
Author’s Proof

Carefully read the entire proof and mark all corrections in the appropriate place, using the Adobe Reader editing tools (Adobe Help),
alternatively provide them in the Discussion Forum indicating the line number of the proof. Do not forget to reply to the queries.

We do not accept corrections in the form of edited manuscripts.

In order to ensure the timely publication of your article, please submit the corrections within 48 hours.

If you have any questions, please contact science.production.office@frontiersin.org.

Author Queries Form

Query No. Details required Author’s Response

Q1 Confirm that the first name and surname of all the authors have been
identified correctly in the front page and citation text.

Q2 Please ask the following authors to register with Frontiers (at https://
www.frontiersin.org/Registration/Register.aspx) if they would like their
names on the article abstract page and PDF to be linked to a Frontiers
profile. Please ensure to register the authors before submitting the
proof corrections. Non-registered authors will have the default profile
image displayed by their name on the article page.
“Hidenori Watanabe.”

Q3 If you decide to use previously published, copyrighted figures in your
article, please keep in mind that it is your responsibility as author
to obtain the appropriate permissions and licences and to follow
any citation instructions requested by third-party rights holders. If
obtaining the reproduction rights involves the payment of a fee, these
charges are to be paid by the authors.

Q4 Ensure that all the figures, tables and captions are correct.

Q5 Verify that all the equations and special characters are displayed
correctly.

Q6 Please provide the name of the department for “School of Life
Science, The Graduate University for Advanced Studies (SOKENDAI),
Hayama, Japan.”

Q7 Please reduce short running title to maximum of five words.

Q8 Please add “Moritz et al., 2008” to the reference list.

Q9 Please add “Ethier et al., 2012” to the reference list.

Q10 Please add “Nishimura et al., 2013” to the reference list.

Q11 Please confirm the deletion of first occurrence of “Collins and
Prochazka, 1996” in the reference list as it is appearing twice in the
list.

https://helpx.adobe.com/acrobat/using/mark-text-edits.html
mailto:science.production.office@frontiersin.org
https://www.frontiersin.org/Registration/Register.aspx
https://www.frontiersin.org/Registration/Register.aspx
https://www.frontiersin.org/Registration/Register.aspx


Query No. Details required Author’s Response

Q12 Please confirm whether the edits made in the page range for the
following references.
“Hochberg et al., 2012; O’Doherty et al., 2011.”

Q13 Please provide the page range for the following references.
“Johnson et al., 2013; Wagenaar et al., 2011.”



001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

ORIGINAL RESEARCH ARTICLE
published: xx May 2014

doi: 10.3389/fnins.2014.00097

Decoding of the spike timing of primary afferents during
voluntary arm movements in monkeys

Q1 Q2 Tatsuya Umeda1*†, Hidenori Watanabe1, Masa-aki Sato2, Mitsuo Kawato3, Tadashi Isa1,4 and

Yukio Nishimura1,4,5

1 Department of Developmental Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
2 Neural Information Analysis Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
3 Computational Neuroscience Laboratories, Advanced Telecommunications Research Institute International, Kyoto, Japan
4Q6 School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
5 PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan

Edited by:

Mesut Sahin, New Jersey Institute
of Technology, USA

Reviewed by:

Randolph J. Nudo, University of
Kansas Medical Center, USA
Mesut Sahin, New Jersey Institute
of Technology, USA

*Correspondence:

Tatsuya Umeda, National Institute of
Neurology and Psychiatry, National
Institute of Neuroscience,
Department of Neurophysiology,
4-1-1 Ogawa-Higashi, Kodaira,
187-8551, Japan
e-mail: tumeda@ncnp.go.jp
†Present address:

Tatsuya Umeda, Department of
Neurophysiology, National Institute
of Neurology and Psychiatry,
Kodaira, Japan

Understanding the mechanisms of encoding forelimb kinematics in the activity of
peripheral afferents is essential for developing a somatosensory neuroprosthesis. To
investigate whether the spike timing of dorsal root ganglion (DRG) neurons could
be estimated from the forelimb kinematics of behaving monkeys, we implanted two
multi-electrode arrays chronically in the DRGs at the level of the cervical segments
in two monkeys. Neuronal activity during voluntary reach-to-grasp movements were
recorded simultaneously with the trajectories of hand/arm movements, which were
tracked in three-dimensional space using a motion capture system. Sixteen and 13
neurons, including muscle spindles, skin receptors, and tendon organ afferents, were
recorded in the two monkeys, respectively. We were able to reconstruct forelimb joint
kinematics from the temporal firing pattern of a subset of DRG neurons using sparse linear
regression (SLiR) analysis, suggesting that DRG neuronal ensembles encoded information
about joint kinematics. Furthermore, we estimated the spike timing of the DRG neuronal
ensembles from joint kinematics using an integrate-and-fire model (IF) incorporating the
SLiR algorithm. The temporal change of firing frequency of a subpopulation of neurons
was reconstructed precisely from forelimb kinematics using the SLiR. The estimated firing
pattern of the DRG neuronal ensembles encoded forelimb joint angles and velocities as
precisely as the originally recorded neuronal activity. These results suggest that a simple
model can be used to generate an accurate estimate of the spike timing of DRG neuronal
ensembles from forelimb joint kinematics, and is useful for designing a proprioceptive
decoder in a brain machine interface.

Keywords: dorsal root ganglion, proprioceptive interface, multichannel recording, integrate-and-fire model, brain

machine interface

INTRODUCTION
Researchers have developed a brain-machine interface (BMI) thatQ5

allows patients or experimental animals to control a robotic arm
by translating neural signals into control signals for the device
(Hochberg et al., 2006, 2012; Velliste et al., 2008; Yanagisawa et al.,
2012; Collinger et al., 2013). Furthermore, studies have shown
that monkeys can use cortical activity to control functional elec-
trical stimulation of muscles (Moritz et al., 2008; Ethier et al.,Q8

2012)Q9 Q10 and the spinal cord (Nishimura et al., 2013), and restore
volitional control of the paretic hand. In these approaches, the
control of a prosthetic device to a desired target has relied mainly
on visual feedback for the position of the prosthesis. Since the
ability to control hands and arms in a dexterous and compli-
ant manner depends on somatosensory signals from the body
(Ghez et al., 1990; Gentilucci et al., 1994; Gordon et al., 1995),
somatosensory feedback should be provided for precise control of
the prosthetic limb precisely and exploratorily (Biddiss and Chau,
2007). Recently a somatosensory BMI with a tactile feedback sys-
tem, such as direct electrical stimulation of the primary sensory

cortex, has been developed (O’Doherty et al., 2011; Tabot et al.,
2013). Experimental animals perceived an electrical stimulation
train as if it was a mechanical stimulus of the limbs at the corre-
sponding frequency. Proprioceptive information can also be used
to increase accuracy of prosthesis control (Johnson et al., 2013),
but proprioceptive information has not been returned directly to
the brain in the current frame of BMI research.

Primary sensory nerves are an appropriate site for the delivery
of electrical stimulation to provide proprioceptive information to
the subject. First, movements with a high number of degrees of
freedom in three-dimensional space yield considerable positional
information of a prosthetic device. Ensemble neural recordings
in the dorsal root ganglia (DRGs) of anesthetized animals have
shown that the activity of neuronal ensembles encoded high
dimensional information of limb kinematics (Stein et al., 2004;
Wagenaar et al., 2011; Weber et al., 2011; Umeda et al., 2012).
Second, the sensation of limb movement may be induced artifi-
cially by the delivery of vibrations to a tendon (Goodwin et al.,
1972; Craske, 1977; McCloskey et al., 1983; Roll et al., 2009;
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Thyrion and Roll, 2010) or the direct electrical stimulation of
afferents (Gandevia, 1985; Dhillon and Horch, 2005). Individuals
who felt the illusory movement of the stimulated hand could indi-
cate the direction of the movement using the other hand. Thus,
artificial kinesthetic sensations may allow individuals to adapt
easily to such feedback signals containing considerable positional
information of a prosthesis. The rigid link between limb move-
ments, the neural activity of peripheral afferents, and kinesthetic
sense suggests peripheral afferents as an appropriate site for a
proprioceptive interface.

Estimating the neuronal firing pattern from the positional
information of the upper limb is of obvious utility for the devel-
opment of a sensory-motor BMI with a proprioceptive feedback
system. The development of a motor BMI has stemmed from
the establishment of decoding algorithms, which translate neu-
ronal ensemble activity into limb movements and muscle activity
(Chapin et al., 1999; Wessberg et al., 2000; Serruya et al., 2002;
Morrow and Miller, 2003). Similarly, a decoding model would
help to determine the optimal stimulus parameters to elicit artifi-
cial kinesthetic sensation. Spiking neuron models can reproduce
the timing of spikes elicited by an external stimulus with high
temporal precision (Gerstner and Kistler, 2002). An integrate-
and-fire (IF) model is a simple phenomenological model of spike
generation. Recent studies have demonstrated that various IF
models accurately estimate spike timing, and describe some of the
important physiological properties of the recorded sensory neu-
rons (Pillow et al., 2005; Kim et al., 2010; Dong et al., 2013). For
a model to have a practical use in an online BMI, it should be
simple, with a small computational overhead. Furthermore, the
reproduced spike patterns generated by the model should reliably
encode the external stimulus that elicited the original neural firing
pattern.

In the present study, we performed multichannel record-
ings from the cervical DRGs of awake monkeys during volun-
tary reach-to-grasp movements. First, we investigated whether a
population of DRG neurons recorded from behaving monkeys
could encode the forelimb joint kinematics. Next, we investi-
gated whether the temporal firing pattern of DRG neurons can
be reconstructed from forelimb joint kinematics using an IF
model incorporating the sparse linear regression (SLiR) algo-
rithm, which selects important input signals to reduce the com-
putational time (Sato, 2001). Finally, we examined whether the
reconstructed spike pattern contained positional information to
validate the model.

MATERIALS AND METHODS
One adult male monkey (Monkey T) and one adult female mon-
key (Monkey C) (Macaca mulatta) were used in the present study.
The experiments were approved by the experimental animal com-
mittee of the National Institute of Natural Sciences of Japan
(Approval Nos.: 10A203, 11A168, and 12A139) and were per-
formed in accordance with the Weatherall report, “The use of
non-human primates in research.” Before the experiments, the
animals were housed individually on a 12-h light/dark cycle.

BEHAVIORAL TASK
Monkey C was trained to perform a reach-to-grasp task with its
right hand, as described previously (Shin et al., 2012). The object

to grasp was a small plastic knob that was attached to the end of
a joystick controller lever. To start a trial, the monkey placed its

Q7

hand on a button located in front of a chair for 2–2.5 s. After a
go cue was given as a beep sound, the monkey pulled the knob
and then returned its hand to the button. When the monkey suc-
cessfully pushed the button and pulled the knob to the required
displacement of 6 cm, it received a reward. Monkey T was trained
to perform a reach-to-grasp task with its right hand. The object
was a small piece of potato. The monkey launched a trial by plac-
ing its hand in front of a chair, and then a piece of potato was
presented in front of the monkey. The monkey was required to
take the potato, eat it, and then return its hand to the original
position. In the reach-to-grasp task, both the proximal and distal
forelimbs were active. This task allowed us to analyze the kine-
matics from multiple joints of the forelimb. Monkey C performed
the task for 5 sessions of 10 min each, in which the monkey
conducted 136.8 ± 5.3 (mean ± standard deviation) trials per ses-
sion. Monkey T performed the task for 1 session of 2 min, which
contained 21 trials.

SURGERY
A mixture of xylazine (0.4 mg/kg; Bayer Health Care, Monheim,
Germany) and ketamine (5 mg/kg; Daiichi Sankyo, Tokyo, Japan)
was used to induce satisfactory sedation of the monkeys. Then,
the monkeys were anesthetized with isoflurane (exhaled level;
1–2%) and nitrous oxide gas (33%). The monkeys were para-
lyzed using pancuronium bromide (Mioblock; 0.2 mg·kg−1·h−1;
Schering-Plough Corporation, Kenilworth, NJ). Expiratory CO2

levels were maintained within the physiological range (3.3–4.2%).
Assessment of the depth of anesthesia was done continuously by
checking the stability of expiratory CO2 levels and the heart rate.

After shaving the hair on the back, the C3 through Th2 verte-
brae were exposed bilaterally, and stainless screws were inserted
into the lateral mass of each vertebra on the bilateral sides. After
the lateral mass of the C5–Th1 segments was dissected on the
right side, two multi-electrode arrays (Blackrock Microsystems,
Salt Lake City, UT) were inserted through the dura into two
DRGs (Monkey C: C6 and C7; Monkey T: C7 and C8) on the
right side using a high-velocity inserter (Rousche and Normann,
1992). Reference wires were placed over the dura. After insert-
ing the arrays, a connector was positioned over the laminectomy
and cemented in place with dental acrylic. Before recovering
from anesthesia, neostigmine bromide (Vagostigmin; 0.1 mg/kg;
Shionogi, Osaka, Japan) was administrated to recover from
the paralyzing effects of pancuronium bromide. Dexamethasone
(Decadron; 0.82 mg; MSD, Tokyo, Japan), atropine (0.25 mg;
Mitsubishi Tanabe Pharma, Osaka, Japan), and penicillin (peni-
cillin G potassium; 50000 units; Meiji Seika Pharma, Tokyo,
Japan) were administered preoperatively, and penicillin (50000
units) and ketoprofen (Capisten; 5 mg/kg; Kissei pharmaceutical,
Matsumoto, Japan) were given postoperatively.

NEURAL RECORDING AND SPIKE DETECTION
The implanted arrays consisted of 48 platinized-tip silicon elec-
trodes (100–1000 k� at 1 kHz), arranged in a square grid (400 μm
pitch) with 1 mm in length, and in a 5 × 10-configuration. The
size of the array (2 mm in width, 4 mm in length) covered a
DRG of 2–3 mm in diameter and 4 mm in length. For Monkey
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C, the electrode arrays were connected to a 96-channel amplifier
(Plexon MAP system; Plexon, Dallas, TX) with a gain of ×20000,
and signals from each electrode were sampled at 40 kHz. Filtered
spikes (150–8000 Hz) above the amplitude threshold, which
was determined by the “auto threshold algorithm” of the soft-
ware, were bracketed within a window running 0.3 ms before to
0.8 ms after the threshold crossing. For Monkey T, the electrodes
were connected to a 128-channel amplifier (Cerebus; Blackrock
Microsystems, Salt Lake City, UT) with a gain of ×1000, and sig-
nals from each electrode were sampled at 30 kHz. Filtered waves
(250–7500 Hz) above the amplitude threshold, which was 5 times
the estimated background noise based on the median of the abso-
lute value of the bandpass filtered signals (Quiroga et al., 2004),
were captured within a window running 0.33 ms before to 0.73 ms
after threshold crossing. After the detection of signals crossing
the threshold in both monkeys, spikes with similar features on
the principal component analysis (PCA) projection were grouped
into clusters by semi-automatic spike sorting methods (Offline
sorter; Plexon, Dallas, TX) and further manual refinement. The
interval between 2 consecutive spikes was more than 1 ms for
51 units, which implied no contamination from other neurons.
For the remaining 32 units, the proportion of cases in which the
interval between two consecutive spikes was less than 1 ms was
less than 1% of the total number of spikes. The neuronal firing
rates for each unit were computed in 5-ms bins in synch with the
sampling rate of the motion capture system at 200 fps.

CLASSIFICATION PROCEDURE
We identified the modality of some recorded units each day
in Monkey C right after the tasks was completed. Units that
were sorted using an online spike sorting method were analyzed.
Waves above the amplitude threshold, which was used in the
above offline sorting, were sorted to the same units by selecting
waveforms that crossed time-amplitude windows that were set
manually. We considered that spikes constituting online sorted
units were similar to, but not coincident with those constituting
offline sorted units. The arm, hand, and fingers were stimulated
manually to identify the receptive field of each unit. Pressure
over the tendon and muscle belly was used to identify tendon
organs and muscle spindles, respectively. Brushing and pinching
were used to identify cutaneous receptors. Subtypes of cutaneous
receptors were classified into rapidly or slowly adapting units
based on their response to the stimuli.

MOTION CAPTURE
By tracking multiple reflective markers (4- or 6-mm-diameter
spheroids) with an optical motion capture system (Eagle-4 Digital
RealTime System; Motion Analysis, Santa Rosa, CA), movements
of the upper limb, from the shoulder to the fingers, were recorded
and synchronized with the neural recordings. In the system, 12 or
11 infrared cameras operated at 200 frames/s to track the position
of the reflective markers with submillimeter accuracy in Monkey
C and T, respectively. A total of 14 or 5 markers were attached to
the surface of the forelimb using a mild adhesive (LACE FX TAPE;
Vapon Inc., Fairfield, NJ, Aron Alpha Extra Jelly, Toagosei, Tokyo,
Japan) in Monkey C and T, respectively (Figure 1A). For Monkey
C, a total of 14 markers were attached to the left shoulder (marker

1; M1), the center of the chest (M2), the right shoulder (M3), the
biceps (M4), the triceps (M5), the medial epicondyle (M6), the
medial to the medial epicondyle (M7), the radial styloid process
(M8), the ulnar styloid process (M9), the metacarpophalangeal
joint of digit 2 (M10), the metacarpophalangeal joint of digit 4
(M11), the middle phalanx of digit 1 (M12), the middle pha-
lanx of digit 2 (M13), and the middle phalanx of digit 4 (M14).
For Monkey T, a total of 5 markers were attached to the right
shoulder (M1), the medial epicondyle (M2), the center of the
forearm (M3), the ulnar styloid process (M4), and the metacar-
pophalangeal joint of digit 4 (M5). The markers were placed at
almost identical positions on the two recording days for Monkey
C. The inter-marker distance between any two markers was sim-
ilar between the 2 days. The ratio of the distance between the 2
days was 0.998 in the breast (M1–M2, M1–M3, and M2–M3),
1.01 in the upper arm (M1–M7), 1.03 in the lower arm (M7–M8
and M7–M9), 1.01 in the hand (M8–M9, M8–M10, M8–M11,
and M10–M11), and 1.09 in the fingers (M8–M12, M10–M13,
and M11–M14). A comprehensive catalog of 10 or 4 anatomically
defined upper extremity joint angles (Monkey C: shoulder flex-
ion/extension (FE), shoulder adduction/abduction (AA), elbow
FE, pronation/supination (PS), wrist FE, wrist radial/ulnar (RU),
digit1 FE, digit1 AA, digit2 FE, and digit4 FE; Monkey T: elbow
FE, PS, wrist FE, and wrist RU) were analyzed in Monkey C and
T, respectively (Monkey C, Table1; Monkey T, Table2). In partic-
ular, Euler angles were used to represent relative joint rotation. To
reduce noise from various sources, temporal changes in the joint
angles were smoothed using a 5 Hz low-pass digital filter. For con-
venience, we refer to the first and second time derivatives of the
joint angles as “velocity” and “acceleration,” respectively.

ENCODING OF JOINT KINEMATICS
Joint angle, velocity, and acceleration were modeled as a weighted
linear combination of neuronal activity using multidimensional
linear regression analysis as follows:

yj(t) =
∑

k,l

wj,k,l × xk (t + lδ) + bj (1)

where: yj(t) is a vector of kinematic variables j (joint angle, veloc-
ity, and acceleration) at time index t. xk(t + lδ) is an input vector
of unit k at time index t and time-lag lδ (δ = 5 ms). wj,k,l is
a vector of weights on unit k at time-lag lδ, and bj is a vector
of bias terms to yj. The units that showed no more than one
spike in the training data sets were omitted before the regres-
sion analysis. We used a Bayesian SLiR algorithm that introduced
the automatic relevance determination (ARD) parameters αj,k for
the weights wj,k,l assuming the same ARD parameters αj,k for
different time-lags lδ. Namely, sparse conditions were imposed
only for the unit dimension, and not for the temporal dimen-
sion (Toda et al., 2011). By applying the variational Bayesian
approximation (Sato, 2001), this method iteratively estimates the
weights and the ARD parameters, which represent how much
the weight contributes to the reconstruction. On the basis of
the values of the estimated ARD parameters, the SLiR algorithm
automatically and effectively selects important feature sets and
prunes inappropriate signals from explanatory variables to attain
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FIGURE 1 |Q3 Q4 (A) Experimental setup for the simultaneous recording of DRG
neuronal ensemble activity and forelimb joint kinematics from behaving
monkeys. Microelectrode arrays were implanted in the right DRGs. Markers
were placed on both shoulders and the right arm and hand. The blue dots
represent 6-mm-diameter spheroid markers, and the red dots represent
4-mm-diameter spheroid markers. (B) Simultaneous recording of DRG

neuronal ensemble activity and forelimb joint kinematics of Monkey C. (Top)
Activity of 15 simultaneously recorded units in the C6 and C7 DRGs during
reach-to-grasp movements of the right hand. (Bottom) Shoulder, elbow, wrist,
and finger (digit 2 MCP) joint angles. Extension (Ext.) is represented by an
upward deflection (arrow) of the traces; the length of the arrow represents
the magnitude of the angle.

Table 1 |Q4 Calculation of the joint angles in Monkey C. Joint angles were calculated from the two vectors presented in the right columns.

Joint angle Two vectors

Shoulder FE Cross product of vector M3–M2 and vector M3–M1 Vector M3–M7

Shoulder AA Vector M3–M1 Vector M3–M7

Elbow FE Vector M7–M3 Vector M7–M8/M9

PS Projection of vector M7–M3 on the plane with the normal vector M7–M8/M9 Projection of vector M8–M9 on the same plane

Wrist FE Cross product of vector M8–M10 and vector M8–M9 Vector M8/M9–M7

Wrist RU Vector M9–M8 Vector M8/M9–M10

Digit1 FE Projection of vector M8–M10 on the plane including M8, M10, and M11 Projection of vector M8–M12 on the same plane

Digit1 AA Projection of vector M8–M10 on the plane with the normal vector M11–M10 Projection of vector M8–M12 on the same plane

Digit2 FE Cross product of vector M8–M10 and vector M8–M11 Vector M10–M13

Digit4 FE Cross product of vector M8–M10 and vector M8–M11 Vector M11–M14

Table 2 | Calculation of the joint angles in Monkey T. Joint angles were calculated from the two vectors presented in the right columns.

Joint angle Two vectors

Elbow FE Vector M2–M1 Vector M2–M4

PS Projection of vector M2–M1 on the plane with the normal vector M2–M4 Projection of vector M3–M4 on the same plane

Wrist FE Cross product of vector M4–M2 and vector M4–M3 Vector M5–M4

Wrist RU Vector M4–M3 Vector M4–M5

a better generalized performance compared to the regularized lin-
ear model (Figueiredo and Nowak, 2003; Ganesh et al., 2008;
Umeda et al., 2012). This is because having too many parame-
ters relative to a limited number of training data sets is known
to lead to poor generalized performance (Akaike, 1974; Geman
et al., 1992). As external stimulation induced afferent activity,
the time-lag was set at future, positive values. The recorded
neuronal population consisted of different types of sensory neu-
rons. Even muscle spindle discharges are determined not only
by the current kinematic state of their parent muscles but also
by the simultaneous activation of the fusimotor systems during

active movements. Thus, it is difficult to determine the opti-
mum value of the time window during the ensemble coding based
on physiological knowledge elicited from previous experiments
using single afferent recordings. In this study, we used a time
window in which maximum accuracy was achieved for the esti-
mation of joint kinematics. When we changed the length of the
time window, 400 and 150 ms were obtained in Monkey C and
T, respectively (data not shown). If we consider the conduction
velocity of afferent nerves to be more than 10 m/s (Loeb, 1976)
and their length to be ∼30 cm, the propagation delay should be
less than 30 ms. One possible explanation for such long windows

Frontiers in Neuroscience | Neuroprosthetics May 2014 | Volume 8 | Article 97 | 4

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

Umeda et al. A model to estimate spike timing of primary afferents from forelimb kinematics of behaving monkeys

is that good prediction of the encoding of joint kinematics for
3-dimensional movements requires sufficient amounts of DRG
activity, but the firing frequency of individual DRG neurons is
quite low.

To examine what timing of DRG neuronal activity encoded
joint kinematics, joint kinematics were modeled as a weighted
linear combination of activity of DRG neurons using the SLiR
algorithm. In the analysis, the model was generated from the spike
number in a fixed time window (25 ms; 5 bins) at a variable time-
lag relative to joint kinematics. We assessed each model generated
from input-output pairs with a different time-lag by calculating
the correlation coefficient between the observed kinematics and
its prediction.

Since the available data volume was limited in the encod-
ing of joint kinematics by reconstructed DRG neuronal activ-
ity (Monkey C, 3 blocks; Monkey T, 1 block, result shown in
Figure 7), the models generated with the data sets were assessed
using the same data sets. When we changed the length of the time
window in the analysis, maximum accuracy was achieved for the
estimation of joint kinematics at approximately 150 and 500 ms
in Monkey C and T, respectively (data not shown). We used this
time window in the analysis.

DECODING OF SPIKE TIMING
Neuronal firing frequency (dimensions; per second) was gener-
ated by calculating the inverse of the inter-spike-interval of each
unit. The values were assigned to 5-ms bins corresponding to the
intervals. The firing frequency of the DRG neuronal ensembles
was modeled as a weighted linear combination of joint kinemat-
ics (joint angle, velocity, and acceleration) using the following
multidimensional linear regression algorithm:

xj(t) =
∑

k,l

wj,k,l × yk (t + lδ) + bj (2)

where: xj(t) is a vector of the firing frequency j at time index
t. yk(t + lδ) is an input vector of kinematics k at time index
t and time-lag lδ (δ = 5 ms). wj,k,l is a vector of weights on
unit k at time-lag lδ, and bj is a vector of bias terms to xj. We
used a Bayesian SLiR algorithm that introduced sparse condi-
tions for the kinematic dimension. As external stimulation was
the cause of afferent activity, the time-lag was set at past, neg-
ative values. When we varied the length of the time window,
maximum accuracy of estimation of the joint kinematics was
achieved at −150 ms (data not shown). We used this time win-
dow when decoding neuronal firing frequency from forelimb
kinematics.

To acquire the spike timing of the DRG neuronal ensembles
from their firing frequency, the inverse operation was employed.
Firing frequency values in 5-ms bins were summed cumulatively
until they hit a constant threshold of 200. The threshold value,
200, was set because the firing frequency values (dimension; per
second) were assigned to 5-ms bins. At this time, a spike occurred
and the cumulative sum was reset to zero. Then, the integra-
tion process started again. When the firing frequency is replaced
with the membrane potential, the procedure corresponds to the
ordinary IF model.

DATA ANALYSIS
In both the encoding of joint kinematics by the population activ-
ity of DRG neurons and the estimation of firing frequency from
the kinematics, a model generated from the training data set
was tested against a test data set. For Monkey C, continuously
recorded data of each session were partitioned into 24 blocks (1
block for 25 s data). Among the 24 blocks, 21 randomly selected
blocks were used as the training data set, and the remaining 3
blocks as the test data. For Monkey T, continuously recorded data
were partitioned into 6 blocks (1 block for 12.5 s data). Among
the 6 blocks, 5 randomly selected blocks were used as the train-
ing data set, and the remaining block was used as the test data.
To assess the ability of the model encoding joint kinematics, a 5-
and 6-fold cross-validation was performed in Monkey C and T,
respectively. To validate the prediction power of the model, we
created surrogate training data sets in which the temporal firing
profiles of inputs were shuffled independently across different tri-
als and tested subsequently for their prediction of each output
parameter.

To assess the fine structures of the spike pattern, cross correla-
tion between the observed firing pattern and its prediction in the
test data sets was calculated. Then, an absolute value of time-lag
at which the maximum correlation was achieved was obtained.

STATISTICAL ANALYSIS
The data were analyzed using the Kolmogorov-Smirnov test, a
One-Way analysis of variance (ANOVA), or the non-directional
paired Student’s t-test, with Bonferroni correction if necessary.
An alpha level of significance was set at 0.05 for all statistical tests.
We found 95% confidence intervals for proportions based on the
inverse of the appropriate cumulative Beta distribution. We used
MATLAB (MathWorks, Natick, MA) for all statistical analyses.

RESULTS
SIMULTANEOUS RECORDING OF ENSEMBLE ACTIVITY OF DRG
NEURONS
We recorded neuronal activity from the DRGs at the C6/7 and
C7/8 segments with two multi-electrode arrays in Monkey C
and T, respectively. For Monkey C, a couple of units could still
be recorded by the fifth post-operative day. We used recording
data in 3 sessions on the third post-operative day and 2 ses-
sions on the fourth post-operative day for further analysis. A
total of 15 or 16 units were discriminated from 13 channels on
the third post-operative day, and a total of 12 units were dis-
criminated from 9 to 10 channels on the fourth post-operative
day. The recorded units included muscle spindles, cutaneous
receptors (both rapidly and slowly adapting units), and a ten-
don organ in Monkey C. In Monkey T, a total of 13 units
were discriminated from 12 channels in one session on the sec-
ond post-operative day. After the recording, due to accidental
damage to the head holder, further recordings could not be
performed.

RECONSTRUCTION OF FORELIMB JOINT KINEMATICS
Population recordings during voluntary reach-to-grasp move-
ments showed that the temporal discharge patterns of individual
isolated units were correlated with temporal changes in the joint
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angles and that the temporal firing pattern of each unit was
different among the isolated units (Figure 1B).

To investigate whether the neuronal activity in the DRGs
conveyed information about joint kinematics, we applied the
SLiR model to encoding of kinematic variables using the activ-
ity of all units. As the excitation of peripheral afferents can be
elicited by external stimulation, we considered that the periph-
eral afferents contained information concerning limb position
immediately before firing (Umeda et al., 2012). Therefore, the
kinematic variables were defined as a weighted sum of neu-
ral activity for the upcoming 400 and 150 ms (here grouped
into 80 and 30, 5-ms bins) in the SLiR algorithm in Monkey
C and T, respectively. Figure 2 shows the results for the recon-
struction of angle (Figures 2A,B), velocity (Figures 2C,D), and
acceleration (Figures 2E,F) of forelimb joints in a test data
set, from the activity of a neuronal ensemble. The predic-
tion accuracy of 3 kinematics of all 10 joints encoded by
the actual neural firing pattern was much better than that
obtained by the shuffled data (paired Student’s t-test, p <

0.0001). Thus, the SLiR model provided accurate predictions of
joint kinematics. The prediction accuracy for angle was higher
than that for velocity and acceleration in all joints (One-Way
ANOVA, F(2, 2319) = 254.03, p = 1.76 × 10−100; paired Student’s
t-test with Bonferroni correction (n = 3), p < 0.0001). These
results demonstrate that the a population of DRG neurons
convey rich information about joint kinematics, especially for
angle.

The SLiR model reduced the number of units used in the pre-
diction (Figure 3). Note that the proportion of selected units was
higher in the prediction of angle than that of velocity and accel-
eration [angle, 0.66 (0.61–0.70); mean, (confidence interval)];
velocity, 0.52 (0.47–0.56); acceleration, 0.41 (0.36–0.45); One-
Way ANOVA, F(2, 90) = 22.34, p = 1.32 × 10−8; paired Student’s
t-test with Bonferroni correction (n = 3), p < 0.0001), suggest-
ing that a larger number of units contribute to the encoding
of joint angle than velocity and acceleration. This result was
correlated with the prediction accuracy of the respective kine-
matics shown in Figure 2. In any case, the SLiR model accurately
encoded temporal changes in joint kinematics from the activity of
the DRG neuronal ensembles using a reduced number of units.

Next, we examined how the timing of neuronal activity
encoded the joint kinematic information. We generated models
from neuronal activity in a short time window (25 ms) with vari-
able time-lag against joint kinematics and assessed each model by
calculating the correlation coefficient between the observed kine-
matics and its prediction (Figure 4A). The activity of DRG neu-
ronal ensembles with similar timing as the kinematics provided
the most accurate prediction of all three measures of kinematics
(Figure 4B). Neuronal activity for 375 ± 44.3 ms (mean ± SE,
n = 6) reconstructed a joint angle at 80% of the highest accu-
racy. On the other hand, neuronal activity for 150 ± 15.8 ms and
150 ± 9.1 ms reconstructed the velocity and acceleration at the
highest accuracy of 80%, respectively. The range for the predic-
tion of a joint angle was significantly larger than that of velocity
and acceleration (One-Way ANOVA, F(2, 15) = 22.09, p = 3.38 ×
10−5; paired Student’s t-test with Bonferroni correction (n = 3),
p < 0.05).

RECONSTRUCTION OF THE FIRING FREQUENCY OF DRG NEURONS
We estimated the temporal firing pattern of DRG neuronal
ensembles using an IF model. We performed the calculation in
two steps (Figure 5A). For the first step (integration process), we
applied the SLiR model to estimate the firing frequency of DRG
neuronal ensembles from all kinematic variables. We then calcu-
lated the spike timing of individual units from the decoded firing
frequency as the second step (fire process). In the fire process, the
firing frequency values were summed cumulatively until a con-
stant threshold was reached. At this time, a spike occurred and the
cumulative sum was reset to zero, and integration started again.

We considered that peripheral afferents carried information
concerning limb position within time windows preceding the
spiking events. Then, we defined firing frequency as a weighted
sum of joint kinematics for the previous 150 ms (here grouped
into 30, 5-ms bins) in the SLiR model. Figure 5B shows the
results of the estimation of firing frequency of 6 units in a
test data set from the joint kinematics in Monkey C. In the
previous analysis in Figure 3, the SLiR model selected impor-
tant units that contributed to the encoding of joint kinemat-
ics and pruned irrelevant units (selected, 63 units; pruned, 20
units). For 61.9% of the selected units, the prediction accu-
racy (correlation coefficient) was more than 0.4 (Figure 5C).
The prediction accuracy from the actual joint kinematics was
much better than that from the shuffled data in 95.2% of the
selected units and 65% of the pruned units (paired Student’s t-
test, p < 0.05; Figure 5C). The prediction accuracy of the selected
units was higher than that of the pruned units (selected units,
0.47 ± 0.02 (mean ± SE); pruned units, 0.17 ± 0.02; Student’s
t-test, p < 0.0001; Figure 5C). The SLiR model reduced the num-
ber of inputs used in the prediction (Figure 5D). Note that
the proportion of the selected angle was higher than that of
velocity and acceleration in the prediction of the firing fre-
quency [angle, 0.94 (0.91–0.96); mean, (confidence interval)];
velocity, 0.74 (0.69–0.80); acceleration, 0.55 (0.54–0.65); One-
Way ANOVA, F(2, 90) = 42.6, p = 9.56 × 10−14; paired Student’s
t-test with Bonferroni correction (n = 3), (p < 0.05), suggest-
ing that a higher number of angle variables contributed to the
encoding of the firing frequency than those of velocity and
acceleration. These results show that the kinematic informa-
tion of forelimb joints, especially joint angles, can be trans-
lated to the firing frequency of DRG neurons using the SLiR
model.

To demonstrate the importance of individual kinematic vari-
ables in the reconstruction of the firing frequency, we calculated
the correlation coefficient between the observed firing frequency
and the predictions derived from each kinematic and the cor-
responding weight values determined through the SLiR model
among all the kinematics. The joint angle contributed most to
the decoding of the firing frequency of the selected units (angle,
0.29 ± 0.02 (mean ± SE, n = 63); velocity, 0.18 ± 0.02; accel-
eration, 0.07 ± 0.01; One-Way ANOVA, F(2, 186) = 47.83, p =
1.74 × 10−17; paired Student’s t-test with Bonferroni correction
(n = 3), p < 0.05; Figure 5E), but not of the pruned units. This
result agrees with the preceding analysis that the activity of the
DRG neuronal ensembles encoded the joint angle more accurately
than the velocity and acceleration of the joints (Figure 2).
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FIGURE 2 | Performance of the SLiR model in predicting joint

kinematics from DRG ensemble activity during reach-to-grasp

movements. (A,C,E) Examples of recorded kinematics of the shoulder,
elbow, wrist, and finger (digit 2 MCP) joints of Monkey C (black line) and
their prediction using the SLiR model (red line). The correlation coefficient
(R) between the recorded and predicted kinematics is shown in the upper
right corner of each trace. The angular changes at the joints are shown in

(A), velocity in (C), and acceleration in (E). (B,D,F) Test performance
(correlation coefficient: R) of the SLiR model in predicting the kinematics
of the forelimb joints. The indicated values are averages of the results of
5 or 6 pairs of training and test data sets from each session. The angular
changes at the joints are shown in (B), velocity in (D), and acceleration in
(F). FE, flexion/extension; AA, adduction/abduction; PS,
pronation/supination; RU, radial/ulnar.
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RECONSTRUCTION OF THE SPIKE TIMING OF DRG NEURONS
Next, we calculated the spike timing of individual DRG neurons
from the decoded firing frequency. Figure 6A shows raster plots
for 16 units in a test data set of an actual recording and its pre-
diction. The overall firing pattern in the prediction was similar
to that in the recorded data. To assess the general structure of
the estimated firing pattern, we compared the total number of
spikes between the recorded and predicted data. For 89% of the
selected units and 95% of the pruned units, there was no signif-
icant difference in the total number of spikes. The correlation
coefficient for the total number of spikes was 0.998 and 0.999

FIGURE 3 | Selection of a subset of DRG neurons of two monkeys by

the SLiR model. The proportion of units selected by the SLiR model during
the encoding of the angle, velocity, and acceleration of the forelimb joints
are shown. The asterisks indicate that there was a significant difference
between two groups. The error bars represent the confidence intervals for
the proportions.

for the selected and pruned units, respectively (Figure 6B). Next,
we examined the fine structure of the predicted firing pattern
by calculating the cross-correlation for the binned spike number
of the recorded and predicted data. A time-lag, which resulted
in a maximum cross-correlation value, was less than 10 ms for
54% of the selected units and less than 20 ms for 75% of the
selected units (Figure 6C). The time-lag for the selected units was
smaller than the time-lag derived from a firing pattern decoded
by the shuffled kinematics [recorded data, 10 ms (median, n =
63); shuffled data, 1245 ms; Kolmogorov-Smirnov Test, p < 0.05;
Figure 6C], but not for the pruned units [recorded, 2135 ms
(median, n = 20); shuffled, 1605 ms; Kolmogorov-Smirnov Test,
p = 0.28; Figure 6C]. Thus, the IF model incorporating the SLiR
algorithm provided accurate decoding of the spike timing of the
DRG neuronal ensembles from the joint kinematics, especially for
the selected units.

To determine the optimal parameters of afferent electrical
stimulation to transmit proprioceptive signals from a neuro-
prosthesis, the stimulus timing should be able to encode the
kinematic information. We applied the SLiR model to the recon-
struction of kinematic variables from the estimated spike timing.
Figure 7A shows the reconstruction of the angle of 4 forelimb
joints from the predicted spike timing of a neuronal ensem-
ble. The prediction performance of all 3 kinematic variables
calculated by using the estimated spike timing was much bet-
ter than that calculated by using the shuffled spike data (paired
Student’s t-test with Bonferroni correction (n = 3), p < 0.0001;
Figure 7B). Furthermore, the prediction accuracy of the joint
angle calculated by using the estimated neuronal firing pattern
was higher than that calculated by using the recorded neu-
ronal firing (paired Student’s t-test with Bonferroni correction
(n = 3), p < 0.0001; Figure 7B). Thus, the estimated multi-
unit activity encoded the joint kinematics, suggesting that the
model used to estimate the spike timing of individual units from
the joint kinematics can be useful for the design of stimulus

FIGURE 4 | Examination of timing of DRG neuronal ensemble activity that

contributed to the encoding of forelimb joint kinematics. (A) Each model W
was fitted to DRG neuronal ensemble activity x in a 25-ms time window at
various time-lag n relative to the kinematics y. When time-lag n was a positive
value, the model W was fitted to DRG neuronal ensemble activity x(t + n),

which was detected at n ms after the kinematics y(t). (B) Prediction performance
(correlation coefficient) of each model that was fitted to DRG neuronal ensemble
activity at various time-lags relative to joint angle, velocity, and acceleration,
respectively. The black lines represent the average results in individual sessions
and the red lines represent the average results in all sessions for both monkeys.
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FIGURE 5 | Decoding of the temporal change of firing frequency by

forelimb joint kinematics. (A) Schematic drawing of the estimation of DRG
neuronal ensemble activity from the forelimb joint kinematics using a serial
combination of the SLiR algorithm and a fire model. (B) Examples of recorded
temporal changes of the firing frequency of 6 neurons in Monkey C (black line)
and their prediction using the SLiR model (red line). The correlation coefficient
(R) between the recorded and predicted firing frequency is shown in the
insets. (C) Histograms of the correlation coefficient between the observed
firing frequency and the prediction by the SLiR. The histograms are shown for
the units selected in the encoding of forelimb joint kinematics by the SLiR
model (red bar) and the pruned units (blue bar). The light red and blue bars
represent the histogram for the selected and pruned units in the shuffled

kinematic data, respectively. The total number of selected and pruned units
were 63 and 20, respectively. (D) Selection of a subset of kinematic variables
from both monkeys by the SLiR model. The proportion of kinematic variables
selected by the SLiR model in the encoding of firing frequency of DRG neurons
is shown. The asterisks indicate significance. The error bars represent the
confidence intervals for the proportions. (E) Contribution of angle, velocity, and
acceleration components of kinematics to the reconstruction of the firing
frequency. Reconstruction was conducted from each kinematic component
and weighted values determined by the SLiR model with population data.
Graphs are shown for the selected (red) and pruned units (blue). The indicated
values are the average results in 6 sessions. The asterisks indicate
significance. The error bars represent the standard deviation of the mean.

parameters that provide proprioceptive information from the
periphery.

DISCUSSION
An ideal proprioceptive neural interface should enable individuals
to perceive proprioception that is driven by electrical stimula-
tion of the nervous system as if it comes from their own body.
Vibratory or electrical stimulus of a tendon excites muscle spin-
dles or cutaneous receptors to produce the illusion of movement
in humans (Goodwin et al., 1972; Craske, 1977; McCloskey et al.,
1983; Gandevia, 1985; Collins and Prochazka, 1996; Dhillon and
Horch, 2005; Roll et al., 2009; Thyrion and Roll, 2010). Simulated
patterns of vibration to a couple of tendons have been shown to
induce illusory multi-joint movements (Thyrion and Roll, 2010).
Thus, it is important to optimize the parameters of peripheral

electrical stimulation that produces kinesthetic illusion as a part
of a somatosensory BMI. One strategy for the design of optimal
stimulation patterns to afferents is to mimic the neuronal rep-
resentation of limb positions and kinematics. At an early stage of
the development of BMI, a decoder was designed based on experi-
mental evidence for the causal relationship between the activity of
neurons in the primary motor cortex and kinematic parameters of
limb movements or muscle activity (Chapin et al., 1999; Wessberg
et al., 2000; Serruya et al., 2002; Morrow and Miller, 2003). As an
analogous strategy, understanding decoding rules in which limb
movements are transformed into the activity of sensory neurons is
an important first step toward a proprioceptive neural interface.
We showed that an IF model incorporating the SLiR algorithm
accurately predicted the electrical activity patterns of DRG neu-
ronal ensembles from forelimb joint kinematics. The predicted
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FIGURE 6 | Calculation of spike timing from the temporal change of

the firing frequency using a fire model. (A) Raster plot of recorded
spikes from 16 neurons in Monkey C (middle) and their prediction
(bottom). Shoulder joint angle is shown in the top trace. Extension (Ext.) is
represented by an upward deflection (arrow) of the traces; the length of
the arrow represents the magnitude of the angle. (B) A logarithmic scatter
plot shows the relationship between the total number of recorded and
predicted spikes. Each point represents a unit selected in the encoding of
the forelimb joint kinematics by the SLiR model (red) or a pruned unit

(blue). The correlation coefficient (R) between the number of the recorded
and predicted spikes is shown in the upper left corner of the graph. (C)

Cumulative frequency histogram of time-lags that were determined by
cross-correlations between the observed and predicted firing pattern.
Histograms are shown for the units selected in the encoding of the
forelimb joint kinematics by the SLiR model (red) and the pruned units
(blue). The light red and blue bars represent the histogram of the time-lag
between the observed firing pattern and the prediction from the shuffled
kinematic data for the selected and pruned units, respectively.

spike patterns contained kinematic information of forelimb joints
at a similar extent to the recorded neural activity. These results
suggest that the decoding method used in this study will facili-
tate the optimization of electrical stimulation parameters for the
production of artificial kinesthetic sensation.

MULTICHANNEL RECORDING FROM THE CERVICAL DRGs OF
BEHAVING PRIMATES
The activity of peripheral afferents has been recorded by sin-
gle fiber recordings from humans and awake animals. These
studies were able to identify the response properties of single
afferent fibers to various external mechanical stimulation or both
passive and voluntary movements (Hagbarth and Vallbo, 1967,
1968, 1969; Matthews, 1972; Gandevia and McCloskey, 1976;
McCloskey, 1978; Loeb and Duysens, 1979; Schieber and Thach,

1985; Edin and Vallbo, 1990; Flament et al., 1992). The kines-
thetic sense arises from the activity of a neuronal population
(Gilhodes et al., 1986), but the previous single fiber record-
ing studies demonstrated difficulty in describing decoding rules
at the population level. In the present study, we recorded the
population activity of peripheral afferents simultaneously from
voluntarily behaving monkeys using multi-electrode arrays. The
results demonstrate that temporal changes in the angle, velocity,
and acceleration of various forelimb joints can be reconstructed
from the activity of DRG neuronal ensembles, suggesting that the
population activity of peripheral afferents encodes forelimb joint
kinematics.

Previous multichannel recording studies of DRGs have
been performed in anesthetized animals. These studies used
multi-electrode arrays on cervical (Umeda et al., 2012) or lumbar
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FIGURE 7 | Performance of the SLiR model in predicting joint kinematics

from the predicted DRG neuronal ensemble activity. (A) Examples of
recorded kinematics from the shoulder, elbow, wrist, and finger (digit 2 MCP)
joints (black) and their prediction from DRG activity using the ordinary linear
regression model (red). The correlation coefficient (R) between the recorded
and predicted kinematics is shown in the upper right corner of each graph.

(B) Test performance [correlation coefficient (R)] of the SLiR model in
predicting the kinematics of the forelimb joints from the recorded (black),
predicted (red), and shuffled (white) activity. The indicated values are the
average results from 6 sessions and the error bars represent the standard
deviation (n = 274 data sets). The asterisks indicate significance [paired
Student’s t-test with Bonferroni correction (n = 3), p < 0.0001].

(Stein et al., 2004; Weber et al., 2011) DRGs and detected neu-
ral signals from approximately 100 sensory neurons. Here, for
the first time, we recorded simultaneously the activity of DRG
neuronal ensembles using multi-electrode arrays from behaving
non-human primates. The number of detected units in this study
was fewer than in the previous recordings from anesthetized ani-
mals. Although the prediction accuracy for the encoding of joint
kinematics from DRG population activity was lower than the
previous experiments using anesthetized animals (Umeda et al.,
2012), this study showed that joint kinematics could be recon-
structed successfully from the activity of a fewer number of units
at a certain level of accuracy (Figures 2, 3). Since muscle spindle
discharge is affected by fusimotor drive, active movements may
differ from the pattern of peripheral proprioceptive inputs that
are merely generated by passive movements (Hunt and Kuffler,
1951; Matthews, 1972). The arm position is perceived more accu-
rately during active movements than passive movements (Paillard
and Brouchon, 1968; Bairstow and Laszlo, 1979; Gritsenko et al.,
2007). Therefore, it is important to study the kinesthetic mech-
anism by analyzing neuronal activity in awake subjects rather
than in anesthetized subjects, and proprioceptive signals aris-
ing from self-initiated movements rather than externally imposed
movements.

Microneurography is a powerful technique and has provided
much data concerning the physiological properties of primary
afferents. However, microneurography is technically difficult to
perform on subjects performing multi-joint movements, such as
reaching and grasping movements, because an isolated afferent
nerve is recorded by inserting a single fine electrode into the
peripheral nerve of the moving limb (Vallbo et al., 2004). The
activity of single DRG neurons has been recorded in awake mon-
keys (Schieber and Thach, 1985; Flament et al., 1992); however,
they were only able to analyze the movement of the wrist in
one direction. We were able to record afferent discharges during

reaching movements of the entire forelimb for 10 min. Although
the recording of individual units was stable during only 1 session,
the shape of the units was not affected by movement of the fore-
limb. The amount of data was sufficient to assess the relationship
between population activity in DRG neurons and joint kine-
matics. Recording stability requires further improvement of the
chronic implantation of electrode arrays for a BMI with sensory
feedback.

ENCODING OF JOINT KINEMATICS BY THE ACTIVITY OF DRG
NEURONAL ENSEMBLES
We showed that the SLiR algorithm accurately predicted the kine-
matics of various forelimb joints, including not only proximal
joints, but also distal joints using the same data set. The coding
of positions and movements of the ankle joint by a population
of peripheral afferents was examined by collecting a number of
separate microneurographic recordings during repeated move-
ments (Bergenheim et al., 2000; Roll et al., 2000; Jones et al.,
2001; Aimonetti et al., 2007). However, these studies demon-
strated that movement directions in two-dimensional space at a
single joint of a leg could be estimated using the collected record-
ing data. Although a reach-to-grasp movement seems to be a
simple motion, it is a movement with multiple degrees of free-
dom. PCA of joint kinematics showed that 90% of the overall
variability was accounted for by the first 12 principal components
among a total of 30 principal components for Monkey C, and was
accounted for by the first 7 principal components among a total of
12 principal components for Monkey T. The SLiR analysis in this
study showed that the simultaneously recorded activity of DRG
neuronal ensembles represents kinematic information of multiple
joints of the forearm at multiple degrees of freedom.

The activity of the DRG neuronal ensembles encoded
joint angle with higher correlations compared to velocity
and acceleration (Figure 2). According to recent reports of
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microneurographic recordings from a single afferent in volun-
tarily moving human subjects, the activity of a single group Ia
afferent from the muscle spindle encodes velocity and accelera-
tion and that of a group II afferent conveys velocity information
(Dimitriou and Edin, 2008a,b). In the present study, we recorded
population activity containing the activity of cutaneous recep-
tors that also contributed to the kinesthetic sense in addition to
that of muscle spindles (Collins and Prochazka, 1996; Collins
et al., 2005; Cordo et al., 2011). Hence, the summation of pop-
ulation activity from variable peripheral receptors may indicate
that the best encoded kinematics is the joint angle. Population
activity encoded angle information at 180 ms before spike dis-
charge, and velocity and acceleration information at 75 ms before
the spike discharge (Figure 4B). These results suggest that the
kinematic information preceding to the movement is useful for
accurate estimation of spike timing. This finding implies that
a model that calculates stimulus timing from kinematic infor-
mation of forelimb joints is practical for an online feedback
system.

AN IF MODEL INCORPORATING THE SLiR ALGORITHM
The IF model has proven to be useful in addressing the question
of how joint kinematics are encoded in the response of neurons.
The leaky version of the IF model accurately predicted the spike
timing of a peripheral sensory neuron in response to an external
stimulus and succeeded in describing the functional properties
of the receptor to this stimulus (Pillow et al., 2005; Kim et al.,
2010; Dong et al., 2013). The model has been used to predict the
responsiveness of single neurons. In the present study, we divided
the model into two steps and fitted a model in the first step to
data from a neuronal population that was recorded simultane-
ously from the DRGs. Through a fire process, the model provided
an accurate prediction of spike timing at the population level.

During the integration of inputs, we used the SLiR algorithm.
The SLiR algorithm automatically and effectively selected relevant
feature sets from many parameters to attain a higher general-
ized performance than that obtained from other ordinary linear
regression models (Figueiredo and Nowak, 2003; Ganesh et al.,
2008). Its superior generalized performance was indicated previ-
ously using population recordings from the DRGs of anesthetized
monkeys (Umeda et al., 2012). By selecting the optimal ensemble
from joint kinematic variables for the decoding of the firing rate,
the analysis revealed that joint angle contributed the most to the
decoding of spike frequency. The results are consistent with those
in the encoding analysis; the population activity of DRG neurons
encoded the joint angle at the highest prediction accuracy.

In a somatosensory BMI, proprioceptive feedback should be
applied to the nervous system in real time. For the model to be
available practically for rapid proprioceptive feedback, the com-
puter load should be reduced so as to conduct the calculations in
real time. The reduction of input parameters without any dete-
rioration of prediction performance may prove to be useful in
BMI systems that limited hardware speed. The SLiR algorithm
selected important kinematic information automatically from
the entire recorded data without affecting model performance
through machine learning. Therefore, the IF model incorporat-
ing the SLiR algorithm is a practical method for the application

of rapid proprioceptive feedback to the brain in a bidirectional
sensory-motor BMI.

LIMITATIONS OF THE IF MODEL INCORPORATING THE SLiR
ALGORITHM
Our results showed that the IF model incorporating the SLiR
algorithm successfully reconstructed the temporal firing pattern
of DRG neuronal ensembles from forelimb joint kinematics.
However, the reconstruction deviated from the original firing pat-
tern, which may have arisen from a smoothing effect introduced
by the linear regression analysis that was used during the inte-
gration step. In the linear regression analysis, the output was
obtained from a weighted sum of the inputs. This procedure
potentially has a smoothing effect on the output. As shown in
Figure 5B, the rapid increase of firing frequency could not be
reconstructed by the SLiR algorithm, suggesting that the lin-
ear regression analysis failed to reproduce correctly the dynamic
property of DRG neuronal activity. Second, it is difficult for the
linear regression analysis to reproduce a flat baseline near zero
when units do not fire (Figure 5B, unit6). Small constant values
in the baseline can yield some spikes through the IF procedure
where there was no firing in the original data. This phenomenon
led to an increase of background activity in some units. If these
deviations could be reduced, spike timing can be reproduced
from the kinematics more accurately. In spite of the limitations
of the model, its simplicity is a strong advantage for its use for
generation of stimulus parameters in a proprioceptive interface.

APPLICATION OF A PROPRIOCEPTIVE INTERFACE TO A BMI
Peripheral electrical stimulation can activate various modalities
of peripheral afferents including muscle spindle afferents, Golgi
tendon organs, joint receptors, cutaneous receptors, and pain
receptors. Information about limb position and movement is
conveyed to the central nervous system via the activity of cuta-
neous receptors (Clark et al., 1979; Edin and Johansson, 1995;
Edin, 2001; Cordo et al., 2011) as well as muscle spindles and joint
receptors (Goodwin et al., 1972; Gandevia and McCloskey, 1976;
Craske, 1977; McCloskey et al., 1983; Gandevia, 1985; Ferrell
et al., 1987; Collins and Prochazka, 1996). Our previous study
indicated that adding the neuronal activity of cutaneous receptor
ensembles to that of muscle receptors including muscle spindles
and joint receptors significantly improved the decoding accu-
racy of forelimb kinematics provided by the activity of muscle
receptors only in anesthetized monkeys (Umeda et al., 2012).
The recorded units in the present study included muscle spin-
dles, cutaneous receptors, and a Golgi tendon organ in Monkey
C, which encoded the forelimb joint kinematics. Thus, stimu-
lation of a combination of muscle spindles, joint receptors, and
cutaneous receptors may induce more realistic perception of limb
sensation than stimulation of a single modality of peripheral
afferents. Conversely, there is a possibility that peripheral stimula-
tion can activate pain receptors and generate noxious sensations
to subjects. Since the stimulation threshold of pain receptors is
higher than that of muscle spindle afferents, joint receptors, and
the majority of cutaneous receptors (Lloyd, 1943; Marchettini
et al., 1990), control of stimulation strength can allow one to avoid
generation of noxious sensation.
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