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Cerebellar supervised learning revisited: biophysical modeling
and degrees-of-freedom control
Mitsuo Kawato1, Shinya Kuroda2 and Nicolas Schweighofer3

The biophysical models of spike-timing-dependent plasticity

have explored dynamics with molecular basis for such

computational concepts as coincidence detection, synaptic

eligibility trace, and Hebbian learning. They overall support

different learning algorithms in different brain areas, especially

supervised learning in the cerebellum. Because a single spine is

physically very small, chemical reactions at it are essentially

stochastic, and thus sensitivity–longevity dilemma exists in the

synaptic memory. Here, the cascade of excitable and bistable

dynamics is proposed to overcome this difficulty. All kinds of

learning algorithms in different brain regions confront with

difficult generalization problems. For resolution of this issue,

the control of the degrees-of-freedom can be realized by

changing synchronicity of neural firing. Especially, for

cerebellar supervised learning, the triangle closed-loop circuit

consisting of Purkinje cells, the inferior olive nucleus, and the

cerebellar nucleus is proposed as a circuit to optimally control

synchronous firing and degrees-of-freedom in learning.
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Introduction
The most influential computational model of cerebellar

function is the learning theory [1–3]. The authors postu-

lated that the climbing fiber input to Purkinje cells carry

error signals so that the internal models of motor appar-

atus, the environments, and other agents can be learned in

the cerebellum, mainly dependent on the synaptic

plasticity of parallel-fiber-Purkinje-cell synapses [4,5].

Recently, several good reviews are available on compu-

tational and system-level studies of mossy-fiber and

parallel-fiber input systems and the inhibitory inter-

neurons in the cerebellar cortex [6,7]. Thus, to comp-

lement them, we here concentrate on biophysical models

of synaptic plasticity and climbing-fiber input system.

About ten years ago, Kenji Doya proposed that the

cerebellum, cerebral cortex, and the basal ganglia imple-

ment supervised, unsupervised, and reinforcement

learning algorithms, respectively, mainly based on

system-level data and previous computational models

[8]. The theory is also supported by biophysical models

of synaptic plasticity, which demonstrate distinct features

in the three brain regions as illustrated in Figure 1 and

Table 1. We then review recent studies pointing to a new

hypothesis that the triangle closed circuit, which consists

of inferior olive, Purkinje cells, and the cerebellar

nucleus, provides a neural mechanism that automatically

regulates the synchronous firing and degrees-of-freedom

in cerebellar learning.

Biophysical models of synaptic plasticity and
suggested learning rules for different brain
regions
Large calcium increase in dendritic spines induces long-

term decrease of synaptic efficacy in the cerebellum

(long-term depression; LTD) while it induces long-term

increase of synaptic efficacy in the cerebral cortex (long-

term potentiation; LTP). By contrast, small calcium

increase induces LTD in the cerebral cortex, while it

alone does not induce LTP in the cerebellum. Figure 1a

depicts schematically the early phase of LTD of parallel-

fiber-Purkinje-cell synapses up to large calcium increase

[9,10�,11,12�]. Glutamate released from parallel fibers

binds to metabotropic glutamate receptors (mGluRs)

inducing a slow increase of inositol 1,4,5-triphosphate

(IP3) with 100 ms-order time to peak, via G-proteins

(Gq) and phospholipase Cb (PLCb) [10�]. On the con-

trary, climbing fiber inputs, which lagged about 100 ms to

parallel fiber inputs, induce large depolarization in den-

drites through multiple strong excitatory synapses and

open voltage-dependent calcium channels on the spine

and induce calcium influx [9,10�]. Because the latter

electrical event is much faster than the former bio-

chemical event, IP3 and Ca2+ concentrations increase

simultaneously in the spine. This triggers a regenerative

Ca2+ increase via Ca2+-induced Ca2+ release (CICR) via

IP3 – bound IP3 receptors (IP3Rs). IP3Rs are IP3-gated

Ca2+ channels on the endoplasmic reticulum (ER), which

is the intracellular Ca2+ store. CICR results in a supra-

linear Ca2+ surge with several micro-molar peaks

[10�,13�]. The Ca2+ surge induces the subsequent reac-

tions shown in Figure 2 and consolidates LTD [12�].
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Thus, IP3Rs and IP3-dependent CICR act as coincidence

detectors of the parallel fiber and climbing fiber inputs.

By contrast, in cerebral pyramidal neurons, as shown in

Figure 1b, NMDA receptors (N-methyl D-aspartate re-

ceptor, NMDAR) are coincidence detectors of glutamate

released from presynaptic terminals and the backpropa-

gating action potential from the axon initial segment

[14,15]. Glutamate, released from presynaptic terminal,

binds to NMDAR, and backpropagating action potential

increases the postsynaptic voltage and consequently

releases a Mg2+-block of glutamate-bound NMDAR,

resulting in full activation of NMDAR [14–16]. This

leads to large Ca2+ influx via NMDAR and induces

subsequent reactions and consolidates LTP.

Because the large Ca2+ surge in Purkinje cells is CICR

from IP3Rs and is mainly triggered by calcium influx

caused by climbing fiber inputs, supervised learning

guided by error signals is suggested for the cerebellum

[5]. Note that action potentials in Purkinje cells do not

backpropagate because of excessive electrical load by

extensive branching [17] and low density of sodium

channels on dendrites [18,19]. By contrast, since the

release of NMDAR from the Mg2+-block by backpropa-

gating action potential is the decisive event that leads to

large calcium influx [14,16], Hebbian and unsupervised

statistical learning is suggested for the cerebrum (Table 1,

bottom two rows). In the striatal medium spiny neurons,

while Ca2+ influx depends on the NMDAR activation by

backpropagating action potentials similarly to the cere-

brum, synaptic plasticity also depends on the activation of

dopamine receptors [20,21]. In D1 receptor expressing

neurons, activation of the positive feedback loop com-

posed of PKA, PP2A and DARPP-32 serves as the coinci-

dence detector of Ca2+ influx and dopamine input

[22�,23,24]; thus reinforcement learning rule is supported

[20]. Because D1 receptors and DARPP-32 are expressed

in prefrontal cortex but with much less amount, the

positive feedback loop cannot probably possess bistability
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Comparison of biophysical mechanisms included in coincidence detection mechanisms of synaptic plasticity in cerebellum (a) and cerebral cortex (b).

Biophysical models for early phase of long-term depression in cerebellum and long-term potentiation in cerebral cortex up to large calcium increase

are shown.

Current Opinion in Neurobiology 2011, 21:791–800 www.sciencedirect.com



Author's personal copy

thus cannot implement the reinforcement learning rules

such as in the basal ganglia.

The synaptic eligibility trace is a record of the synapse’s

recent activities to mark it, which is eligible to change and

become distinct from other synapses [25]. The synaptic

eligibility trace for Purkinje cells is slow rising IP3

[10�,26], and thus the temporal window of spike-tim-

ing-dependent plasticity is 100 ms order in the cerebel-

lum [10�]. By contrast, the NMDAR dynamics is the

synaptic eligibility trace for pyramidal neurons, and it

determines the time window of 10 ms order (Table 1,

rows 5 and 6) [27]. While the late phases of LTD and

LTP in different brain regions seem to possess common

signal transduction mechanisms as explained in the next

section, the early phases are distinctly different as

explained above, and partly explain different learning

algorithms at a micro level such as dendritic spines.

Sensitivity–longevity dilemma of synaptic
plasticity
If synaptic plasticity is the elementary cellular process of

learning and memory, it should be sensitive in the sense

that a small number of pre and postsynaptic spikes can

induce it, and it should also possess a long life since some

memories are maintained for dozens of years without

being recalled. If synaptic plasticity is merely realized

by the production of some substances, it cannot possess

longevity because of the continuous turnovers of proteins

[28–30]. Thus, the bistability of biochemical reactions,

such as MAP kinase and protein kinase C (PKC) positive

feedback loop [12�,31] is a very attractive computational

machinery with longevity. However, this bistability

mechanism for memory suffers from the dilemma be-

tween sensitivity and longevity because a single synapse

and a spine are physically very small and only a small

number of molecules exist. For example, only about a few

dozen AMPA receptors exist in a single spine of Purkinje

cells [32,33], and the number of free calcium ions in the

basal state was estimated to be smaller than a few [10�].
Under such conditions, chemical reactions only occur

stochastically, acting as if thermal noise fluctuates the

state even over the threshold (barrier) of the double

energy wells in Figure 2. Then the dynamical state

spontaneously returns to the inactivated stable equi-

librium from the activated equilibrium across the barrier

and memory is lost within a finite time. To increase this

mean transition’s time or to secure memory longevity, the

following should be increased: number of involved mol-

ecules, the threshold (barrier), and the energy required for

transition; however, sensitivity is lost in compensation

[34]. Thus, the sensitivity–longevity dilemma for synap-

tic plasticity inevitably appears in a bistable system under

a limited numbers of molecules. This sensitivity–long-

evity dilemma at a single synapse level is conceptually

related to stability–plasticity dilemma at a network level

proposed by Stephen Grossberg.
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Here, we propose a cascade of five layers of excitable and

bistable dynamics (Figure 2) with gradual increases in

time constants and thresholds for resolving the sensi-

tivity–longevity dilemma in Purkinje cell LTD. The left

side dynamics, which include fewer molecules, possesses

a shorter time constant, a lower threshold, and smaller

energy, are situated closer to the neural firing inputs. By

contrast, the right side dynamics, which includes a larger

number of molecules, possesses a longer time constant, a

higher threshold, and larger energy, is situated closer to

the final morphological change. The output of one

dynamics feeds into the next right dynamics as its input.

In this sense, this model is a cascade of sequential

dynamics from left to right.

The leftmost, lightest, and fastest dynamics in Figure 2 is

the CICR dynamics, which is an excitable dynamics, and

possesses the threshold for Ca2+ concentration and a time

constant of 100-ms order (Figure 1a) [10�,13�]. The

second left bistable dynamics is the MAP kinase positive

feedback loop (MAPK-PFL) [12�,35�], which leakily

integrates the Ca2+ increase from the CICR dynamics

and possesses a longer time constant of several tens

minutes and a higher threshold [36��]. If the integrated

Ca2+ input crosses the threshold, the state of this

dynamics jumps from the inactivated equilibrium

point to the activated equilibrium point, which yields

PKC and MAPK as outputs. MAPK-PFL has been

extensively studied experimentally and theoretically

[12�,35�,36��,37,38]. The third and middle dynamics

are the AMPA-Rs internalization dynamics [39]. PKC,

the output from MAPK-PFL, phosphorylates AMPA-Rs

on spine membrane, which is responsible for a majority of

postsynaptic currents and phosphorylated AMPA-Rs are

internalized by endocytosis [40]. Thus, the internaliz-

ation of AMPA-Rs decreases the number of AMPA-Rs on

the membrane and of the synaptic efficacy, which is

LTD. We here postulate that this dynamics also pos-

sesses bistability under the influence of MAPK-PFL.

Alternatively, the recycling of AMPAR phosphorylation

and dephosphorylation itself may serve as a bistable

system [41]. The fourth bistable dynamics is the PKMj

translation network. Because PKMj [42] induces its local

synthesis with parallel ultrasensitive pathways, its trans-

lation network forms a positive feedback loop (PKMj-

PFL) and can exhibit bistable dynamics [37,43]. MAPK,

the output from the second bistable dynamics of MAPK-

PFL, triggers PKMj expression and thus is viewed as the

input to the fourth dynamics [37]. If MAPK-PFL stays in

the activated LTD state long enough, MAPK continues

to stimulate PKMj-PFL so that it crosses its threshold.

Then the state of the PKMj-PFL transits to the activated

state with a high concentration of PKMj, which then

induces endocytosis of AMPA-Rs and also shifts the fifth

bistable dynamics of the spine morphology toward the

small size, which is fragile. Some in vitro data [44,45] are

against the fifth dynamics, but the in vivo data [46]

supports it, and further experimental studies are necess-

ary. The glutamate receptor d2 seems mainly involved in

the fifth morphology dynamics [47��]. The parallel con-

nection from the second to the fourth dynamics while

bypassing the AMPAR-internalization dynamics may

794 Networks, Circuits and Computation
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Cascade model of five excitable and bistable dynamics for resolution of sensitivity–longevity dilemma in Purkinje cell LTD. Energy double well is shown

as an analogy to either excitable or bistable dynamics without implying that each dynamics rigorously possesses a potential. In this analogical

interpretation, the energy barrier between the two wells corresponds to a threshold or a stable manifold to a saddle point (watershed), and the two

wells correspond to two stable equilibrium points. The left well is the basal equilibrium, and the right well is the activated LTD equilibrium. The black

ball represents the state of each dynamics. Larger wells and larger balls imply a larger number of molecules, higher thresholds (energy barriers), longer

time constants, and heavier dynamics.
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explain the recent enigmatic experimental data demon-

strating that cerebellar motor learning is not impaired by

blocking the AMPAR internalization [48�]. Electro-

physiologically, LTD is detected by the state of the third

dynamics in Figure 2 model. However, behaviorally

cerebellar motor learning might be expressed by the

combination of the third, fourth and fifth dynamics in

Figure 2 model. Thus, the cascade model of Figure 2

introduces rather complex and flexible relationships be-

tween LTD and cerebellar motor learning.

Among the five layers of the proposed bistable systems,

PKC and MAPK-PFL were most extensively investi-

gated by experiments. The photolysis of the caged

Ca2+ experimentally confirmed the leaky integration of

Ca2+ [36��]. Pharmacological perturbation revealed that

PKC and MAPK activities are mutually dependent for

LTD induction [35�]. Furthermore, based on a MAPK-

PFL biophysical model, qualitatively different calcium

dose response curves can be reproduced for LTD under

normal and PFL cut conditions [36��], which together

strongly suggest that LTD is an all-or-none event on a

single spine and on a single synapse level. Artificial noise

addition was necessary to simulate the calcium-LTD

dose response curve [36��], but the artificial noise was

interpreted to come in reality from the stochastic nature

of the biochemical reactions owing to a small number of

molecules [37]. Recently De Schutter and Antunes [49]

reproduced the dose response curve utilizing a stochastic

version of a MAPK-PFL and AMPA-Rs internalization

model using software called STEPS [50].

Ogasawara and Kawato simulated the abstract, simplified

cascade of only two dynamics models that serves as a

prototype of the Figure 2 model [51]. A bistable stochastic

dynamics with a shorter time constant and a lower

threshold was connected to another stochastic bistable

dynamics with a longer time constant and a higher

threshold. The smaller dynamics can be excited even

with a weak input, but it tends to spontaneously return to

the basal state within a relatively short time because of

stochasticity. Thus, it has sensitivity but not longevity.

The larger dynamics receives and leakily integrates the

output from the smaller dynamics and can cross its

threshold if the smaller dynamics can maintain its acti-

vated state for long enough in one specific run. However,

even when the smaller dynamics transits to the activated

state, if the state spontaneously returns to the basal state

prematurely, the larger dynamics is not excited. The

longer time constant of the larger dynamics filters the

thermal fluctuation noise, which often appears in a high-

frequency, and the larger threshold of the larger dynamics

enables robustness against fluctuation or noise. Because

of the higher threshold and the longer time constant, the

larger dynamics can maintain the activated state for a

longer period; thus it possesses longevity. Although the

larger dynamics itself does not possess sensitivity [34] the

cascade of smaller and larger dynamics possesses both

sensitivity and longevity. The cascade of excitable and

bistable dynamics with different sizes can also explain the

phenomenological stochasticity of LTD/LTP; identical

synaptic inputs sometimes induce LTD/LTP but some-

times not. The cascade structure of bistable dynamics

shown in Figure 2 may be ubiquitous and even some

bistable dynamics such as PKMj-PFL is probably com-

mon for different brain regions. This view is partially

supported by a related abstract model [52].

Inferior olive-Purkinje cell-cerebellar nucleus
circuit for controlling degrees-of-freedom in
cerebellar learning
In the previous two sections, we reviewed cellular and

subcellular level evidence for cerebellar supervised learn-

ing. They suggest that climbing fiber inputs are most

crucial in initiating LTD. If this view catches some truth,

we should find sophisticated mechanisms also at the

neural-circuit level for controlling climbing fiber inputs.

In the cerebellar-learning hypothesis [2–4], the main

function of the inferior olive (IO) is postulated to carry

error signals to the Purkinje cells (PCs) via its axons, the

climbing fibers ([53–55] but also see [56�]). By contrast, in

the rhythm and synchronization hypothesis [57], the IO

neurons and their innervated PCs fire synchronously and

rhythmically for online motor control because of gap

junctions whose densities are the highest among mam-

malian brains. In integrating these two hypotheses,

Schweighofer et al. demonstrated that coupled IO cells

do not necessarily synchronize in their firing and might

show anti-phase or even chaotic firings for the intermedi-

ate strength of gap junction conductance [58,59]. Chaotic

firing, which is beneficial for conveying much information

even with the very low firing frequency of IO cells, was

recently demonstrated to accelerate motor learning for

multi-joint arm models [60]. Recent experimental data

support such a link between the degree of IO coupling

and motor learning. Mice [61�] and presumably humans

[62] with reduced or no IO coupling exhibit no general

motor deficits but show motor learning impairments.

Additionally, oculopalatal tremor may be due to the

removal of inhibition near the electronic gap junctions

in the inferior olive, and such patients show slower motor

learning [63]. This could be explained by the fact that

only poorer error information can be transmitted when IO

cells are strongly coupled and oscillate in-phase [58].

However, these previous theories failed to explain the

possible functions of the closed triangle circuit consisting

of an IO–PC–cerebellar nucleus (CN), especially the

inhibitory synapses on the dendrites of IO cells close

to their gap junctions within glomeruli (Figure 3 [64,65]).

The slow, sustained inhibition provided by DCN to IO

glomeruli appears well suited to provide stable decou-

pling of IO neurons [66]. Furthermore, because the

connections between the IO and the cerebellum are
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precisely, mutually, and spatially aligned, each cerebellar

cortical region can control the coupling strength of its own

IO inputs [67�]. Here, we hypothesize that the triangle

circuit and the inhibitory synapses in the IO glomeruli are

the neural mechanisms to optimally tune the degrees-of-

freedom of the cerebellar learning system.

PCs inhibit CN cells. Inhibitory CN cells innervate the

dendrites of IO cells within glomeruli very close to the

gap junctions. Under simplifying assumptions, effective

coupling conductance between connected IO cells is

computed from gap junction conductance and conduc-

tance of inhibitory synapses and from spine neck con-

ductance as follows [68,69]:

geffective ¼
: ðg junction � gspineÞ=ð2g junction þ gspine þ ginhibitoryÞ

Thus, if the inhibitory synaptic conductance is large, the

effective coupling conductance decreases because of

shunting inhibition. When CN cells are excited, the IO

cells are not only inhibited but their electrical couplings

become weaker.

Figure 3a and b illustrate the schematic functions of the

IO–PC–CN closed circuit in the early and late phases of

cerebellar learning, respectively. In the beginning of motor

learning, since the executed trajectories are perturbed,

clumsy, and far from the desired behaviors, plans and

motor commands must be highly modulated, and the error

signals are large. Thus, both mossy-fiber and climbing-fiber

inputs are strong. Hence, both PC and IO cells fire vigor-

ously and the CN cells are suppressed. Here, we assume

that the increased PC inhibition overlies the increased

excitation from the IO and mossy fibers. The inhibitory

synapses are inactive within the IO glomeruli, and the IO

cells are strongly electrically coupled. Consequently, IO

cells and the innervated PCs are strongly and synchro-

nously excited, as shown in the right raster plot.

By contrast, in the late phase of learning, since the

movement trajectories are smooth and resemble those
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Schematic diagram illustrating possible functions of closed triangle circuit consisting of inferior olive nucleus, Purkinje cells, and cerebellar nucleus.

PCs inhibit CN cells. Inhibitory CN cells innervate dendrites of IO cells within glomeruli very close to gap junctions. Circuit diagram does not include

mossy-fiber inputs and their target granule cells, parallel-fiber inputs, and inhibitory interneurons, and excitatory cerebellar nucleus neurons. Excitatory

inputs to IO cells are not shown either. Blue neurons are not excited, and red are excited. Excitatory synapses are shown by circles, and inhibitory

synapses are shown by triangles. Horizontal lines show electrical gap junctions.
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desired, both mossy-fiber and climbing-fiber inputs are

weak. Hence, both PC and IO cells fire sporadically and

CN cells fire vigorously because of the disinhibition from

PC. The LTD of the parallel-fiber-PC synapses and the

LTP of the inhibitory synapses on PC may further

enhance this contrast with the early phase of learning.

Inhibitory synapses are active within the IO glomeruli,

and the IO cells are only weakly electrically coupled. IO

cells and innervated PCs sporadically and asynchronously

fire, as shown in the right raster plot. Those firings might

be chaotic, as suggested in [58]. Recent studies that

reproduce IO firing data under several experimental

conditions from simplified and biophysical IO neuron

models support the above hypothesis [68,69,70�].

In statistics, artificial neural networks, and machine learn-

ing fields, a long history of studies has addressed how to

control the degrees-of-freedom in learning systems de-

pendent on the quantity of training data available for

learning. As proposed in Akaike’s information criterion

[71] and the automatic relevance determination [72], it is

better to decrease the degrees-of-freedom when the data

are small to avoid overfitting, variance, and poor gener-

alization. On the contrary, if the training data are large,

large degrees-of-freedom are preferable to avoid model-

ing error or bias [73]. These techniques are widely uti-

lized in estimating brain activities, brain decoding, and

brain machine interfaces [74–76].

The human brain is an enormous system with at least 10

to the 14th degrees-of-freedom even if we only count the

number of synapses. At the beginning of any kind of

learning, the available data are small considering how

much time is devoted to each learning epoch. Thus, the

brain needs to actively reduce its degrees-of-freedom,

and synchronous firing is one obvious way. If 100 IO cells

perfectly synchronize their firing, the IO region contain-

ing 500 IO cells is equivalent to containing only five free

neurons: that is, five degrees-of-freedom. However, fixed

and reduced degrees-of-freedom are not apparently desir-

able because they waste neural resources. Depending on

different phases of learning, the degrees-of-freedom

should be actively and optimally controlled. In the early

learning phase, strong synchronization is useful while

weak or no synchronization might be beneficial in the

late learning phase.

The IO–PC–CN circuit can enhance IO and PC synchro-

nization and reduce the degrees-of-freedom in the early

phase of learning. According to the micro-complex hy-

pothesis of Masao Ito that IO–PC–CN loop is topogra-

phically organized so that a group of PCs within a micro-

complex innervate the downstream premotor network

controlling the same group of muscles and/or motor

synergy. Thus, degrees-of-freedom control is mainly to

reduce the number of independently firing PCs and thus

tuned parallel fiber inputs. If many PCs fire synchro-

nously and change their firings guided by almost the same

error signals, the learning should be very fast for the early

phase, since avoiding failures, pain, and damage makes

good sense. Relatedly, IO cells can generate a burst of

several spikes that result in an LTD of PCs whose size

increases with the number of spikes in the bursts [77��].
Thus large initial error inputs might increase the learning

speed both across and within PCs. On the contrary, the

same IO–PC–CN circuit can reduce synchronization and

even induce chaotic firings of IO and PC and might

exhibit full degrees-of-freedom that are identical as the

number of neurons or synapses. Because a huge amount

of training data has been already accumulated as changes

in synaptic weights through LTD/LTP and is in a sense

available to the cerebellar learning system, sophisticated

learning is realized with small bias.

In motor learning of arm reaching under novel force fields,

changes in motor commands are huge for the first few

trials, much more than the level of trajectory errors [78].

These behavioral and physiological studies [61�,79], may

be consistent with the above hypothesis. Because the

brain is a learning machine, degrees-of-freedom control in

learning may be ubiquitous, and controlling the firing

synchronization seems quite natural. Chemical synapses,

which are close to the gap junctions and/or presynaptic

inhibitions on mutual excitatory connections, in addition

to the possible glomerulus-specific modulation of gap

junctions [80], might be general neural mechanisms to

control the degrees of synchronization and thus the

degrees-of-freedom in learning for all brain regions.
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