pain) > Q(high pain)) after several initial trials (Day 2). (c)
High pain trials were delivered less frequently than low pain (participant 1-3 used random stimulus
sequences on Day 1 instead of yoked, SEM calculated from sessions). (d) Raw pain ratings were
significantly different for the two pain levels, but not across sessions or days (H=high pain, L=low
pain).
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from (Ezra et al., 2015). The PAG is an important a priori region of interest in this analysis, as it is
a key part of the descending endogenous control system. We did not observe responses elsewhere at
whole-brain corrected thresholds.

In contrast, we found decreased BOLD responses in the left amygdala and bilateral putamen
(Fig 3a). Responses in the bilateral insula ROI, of which the decoder computed P(Pain) from, were
not significantly different between days for either high or low pain, or overall (pain level main effect:
F(1,18)=63.911, p=2.475e-7, session main effect: F(5,90)=4.130, p=0.002, none of the interactions
significant. Note that images used in the GLM and subsequent analyses were fully preprocessed, as
opposed to the limited (i.e. rapid) processing used in real-time neurofeedback.

PAG

Put
Amy

(a)

(b)

Figure 3: Whole brain comparison between days results (n=19), (a) Within-subject comparison
(2nd level paired t-test, Day 2 > Day 1) of the high pain > low pain 1st level contrasts, interaction
were observed in left amygdala (peak coordinates [-16, -7, -18], T=-4.38, k=11), bilateral putamen
(left peak [-26, 12, 6], T=-4.09, k=47, right peak [26, 19, -2], T=-4.50, k=32) and the PAG (peak
coordinates [0, -30, -6], T=3.27, k=3). All images shown at p<0.005, k>0. (b) Dorsal lateral PAG
and lateral PAG masks (thresholded at 50%) from (Ezra et al., 2015) overlaying PAG activation
from GLM (cluster formation at Z=2.9). SVC using bilateral dlPAG mask p(FWE-corr)=0.034, k=1,
T=3.14, Z=2.76, peak in [-3,-30,-6], k=1, T=2.94, Z=2.62, [3,-30,-6], lPAGmask (FWE-corr)=0.036,
other statistics the same as dlPAG mask. (note our voxel size is too big for very serious PAG
subdivision). H: high pain, L: low pain.
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Decoder comparison

To identify potential changes in the multi-voxel patterns in the insula, we compared MVPA decoder
performance trained offline using the bilateral insula ROI on functional brain images from Day 1 and
Day 2 (i.e. training the decoder separately on each day, and using internal cross-validation to test
performance). This analysis aimed to detect changes in the representation of pain, distinct from the
mean BOLD signal across all ROI voxels, and despite the fact that there were no significant changes
to pain stimuli or rating between days. Using a 10-fold cross-validation, we found that the decoding
test accuracy decreased on day 2 compared to Day 1 (Fig 4a and Table 1, Day 1: 64.8%, Day 2:
56.0%, Wilcoxon signed-rank test Z(18)=3.69, p<0.001). Furthermore, the decoder trained with
Day 2 data identified significantly more voxels as contributing to decoding performance compared
to Day 1 (Fig 4b and Table 1, Day 1: 24.1±1.1 voxels, Day 2: 28.7±0.7 voxels, signed-rank test
Z(18)=-3.21, p=0.001) (NB. the sparse logistic regression method we used prunes unnecessary
features when building the classifier Yamashita et al. (2008)). There were no significant differences
in the locations (i.e. average of x, y, or z coordinates) of these weighted voxels within individuals.
These results suggest the insula as an ROI may have overall disrupted functional information content
for pain level encoding on Day 2 (neurofeedback).

Therefore to look more broadly across the whole brain and identify any changes in pain intensity
representations, we conducted a whole brain post-hoc searchlight analysis using data from Day 1
and 2. This identifies accuracy maps that reflect the local information content of each voxel (Hebart
et al., 2015; Kriegeskorte et al., 2006), which can be used to search the brain for changes in pain level
representation. A paired t-test of these maps (Day 2 > Day 1 in a second level paired t-test, DF=18)
revealed reduced pain level decoding accuracy localised to a region in the left mid/anterior insula
(Fig 4d, Table 2, [-45, 6, 2], T=-6.04, k=142, whole brain cluster level p(FWE-corr)=0.014, shown at
p<0.005 uncorrected). This localisation presumably underlies the ROI-based reduction in accuracy
in the preceding analysis. Extracting the exact values from accuracy maps from both days, the left
insula showed decreased decoding accuracy on Day 2 (171 voxels, Day 1: 67.844±2.320, Day 2:
57.546±2.366, paired t-test T(18)=-5.335, p=4.525e-5). Outside of the insula, we also noted reduced
accuracy (135 voxels, Day 1: 67.074±1.715, Day 2: 55.932±2.234, paired t-test T(18)=-4.996,
p=9.359e-5) in the left medial frontal gyrus (i.e dorsolateral prefrontal cortex (DLPFC), [-38, 9, 42],
T=-5.68, k=134), which survived correction for whole brain multiple comparisons (whole brain
cluster level p(FWE-corr)=0.045).

In contrast, using the same searchlight method as above, we found increased information content
in a small region consistent with the pregenual anterior cingulate cortex (pgACC) in the medial
prefrontal cortex (Fig 4e, Table 2, [6, 44, 14], T=3.50, k=5, small volume correction (SVC) using an
8-mm spherical mask based on our previous investigation (Zhang et al., 2018)). Extracting the exact
values from the accuracy maps from both days, this pgACC ROI had significantly increased decoding
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Figure 4: Decoder comparison and searchlight analysis results (mean ± SEM across N=19
individuals). (a) 10 fold cross validation test accuracy of insula decoder decreased on Day 2. (b)
Number of weighted voxels increased on Day 2. (c) Comparison between the mean searchlight
accuracy of pgACC and insula clusters (masks extracted from clusters shown in figures below, at
p<0.005 unc.) and right SII (mask from accuracy>75% on Day 1, k=50 voxels, see text). (d-e)
Whole-brain searchlight analysis showed that information content contributing to decoding accuracy
decreased in left insula and DLPFC/MFG, and increased in pgACC, on Day 2 comparing to Day 1
(shown at p<0.005, k>0).

accuracy across all participants (Fig 4c, Day 1 accuracy: 55.293±1.604, Day 2: 63.009±2.383, paired
t-test T(18)=3.676, p=0.0017). No other brain regions were identified, even at a low exploratory
threshold.

For comparison, we also looked at the average accuracy maps from all participants in the right
secondary somatosensory cortex (SII), which had the highest decoding accuracy on both days. (Day
1 peak [45,-17,26], accuracy=77.414, Day 2 peak [55,-30,26], accuracy=74.510). We found that SII
decoding accuracy did not vary significantly across days (averaged within the cluster mask from
Day 1, k=50, Day 1: 75.813±2.234, Day 2: 71.563±2.880, paired t-test T(18)=1.344, p=0.196). To
look at regional differences formally, we computed a day × location interaction: we found that this
was significant between pgACC and SII (F(1,18)=6.648, p=0.012), although not significantly so
between insula and SII (F(1,18)=1.507, p=0.22).

10

(which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint. http://dx.doi.org/10.1101/369736doi: bioRxiv preprint first posted online Jul. 16, 2018; 

http://dx.doi.org/10.1101/369736


‘Switch’ trials analysis

The imaging results above indicate that there are differences in the way pain is processed and
represented on Day 2. To examine this further, we next looked for behavioural and brain evidence
that might reflect the engagement of active (given the self-reported attempts) or passive modulation
of brain activity in the context of the closed-loop neurofeedback. Specifically, we looked at ‘switch’
trials, in which the pain level delivered on the current trial differed from that of the previous trial (i.e.
as the machine switched from high to low pain, or vice versa), because these trials carry information
relevant to the success of the machine, and any mental strategy the subjects might use to try and
influence it.

Using a simple t-contrast, we found that pain ratings for the low pain stimulus on switch trials
was significantly higher than non-switch trials on Day 2, although there was no significant interaction
across days (Fig. 5a, paired t-test T(18)=-2.466, p=0.0186, day × switch interaction for low pain:
F(1,18)=2.477, p=0.133, interaction for high pain: F(1,18)=0.214, p=0.650). Following the same
pattern, we found that Day 2 predicted insula P(Pain) score on switch trials was significantly higher
for low pain (Fig 5b, paired t-test T(18)=2.990, p=0.0079), as well as being marginally so for high
pain (T(18)=1.952, p=0.067). This provides evidence, from both ratings and multi-voxel insula
patterns, that subjects may be sensitive to the sequence of pain stimuli on Day 2.

In a basis GLM analysis of imaging data, the contrast of switch vs non-switch low pain trials
on Day 2 revealed BOLD contrasts for HL>LL (i.e. a low pain stimulus trial that was preceded
by a high stimulus, versus one preceded by another low stimulus) in bilateral amygdala (Fig 5c,
Table 2), and LL>HL in right striatum (Fig 5e). Exploring this result with an ROI analysis, Day 2
showed significant pain level × switch interaction in both ventral striatum (Fig 5f, repeated measure
ANOVA F(1,18)=7.673, p=0.0126)), and amygdala (Fig 5d, ANOVA F(1,18)=11.991, p=0.0028)).
This indicates that brain regions commonly associated with feedback learning appear to track pain
feedback based on the machine-determined stimuli on Day 2.

Frequency learning analysis.

These basic switch trial analyses provide behavioural and brain evidence that subjects are sensitive
to the sequential identity of the stimuli on Day 2 (although this effect is not readily apparent on Day
1, the lack of an interaction by day in the above analyses means we can’t necessarily conclude that
subjects are significantly more sensitive to switches on Day 2). Switch trials are important because
they contain more information than non-switch trials, an effect that can be formalised by a simple
model in which people use the underlying frequency of high and low pain to infer how successful,
overall, the machine is at reducing pain, i.e the overall probability of receiving low or high pain on
any trial.
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Figure 5: Switch trials differences (n=19). All imaging results shown at p<0.001, k=0. (a)
Within-subject normalised ratings, group by days, pain levels, and switch status, showing that Day 2
switch low pain trials were more painful than non-switch trials. (b) Day 2 decoder predicted scores
(p(pain)*100) for switch/non-switch trials showed differences for high and low pain. (c) Day 2
HL>LL in bilateral amygdala. (d) Beta values extracted using bilateral activation cluster as ROI (at
p<0.001 unc., k=30). (e) Day 2 LL>HL in right ventral striatum / OFC. (f) Beta values extracted
from individuals using striatum activation cluster (k=9).
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To capture a basic frequency learning process we applied a simple Bayesian learning model to
quantify two key metrics: the ongoing probability of low/high pain, and the level of surprise on
each trial (entropy). Previous studies have shown that such simple models provide a good account
of behavioural and brain measures of surprise in comparable statistical learning environments (Mars
et al., 2008; Meyniel et al., 2016).

We first looked at whether these metrics correlated with behaviour. Using a linear regression
model of pain ratings (see methods), we found no correlation with a posteriori probability of
low pain (z-transformed correlation coefficients Day 2 vs 0: T(18)=-0.582, p=0.568, Day 1 vs 0:
T(18)=0.233, p=0.819, paired t-test between days: T(18)=0.601, p=0.555). However, we found a
strong correlation with entropy, which was specific to Day 2, compared to Day 1. That is, greater
entropy was associated with greater subjective pain (Fig 6a, z-transformed correlation coefficients
Day 2 vs 0: T(18)=4.648, p=1.99e-4, Day 1 vs 0: T(18)=0.259, p=0.798, Paired t-test between days:
T(18)=2.245, p=0.0376).

In the analysis of imaging data on Day 2, we found that the a posteriori probability of low pain
was correlated with BOLD responses in the ventromedial prefrontal cortex (VMPFC) (Fig 6b, Table
2), consistent with this regions strong association with reward and relief value in previous studies of
learning (Kim et al., 2006; Seymour et al., 2012). Most importantly (given the correlation with pain
ratings), we found that entropy was correlated with BOLD responses in both bilateral mid/anterior
insula and pgACC (Fig 6c and 6d, Table 2). The insula response lay within the bilateral insula mask
used for the decoder construction, and the pgACC response was part overlapping with the region
associated with increased accuracy coding during adaptive neurofeedback (Fig 6e). When looking
at the contrast of these responses across days, we found that although there was no significant effect
of day in the insula response. However, the peak pgACC response was significantly greater on Day 2
(SVC corrected p(FWE-corr)=0.021, T=3.70, Z=3.15, peak coordinates [13,41,14]). That is, entropy
correlated with both pain ratings and pgACC BOLD response selectively during neurofeedback on
Day 2.
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Figure 6: Frequency learning evidence on Day 2 (n=19). (a) Entropy (uncertainty regarding
upcoming stimulus being high pain) from frequency learning model correlated with pain rating
residuals from Day 2, but not Day 1 (using pain rating residuals with intensity and session numbers
regressed out, see Methods). (b) Frequency learning model posterior probability of low pain
correlated with VMPFC on Day 2 (peak coordinates [0, 51, -14], T=4.44, shown at p<0.001 unc.).
(c-d) Frequency learning model entropy on Day 2 (i.e. entropy of posterior probability of current
stimulus before updating) correlated with pgACC and bilateral insula (pgACC peak coordinates [13,
41, 14], T=5.91, sagittal and coronal views both at p<0.001 unc.). (e) Overlay of pgACC activations
from both entropy (green) and searchlight (red) analysis (visualised at Z>3.2 for both).
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Discussion

The results show that regional brain responses decoded in real-time can be used as a feedback signal
to teach a machine to reduce the intensity of experimental pain stimuli in an adaptive, closed-loop
setting. However, this is accompanied by two types of endogenous processes that influence both the
neural signals themselves, and the perception of pain. First, in the context of the explicit incentive
to enhance neural decodability, some primary pain-related brain regions (i.e. the insula) show a
paradoxical decline in decodability, and the only region identified as showing enhanced decodability
was the pgACC. Second, subjects learn the performance of the machine in terms of the success
giving low intensity stimuli, and an entropy (uncertainty) signal evoked during learning is positively
correlated with pain - an effect that was also associated with pgACC responses. The results illustrate
how different, specific co-adaptive brain processes are engaged during the operation of closed-loop
systems for pain.

In the context of closed-loop systems, the different patterns of adaptive response illustrate that
different brain regions will generate feedback signals that may affect the performance of closed-loop
systems in different ways. In the case of the experimental electrical stimulus here, secondary
somato-sensory cortex performed best - with the highest decoding accuracy and resistant to the
degradation of decodability seen in insula. It is not clear why insula shows a reduced performance,
but previous evidence suggests that uncertainty (which correlates with a sub-regions of insula in our
data) is integrated into perceptual representations as pain becomes more predictable (Brown et al.,
2008; Geuter et al., 2017), and it may be that such a predictive coding schema disrupts decoder
performance. It is notable, however, that overall the insula still predicts the slight increase in pain
associated with changes in pain feedback (i.e. the switch trials, Fig 5b), so the results are still
consistent with a primary role of insula in the subjective perceptual representation of pain.

However, the pattern of changes in the insula contrasts with that of the pgACC. Overall, the
decoding accuracy in pgACC is much lower, consistent with the fact that it is considered not to be
a primary pain coding region, but a potential center for endogenous control. From an ecological
perspective, endogenous pain control is thought to provide a key mechanism by which animals
cope with threat, and is mediated in part by control of descending pathways to the spinal dorsal
horn neurons (via the PAG) that transmit incoming nociceptive signals (Basbaum and Fields, 1984).
Along with other regions (including the insula and DLPFC), the pgACC has been implicated in
endogenous control across a range of paradigms, including placebo/nocebo (Bingel et al., 2006;
Eippert et al., 2009; Zubieta et al., 2005), attention/distraction (Bantick et al., 2002; Tracey et al.,
2002; Valet et al., 2004), and controllability (Salomons et al., 2007; Zhang et al., 2018). But
functionally dissociating the role of these different regions in endogenous modulation has been
difficult, coupled with the fact that it has remained unclear whether modulation reflects a non-specific
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up- or down-regulation of pain responses, or as we now show here, a process in which the specific
informational representation of pain is under control.

Specifically, the data here show that pgACC correlates both with a pain-modulating effect
of uncertainty (entropy), and an increase in decodability under an appropriate explicit incentive.
Importantly, intensity coding is needed for the computation of entropy, and thus the enhancement
in decodability may reflect the enhancement of information used for this computation, ultimately
leading to an influence on the subjective perception of pain. This is consistent with an attention-like
process engaged specifically during neurofeedback, to enhance pain information processing in the
context of the task. This computationally precise modulation is distinct from the basic representation
of pain itself, and potentially mediated via the descending system given the non-specific enhancement
of PAG activity seen during neurofeedback. Overall, the results show that pgACC may act as a key
hub for neural and behavioural components of the endogenous control of pain, modulating the level
of pain according to the informational value it carries in terms of its ability to guide active learning
and behaviour.

From a neuro-engineering perspective, the experiment demonstrates that in principle, online
decoded pain responses can guide a closed-loop pain control system, and the use of fMRI allows
exploration of a range of target regions for decoding. Although multi-ROI classifiers can have much
higher accuracy (Wager et al., 2013), here we arbitrarily used a single (bilateral) brain region, partly
as it is more realistic in terms of future applications that involve long-term implanted recordings, for
example with electrocorticography (ECoG). However, the choice of region is somewhat irrelevant to
the experimental demonstration of endogenous processes studied here, as all that matters is that the
decoder performs above chance and the incentive for active endogenous modulation exists.

As a general finding, it is clear that the brain actively learns about feedback in the context of
brain-machine systems. Our experimental design here is relatively simple, and frequency learning is
sufficient to capture the efficacy of the system. However, the engagement on brain regions including
the striatum and amygdala suggests that more sophisticated value learning might be possible if the
machine policy were more complex (for example, complex markov state-transition probabilities
(Wang et al., 2017)). It is also possible that brain representations might change over extended periods
of time based on the reinforcement provided by the feedback - and such ‘neural conditioning’ has
been observed over multi-day decoded neurofeedback tasks that involve explicit reward feedback
(Koizumi et al., 2016). It is therefore possible that these additional types of learning could further
influence closed-loop systems in appropriate situations.

A key feature of our system is the incorporation of an reinforcement learning decision function
on the part of the machine. This has a key advantage over fixed feedback decision policies because in
principle RL algorithms can be used to search a much larger parameter space, as opposed to the binary
levels of stimulation here - something that has broad applicability for many therapeutic interventions
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(e.g. spinal or brain stimulators). That is, when the optimal configuration of parameters for treatment
under control is not known, the RL algorithm can search and find it over time. Combining the use
of machine learning to generate a value approximation function, with reinforcement learning for
optimal control, provides an ‘intelligent’ control systems approach to pain therapeutics.

Methods and Materials

Participants

19 healthy participants enrolled in a two-day neuroimaging experiment (two female, age 23.5±4.0
years). All subjects gave informed consent prior to participation, had normal or corrected to normal
vision, and were free of pain conditions or pain medications. The experiment was approved by the
Ethics and Safety committee of the Advanced Telecommunications Research Institute, Japan.

Experimental protocol

The experiment spanned two days. On each day, each participant completed 2 sessions of pain
thresholding test outside the scanner and 6 sessions of task with high/low painful stimuli inside the
scanner.

Day 1: Decoder construction

Individual participant’s functional brain images were recorded during fMRI scanning for decoder
training. High and low levels of painful electrical stimuli, determined with the participant’s pain
threshold obtained before task outside the scanner, were delivered in a sequence of random or
pseudo-random trials to elicit two levels of pain. From the participant’s perspective, painful stimulus
was delivered at the beginning of each trial when a ‘+’ symbol appear on screen below the white
bulls-eye fixation point. The ‘+’ stayed on for 10s, then the ‘=’ symbol replaced it for 2s, signalling
a brief inter-trial interval (ITI). In 40% trials (12 randomly chosen out of 30 in each session), the
‘+’ stayed on screen for 4s and the fixation point turned to an orange square (signalling upcoming
rating), followed by a 0-10 visual analogue scale that stayed on for 6s, where participants were
asked to rate how painful the stimulus was by pressing two buttons to move the slider on screen.
The 30-trial session was repeated 6 times with a short break in between (180 trials, 72 ratings per
subject in total).

16 out of 19 participants used another participant’s Day 2 trial sequences on Day 1 as yoked
control. All participants were given the instruction to rest in the scanner and do nothing (see
‘Appendix’).
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Individual-specific, multi-voxel decoder was then trained for automatic classification of pain
level experienced, using bilateral insula as region of interest (ROI, see ‘Decoder construction’).

Day 2: Neurofeedback adaptive control

On Day 2, the level of pain stimuli delivered on each trial was controlled by their decoded pain from
real-time brain activities in the previous trial, determined by an adaptive control algorithm. All
participants were explicitly told that the pain level they received was controlled by the computer
programme, and were aware that modulating their brain activity could therefore influence the
computer. The instructions are detailed in the Appendix, and were intended to reveal the incentive
to modulate pain, but without any explicit instruction whether or how to do so.

After delivering pain, the participants’ probability of experiencing high pain (P(Pain)) was
estimated by multiplying decoder weights with insula BOLD activity from their brain images in that
trial (realigned and resliced to the reference image from Day 1, following Shibata et al. (2011)). The
estimated probability was used to provide the feedback signal with the aim that the computer could
learn to lower the overall level of pain delivered to the participant, based on trial-by-trial updating of
the values of high and low pain stimulus with a basic reinforcement learning algorithm. The details
of this algorithm are described below, but in brief, the stimulation state that elicited lower decoded
pain signal in the participant was reinforced (see ‘Neurofeedback adaptive control’).

Day 1 and 2 were structurally the same apart from the adaptive control process and subject
instructions, which made them approximately yoked conditions that allowed investigation of
whether any brain-machine co-adaptation processes took place. Across any analysis of effect x day
interactions, this sequential comparison necessarily introduces an order confound related to possible
non-specific effects of novelty and anxiety to the experiment. In these instances, they are partly
mitigated by the computational specificity of the analyses, and the fact that the majority of effects of
interest emerge on day, during neurofeedback, when novelty and anxiety effects would be less.

Stimulus delivery

Painful electrical stimuli were delivered using two constant current stimulators (Digitimer model
DS7A, Welwyn Garden City, Hertfordshire, UK), at two current levels for high/low pain determined
using the participant’s own threshold. The levels were fixed across sessions (except in 4 subjects,
minor adjustments were made where pain ratings were either too high, or there were no difference
between two levels), but were allowed to differ on Day 2 based on the new pain threshold. All
stimuli were delivered as a train of 50 5ms square wave pulses at 10Hz, lasting 500ms (DS7 settings:
x1 mA, 200µs).

The two stimulators were connected to a custom-made switch that allowed current delivery
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through the same custom-made, MRI-compatible ring electrode (10mm diameter). The electrode
was taped to the back of the left hand of the participant, its location marked on Day 1 as reference
for attachment on Day 2.

Pain thresholding procedure (Day 1 and 2)

On each day, participants completed a thresholding procedure at the beginning of the experiment. In
the first session, the staircase method was used to evaluate their highest pain limit. Stimuli current
were linearly increased at 0.2-0.5mA interval, and participants were asked for verbal feedback of
a 0-10 pain rating in person after each stimulation. This procedure was rerun a few times using
different starting points and both stimulators. In the second session, 14 trials of randomised painful
stimuli were given within the range of lowest perceivable to highest tolerable current level determined
in session 1. Subjects rated each stimulus 1s after receiving it, on a 0-10 VAS scale on screen using
a keyboard (as practice to the rating procedure used in the task). To determine the final current level
to use, a Weibull and Sigmoid function were fitted to session 2’s stimuli and ratings, and current
levels for VAS = 1 and 8 were used for low / high pain stimulus for the experiment respectively. The
same procedure was repeated for Day 2, and the new fitted current levels were used.

fMRI data acquisition (Day 1 and 2)

Neuroimaging data was acquired with a 3T Siemens Prisma scanner with the standard 64 channel
phased array head coil. Whole-brain functional images were collected with a single echo EPI
sequence (repetition time TR=2000ms, echo time TE=26ms, flip angle=80, field of view=240mm),
33 contiguous oblique-axial slices (voxel size 3.2 × 3.2 × 4 mm) parallel to the AC-PC line were
acquired. Whole-brain high resolution T1-weighted structural images (dimension 208 × 256 × 256,
voxel size 1 × 1 × 1 mm) using standard MPRAGE sequence were also obtained.

Decoder construction (Day 1)

Preprocessing All preprocessing were conducted using SPM12 (http://www.fil.ion.ucl.
ac.uk/spm/software/spm12/) in MATLAB (The MathWorks Inc., Natick, MA, USA).

All functional images were realigned and resliced to the reference functional volume (the first
baseline TR after the first 3 dummy TRs obtained in the first session on Day 1). Structural T1 images
were coregistered and segmented according to the canonical single subject T1 images. The resulting
inverse transformation matrix was used to normalise the bilateral insula ROI obtained from the
Automated Anatomical Labeling (AAL) atlas from MNI space to individual subject space. These
warped ROI images were then coregistered to the reference functional TR.
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Feature extraction Time series were extracted from all voxels within the individual’s insula ROI.
To account for BOLD delay and to minimise motion contamination, the times series from TR 3-5
(4-10s) were used from each trial, the first two TRs (0-4s) immediately following pain stimulus were
omitted. For denoising, the 5 TRs following 3 dummy TRs at the beginning of each session were
used as baseline, each trial ROI time series were normalised by subtracting session baseline mean
and divided by baseline standard deviation, then the mean across the TR 3-5 from all trials were
extracted for classifier training.

Decoder training Mean insula voxel activity as feature and high/low pain delivered as label were
aggregated across all trials within participant for decoder training. Binary classification by Sparse
Logistic Regression (SLR, version 1.51) with variational parameters approximation (Yamashita
et al., 2008) was used. This results in a sparse matrix of weights for about 5 percent of all voxels
within the given ROI. By multiplying weights with feature/voxel intensity signals, the decoder
produces the probability of observing current label given trial features (referred as (P(pain) from
here, P(pain)=1 means highly likely to have received high pain, P(pain)=0 means unlikely to have
received high pain, or highly likely to have received low pain).

For decoder training, all trials were used for training. To estimate decoder accuracy, all trials were
partitioned into 10 equal sets with 9 sets for training and 1 set for testing (10 fold cross-validation).
The average testing accuracy of 10 iterations of cross-validation were used as estimated decoder
accuracy (Table 1). Trained decoder was tested with another day’s data using the experimental
setting.

Neurofeedback adaptive control algorithm (Day 2)

To allow automated adaptive control of pain stimulus delivery, we used a simple reinforcement
learning algorithm (Sutton and Barto, 1998) to update the value of high/low pain states trial-by-trial:

Qt+1(a) = Qt(a) + α(−P(pain) −Qt(a)) (1)

where t represent trials, Q is the value of given state, a is the actions available for the algorithm (i.e.
either giving high or low pain, collectively shown as action set A), α is learning rate fixed at 0.5.

P(pain) is the decoder-generated probability of current trial’s stimulus being high pain. It’s
scaled between [-1,1] when used in the updating function. Higher P(pain) would decrease the value
of current pain state more and vice versa, while the value of un-chosen state remained unchanged.

The algorithm selects which pain level to deliver for the next trial using ε-greedy action selection
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rule based on current values:

pt+1(a|Qt) =

random action a ∈ A, if ξ > ε

argmaxa∈AQt(a), otherwise
(2)

where ε is the explore ratio fixed at 0.4 (i.e. exploring by choosing a random action by either giving
high or low pain 40% of the time, exploiting the other times), ξ is a uniform random number drawn
within [0,1] at each trial. The random exploration allows a sufficient proportion of alternative pain
level to be delivered, to ensure the next participant who uses current participant’s Day 2 sequence to
have enough trials of both high and low pain for decoder construction. We also set values to be 0 for
both states at the beginning of each session.

Frequency learning model

The frequency learning model M assumes a participant estimates the posterior distribution of a
given stimuli θ from a previously observed sequence of two possible stimuli y1:t (i.e. high or low
pain) using Bayesian updating (Mars et al., 2008; Meyniel et al., 2016).

p(θ |y1:t, M) ∝ p(y1:t |θ, M)p(θ, M) (3)

Given the experiment design, participants are assumed to have uninformative prior over the two
stimuli at the beginning of each session, which can be represented by a Beta distribution with
parameters [1,1]. Since the product of two Beta distributions results in a Beta distribution, the
posterior distribution depends only on the frequency of the high and low stimuli Nh, Nl , which has
an analytical solution. The posterior mean of the predicted high pain distribution is:

p(h|Nh, Nl) =
Nh + 1

Nh + Nl + 2
(4)

and P(l |Nh, Nl) = 1 − p(h|Nh, Nl) given the reciprocal relationship between high/low pain stimuli.
The uncertainty/surprise of current stimulus h/l at trial t can be estimated as the entropy H of

the posterior mean before updating from trial t − 1:

H(P(ht)) = −log2(P(ht−1)) (5)

This model does not require model fitting, as participants were assumed to cumulate stimulus
counts over the entire session (30 trials), where we assumed perfect memory retention. It is possible
to limit the number of trials for frequency memory, or introduce a forgetting ‘leaky factor’ to
discount previously experienced trials. However, given that we had no other behavioural data for
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fitting apart from selective pain ratings, and relatively short sessions, we decided to use the simplest
frequency model without fitted parameters.

To determine any learning effects on subjective ratings, we followed the method in Woo et al.
(2017) to use subjective rating residuals for correlation analysis with learning model predictors. We
regressed subjective ratings with a matrix of high/low pain stimulus identities (high=1, low=-1), and
session numbers (1-6) for each individual to obtain rating residuals. The fluctuation of the resulting
residuals can be interpreted as modulatory effects on pain beyond the level of nociceptive inputs.

Behavioural data

Behavioural data were analysed using Python 3.6, with pandas 0.19.2, scipy 0.18.1, afex 0.16-1.

fMRI data offline analyses

Preprocessing

For offline analysis, functional images were preprocessed using the fmriprep software (build date
21/05/2017, pypi version 0.4.4, freesurfer option turned off, https://github.com/poldracklab/
fmriprep), a pipeline that performs slicetime correction, motion correction, field unwarping,
normalisation, field bias correction, and brain extraction using a various set of neuroimaging tools
available. The confound files output by fmriprep include the following signals: mean global,
mean white matter tissue class, three FSL-DVARS (stdDVARS, non-stdDVARS and voxel-wise
stdDVARS), framewise displacement, six FSL-tCompCor, six FSL-aCompCor, and six motion
parameters (matrix size 24 × number of volumes). Resulting functional images were smoothed with
an 8mm Gaussian kernel in SPM12, except for those in used searchlight analysis.

fMRI GLM model

All event-related fMRI data were analysed with GLM models constructed using SPM12, estimated
for each participant in the first level. Stick functions at pain stimulation onset were convolved with a
canonical hemodynamic response function (HRF). We also included rated trials (duration=10s, from
beginning until ITI) as regressor of no interest, in addition to the 24 columns of confound matrix
output by fmriprep. Day 1 and 2 data were included in the same GLM, but first-level contrasts were
estimated separately for days.

Whole-brain comparison (Fig 3) 2 regressors: high/low pain onset (duration=0).
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Switch trials differences (Fig 5) 4 regressors: trials stimulus different from or identical to that of
the previous trial were labelled as switch or non-switch trials, separately for high/low pain (HH, LL,
LH, HL), at pain onset (duration=0).

Frequency learning posterior probability and entropy (Figs 6b, 6c, 6d) 3 regressors at pain
onset (duration=0) with parametric modulators: posterior probability of current stimulus (updated
prediction), entropy of previous posterior probability of current stimulus (uncertainty of prediction
before updating), actual identity of stimulus (high pain=1, low pain=-1). All parametric modulators
mean centred within session, SPM orthogonalisation for these 3 regressors were turned off.

For correction for multiple comparison here and in all analyses, we use whole brain correction
or ROI based correction based on a priori hypotheses as appropriate, and the details appear in Table
2. For ROI analyses, we used anatomical binary masks generated using the Harvard-Oxford Atlas
(Desikan et al., 2006) (freely available with the FSL software, https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/Atlases), and periaqueductal grey probabilistic atlas (Ezra et al., 2015) for small
volume correction. All probability maps were thresholded at 50%, and all masks were applied
separately, not combined. We used the frontal medial cortex mask as approximation for VMPFC.
Bilateral masks for vlPAG and lPAG were combined respectively. We also used the pgACC peak
identified in our previous study of active relief learning (Zhang et al., 2018) for the 8mm spherical
ROI mask (sphere peak used: [6,40,12]). We reported all results with p<0.05 (FWE cluster-level
corrected, using a p<0.001 cluster-forming threshold (Eklund et al., 2016)), with the exception of
searchlight analysis results (MFG/DLPFC SVC had p=0.06, see Table 2).

ROI analysis

Beta estimates were extracted from activation ROIs (see text for mask details). Beta values plotted
were the average of all voxels within ROI masks, with statistics showing subject-level SEM. Post-hoc
repeated measure ANOVA were conduced with the R package ‘afex’. All t-tests performed were
two-tailed. pgACC responses were overlaid on subject-averaged anatomical scans using MRIcroGL
(https://www.nitrc.org/projects/mricrogl/). We used voxel-wise correction for multiple
comparisons within the ROIs: the insula (required by the task paraigm itself, and the pgACC and
PAG given their proposed role in endogenous control (Zhang et al., 2018).)

Decoder comparison

Decoders were constructed using Day 2 data with the same procedure as Day 1 (Fig 4). This was
done to determine whether the decoding performance of insula ROI remained the same, or whether
any learning-induced changes might have changed the decoder properties.
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Whole-brain searchlight analysis was conducted using the Decoding Toolbox (TDT, v3.98)
in MATLAB (Hebart et al., 2015). The toolbox can conduct multivariate decoding analyses at
combined trial types within fMRI runs, by extracting features from beta images of relevant regressors
in the first level GLM analysis output by SPM. This could lead to higher classification accuracy and
lower computation time, comparing to single trial decoding.

A searchlight analysis was carried out within a 10mm radius sphere for the whole brain, with
high/low pain categories as unsmoothed beta images from each run for individual participant. TDT
produced a decoding accuracy map for each voxel using a leave-one-run-out cross validation scheme,
which can be interpreted as the local information content of each voxel (Kriegeskorte et al., 2006).
The Day 1 and 2 accuracy maps from each individual were then smoothed with a Gaussian kernel of
4mm, and entered into a standard SPM second level paired t-test as in the GLM analysis above. The
resulting T map indicates the changes in decodable information used for pain level decoding across
days.

Appendix

Participant instructions

Day 1 (Decoder construction)

Please rest in the scanner. We are looking at your brain’s response to different levels of pain. You
don’t have to do anything.

Day 2 (Adaptive control)

You don’t need to do anything in this task. The computer is trying to work out if you feel pain
or not, by looking at your brain activity. If it thinks you felt pain, it will try and change the pain
stimulation to stop you from having pain. If it thinks you did not feel much pain, it will try not to
change anything. However, it cannot do this very reliably, as reading the brain activity is difficult, so
it may often make mistakes.

During your first scan, we gave a random sequence of pain stimuli - some high, and some low.
Using this data, we have trained a computer program to tell how much pain you were feeling during
each shock, based on your brain activity. It is good, but not perfect - it gets it right about 80% of the
time.

In today’s scan, the computer program can influence the pain level you get. If it thinks you
felt a lot of pain, it will influence the pain machine to give you less pain in the future. If it thinks
you did not feel much pain, it will try to influence the pain machine to continue to give you little
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Table 2: Multiple correction (cluster-forming threshold of p <0.001 uncorrected unless stated
otherwise, regions from Harvard-Oxford, PAG probabilistic atlas, and previous study. *FWE
cluster-level corrected. n=19. H: high pain, L: low pain)

p* k T Z MNI coordinates (mm) Region mask
x y z

Fig 3: Whole brain comparison (D2>D1, L>H, p<0.005)

0.032 8 4.38 3.57 -16 -7 -18 Amygdala L

0.021 28 3.81 3.22 -22 9 6 Putamen L
3.62 3.10 -19 6 2
3.62 3.09 -26 -1 2

0.040 18 3.47 3 23 9 6 Putamen R
3.29 2.88 26 15 -2

Fig 3: Whole brain comparison (D2>D1, H>L, p<0.005)

0.034 1 3.14 2.76 -3 -30 -6 dlPAG (Ezra et al., 2015)
0.034 1 2.94 2.62 3 -30 -6

0.036 1 3.14 2.76 -3 -30 -6 lPAG (Ezra et al., 2015)
0.036 1 2.94 2.62 3 -30 -6

Fig 4: Searchlight analysis - decreased information content (D2>D1)

0.048 2 3.94 3.3 -42 3 -2 Insula L

0.061 2 4.41 3.59 -38 15 42 Middle Frontal Gyrus L
0.078 1 4.37 3.56 -38 35 30

Fig 4: Searchlight analysis - increased information content (D2>D1, p<0.005)

0.045 5 3.50 3.02 6 44 14 8mm pgACC sphere at [6,40,12]
(Zhang et al., 2018)

Fig 5: Whole brain comparison (D2, HL>LL)

0.014 2 4.41 3.59 -26 -4 -14 Amygdala L
0.008 6 4.81 3.81 26 -7 -14 Amygdala R

Fig 5: Whole brain comparison (D2, LL >HL)

striatum did not survive SVC

Fig 6: Frequency learning model - posterior probability of low pain (D2)

0.007 10 4.44 3.6 0 51 -14 Frontal Medial Cortex

Fig 6: Frequency learning model - entropy (D2)

0.039 5 5.30 4.06 10 41 10 Cingulate Anterior
0.033 6 4.36 3.56 0 3 38

0.002 14 5.91 4.35 13 41 14 8mm pgACC sphere at [6,40,12]
(Zhang et al., 2018)

0.002 31 5.24 4.03 -38 -7 2 Insular cortex (bilateral)
0.032 6 4.60 3.69 39 -4 6
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pain. In other words, it is trying to help you get less pain! This is a difficult job for the computer
program, because it is not perfect at reading your brain activity as soon as it is active (i.e. within a
few seconds).

It is up to you what you do in the task. You can do nothing, and hope that the system works well,
and the computer learns to reduce the pain. Or you can try to influence the computer using your
thoughts, in any way that you like.

Post-training survey (Day 2)

1. Do you think the machine was successful in reading your pain and trying to reduce it?

2. Did you try to influence the computer by doing or thinking anything?

3. If so, what did you do/think?

4. And if so, do you think you were successfully able to influence it?

5. Any other comments or feedback?
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