HEFSP Journal

COMMENTARY

Brain controlled robots

Mitsuo Kawato'

'Japan Science and Technology Agency ICORP, Computational Brain Project, and ATR Computational
Neuroscience Laboratories, Hikaridai 2-2-2, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan

(Received 30 April 2008; published online 23 May 2008)

In January 2008, Duke University and the Japan Science and Technology Agency
(JST) publicized their successful control of a brain-machine interface for a
humanoid robot by a monkey brain across the Pacific Ocean. The activities of a
few hundred neurons were recorded from a monkey’s motor cortex in Miguel
Nicolelis’s lab at Duke University, and the kinematic features of monkey
locomotion on a treadmill were decoded from neural firing rates in real time.
The decoded information was sent to a humanoid robot, CB-i, in ATR
Computational Neuroscience Laboratories located in Kyoto, Japan. This robot
was developed by the JST International Collaborative Research Project (ICORP)
as the “Computational Brain Project.” CB-i’'s locomotion-like movement
was video-recorded and projected on a screen in front of the monkey. Although
the bidirectional communication used a conventional Internet connection,
its delay was suppressed below one over several seconds, partly due to a
video-streaming technique, and this encouraged the monkey’s voluntary
locomotion and influenced its brain activity. This commentary introduces the
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background and future directions of the brain-controlled robot.

[DOT: 10.2976/1.2931144]

Recent computational studies on how
the brain generates behaviors are progressing
rapidly. In parallel, the development of human-
oid robots that act like humans is now part of
the focus of robotic research. The Japan Sci-
ence and Technology Agency (JST) has suc-
ceeded in making a humanoid robot execute
locomotion-like movement via data detected
from cortical brain activity that was transmit-
ted through an internet interface between the
USA and Japan in real time. In our projects
[EARTO (1996-2001) web page, http:/
www.kawato.jst.go.jp/, ICORP (2004-2009)
Web page, http://www.cns.atr.jp/hren/ICORP/
project.html], we have developed information-
processing models of the brain and verified
these models using real robots in order to bet-
ter understand the human brain mechanisms
in producing behaviors. In addition, we aim
to develop humanoid robots that behave like
humans to facilitate our daily life. This ex-
periment is epoch-making both from a com-
putational neuroscience viewpoint and for
further development of brain machine inter-
face. In this commentary, I explain the back-

ground and future directions of brain-

controlled robots.

COMPUTATIONAL NEUROSCIENCE
AND HUMANOID ROBOTS
Ten years have passed since the Japanese
“Century of the Brain” was promoted, and its
most notable objective, the unique “Creating
the Brain” approach, has led us to apply a hu-
manoid robot as a neuroscience tool (Kawato,
2008). Our aim is to understand the brain to the
extent that we can make humanoid robots solve
tasks typically solved by the human brain by
using essentially the same principles. In my
opinion, this “Understanding the Brain by
Creating the Brain” approach is the only way to
fully understand neural mechanisms in a rigor-
ous sense. But even if we could create an arti-
ficial brain, we could not investigate its func-
tions, such as vision or motor control, if we just
let it float in incubation fluid in a jar. The brain
must be connected to sensors and a motor ap-
paratus so that it can interact with its environ-
ment. A humanoid robot controlled by an arti-
ficial brain, which is implemented as software
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based on computational models of brain functions, seems
to be the most plausible approach for this purpose, given
the currently available technology. With the slogan of
“Understanding the Brain by Creating the Brain”, in the
mid-1980s we started to use robots for brain research
(Miyamoto et al., 1988), and about ten different kinds of
robots have been used by our group at Osaka University’s
Department of Biophysical Engineering, ATR Laboratories,
ERATO Kawato Dynamic Brain Project [EARTO (1996—
2001) web page, http://www.kawato.jst.go.jp/], and ICORP
Kawato Computational Brain Project [ICORP (2004-
2009) Web page, http://www.cns.atr.jp/hren/ICORP/
project.html].

A computational theory that is optimal for one type of
body may not be optimal for other types of bodies. Accord-
ingly, if a humanoid robot is used for exploring neuroscience
theories rather than for engineering, it should be as close as
possible to a human body. Within the ERATO project, in col-
laboration with the SARCOS research company’s team un-
der Professor Stephen C. Jacobsen of the University of Utah,
Dr. Stefan Schaal led his colleagues in developing a human-
oid robot called DB (Dynamic Brain) (Fig. 1) with the aim of
most closely replicating a human body, given the robotics
technology of 1996. DB possessed 30 degrees-of-freedom
and human-like size and weight. From the mechanical point
of view, DB behaves as a human body, that is mechanically
compliant unlike most electric-motor-driven and highly-
geared humanoid robots, since the SARCOS’ hydraulic ac-
tuators are powerful enough to avoid the necessity of using
reduction mechanisms at the joints. Within its head, DB is
equipped with an artificial vestibular organ (gyro sensor),
which measures head velocity, and four cameras with verti-

HFSP Journal

COMMENTARY

Figure 1. Demonstrations of 14
different tasks by the ERATO hu-
manoid robot DB.

cal and horizontal degrees-of-freedom. Two of the cameras
have telescopic lenses corresponding to foveal vision, while
the other two have wide-angle lenses corresponding to pe-
ripheral vision. SARCOS developed the hardware and low-
level analog feedback-loops, while the ERATO project de-
veloped high-level digital feedback-loops and all of the
sensory-motor coordination software.

The photographs in Fig. 1 introduce 14 of the more than
30 different tasks that can be performed by DB (Atkeson
et al., 2000). Most of the algorithms used for these demon-
stration tasks are based roughly on principles of informa-
tion processing in the brain, and many of them contain some
or all of the three learning elements: imitation learning
(Miyamoto et al., 1996; Schaal, 1999; Ude and Atkeson,
2003; Ude et al., 2004; Nakanishi et al., 2004), reinforce-
ment learning, and supervised learning. Imitation learning
(“Learning by Watching”, “Learning by Mimicking”, and
“Teaching by Demonstration”) was involved in the tasks of
Okinawan folk dance “Katya-shi” (Riley ef al., 2000) (A),
three-ball juggling (Atkeson et al., 2000) (B), devil-sticking
(C), air-hockey (Bentivegna et al., 2004a; Bentivegna et al.,
2004b) (D), pole balancing (E), sticky-hands interaction
with a human (Hale and Pollick, 2005) (L), tumbling a box
(Pollard et al., 2002) (M), and tennis swing (Ijspeert et al.,
2002) (N). The air hockey demonstration (Bentivegna ef al.,
2004a; Bentivegna et al., 2004b) (D) utilizes not only imita-
tion learning but also a reinforcement-learning algorithm
with reward (a puck enters the opponent’s goal), penalty
(a puck enters the robot’s goal), and skill learning (a kind of
supervised learning). Demonstrations of pole-balancing (E)
and visually-guided arm reaching toward a target (F) utilized
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Figure 2. New humanoid robot called CB-i (Computational
Brain Interface).

a supervised learning scheme (Schaal and Atkeson, 1998),
which was motivated by our approach to cerebellar internal
model learning.

Demonstrations of adaptation of the vestibulo-ocular re-
flex (Shibata and Schaal, 2001) (G), adaptation of smooth
pursuit eye movement (H), and simultaneous realization of
these two kinds of eye movements together with saccadic eye
movements (I) were based on computational models of eye
movements and their learning (Shibata et al., 2005). Demon-
strations of drumming (J), paddling a ball (K), and tennis
swing (N) were based on central pattern generators (CPG).
These are neural circuits that can spontaneously generate
spatiotemporal movement patterns even if afferent inputs are
absent and descending commands to the generators are tem-
porally constant. CPG concepts were formed in the 1960s
through neurobiological studies of invertebrate movements,
and they are key to understanding most rhythmic movements
and essential for biological realization of biped locomotion
as described below.

The ICORP Computational Brain Project (2004-2009),
which is an international collaboration project with Profes-
sor Chris Atkeson of the Carnegie Mellon University,
follows the ERATO Dynamic Brain Project in its slogan
“Understanding the Brain by Creating the Brain” and
“Humanoid Robots as a Tool for Neuroscience”. Again
in collaboration with SARCOS, at the beginning of 2007,
Dr. Gordon Cheng led his colleagues in developing a
new humanoid robot called CB-i (Computational Brain
Interface), shown in Fig. 2 (Cheng ef al., 2007b). CB-i is
even closer to a human body than DB. To improve the me-
chanical compliance of the body, CB-i also used hydraulic
actuators rather than electric motors. The biggest improve-

ment of CB-i over DB is its autonomy. DB was mounted at
the pelvis because it needs to be powered by an external
hydraulic pump through oil hoses arranged around the
mount. A computer system for DB was also connected to DB
by wires. Thus, DB could not function autonomously. In
contrast, CB-i carries both onboard power supplies (electric
and hydraulic) and a computing system on its back and, thus,
it can function fully autonomously. CB-i was designed for
full-body autonomous interaction, specifically for walking
and simple manipulations. It is equipped with a total of
51 degrees-of-freedom (DOF): 2 X7 DOF legs, 2 X7 DOF
arms, 2 X2 DOF eyes, 3 DOF neck/head, | DOF mouth,
3 DOF torso, and 2 X 6 DOF hands. CB-i is designed to have
similar configurations, range of motion, power, and strength
to a human body, allowing it to better reproduce natural
human-like movements, in particular for locomotion and ob-
ject manipulation.

Within the ICORP Project, biologically inspired control
algorithms for locomotion have been studied while utilizing
three different humanoid robots [DB-chan (Nakanishi ez al.,
2004), Fujitsu Automation HOAP-2 (Matsubara e? al., 2006)
and CB-i (Morimoto et al., 2006)] as well as the SONY
small-sized humanoid robot QRIO (Endo ef al., 2005) as test
beds. Successful locomotion algorithms utilize various as-
pects of biological control systems, such as neural networks
for CPGs, phase resetting by various sensory feedbacks in-
cluding adaptive gains, and hierarchical reinforcement learn-
ing algorithms. In the demonstration of robust locomotion by
DB-chan, three biologically important aspects of control al-
gorithms are utilized: imitation learning, a nonlinear dy-
namical system as a CPG, and phase resetting by a foot-
ground-contact signal (Nakanishi ef al., 2004). First, a neural
network model developed by Schaal ef al. (2003) quickly
learned locomotion trajectories correctly demonstrated by
humans or other robots. In order to synchronize this limit-
cycle oscillator (CPG) with a mechanical oscillator function-
ing through the robot body and the environment, the neural
oscillator is phase-reset by foot-ground contact. This guaran-
tees stable synchronization of neural and mechanical oscilla-
tors with respect to phase and frequency. The achieved loco-
motion is quite robust against different surfaces with various
frictions and slopes, and it is human-like in the sense that the
robot body’s center of gravity is high, while the knee is al-
most nearly fully extended at the foot contact. This is in sharp
contrast to locomotion engineered by zero-moment-point
control, a traditional control method for biped robots, which
was proposed by Vukobratovic 35 years ago and then suc-
cessfully implemented by Ichiro Kato and developers of
Honda and Sony humanoid robots. This method usually re-
sults in a low center of gravity and bent knees. Of particular
importance to the brain machine interface experiment, Jun
Morimoto succeeded in locomotion with CB-i based on the
CPG models (Morimoto et al., 2006).
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THREE ELEMENTS OF BRAIN MACHINE INTERFACE
Brain machine interface (BMI) can be defined as artificial
electrical and computational neural circuits that compensate,
reconstruct, repair, and even enhance brain functions ranging
from sensory and central to motor control domains. BMI
has already moved beyond mere science-fiction fantasy in
the domain of sensory reconstruction and central control
repair as exemplified by artificial cochlear and deep brain
stimulation. Furthermore, in reconstruction of motor con-
trol capabilities for paralyzed patients, much progress
has been made in the last 15 years (Nicolelis, 2001) and
chronic implantations of BMI in human patients have al-
ready begun in 2004; accordingly, large-scale introduction of
therapeutic techniques is expected dramatically in the near
future.

Any successful BMI relies on at least one, and in most
cases all, of the following three essential elements: brain
plasticity through user training, neural decoding by a ma-
chine learning algorithm, and neuroscience knowledge. Sen-
sory and motor BMI is a kind of new tool for a brain. Unlike
the usual tools such as screw drivers, chopsticks, bicycles,
and automobiles, which are connected to the brain via sen-
sory and motor organs, BMI is connected directly to the
brain via electrical and computer circuits. Still, BMI reads
out neural information from the brain and feeds information
back to the brain, and thus a closed-loop is formed between
the brain and BMI, just as with usual tools. If delays associ-
ated with a BMI closed loop are below one of several sec-
onds, they are within the temporal window of spike timing
dependent plasticity of neurons, and thus learning to utilize
BMI better could take place in the brain. Consequently,
based on the synaptic plasticity of the brain, BMI users
can learn how to better control BMI. This process can be
regarded as an operant conditioning, and it is reminiscent
of “biofeedback”. Eberhard Fetz is the pioneer of this first
element of BMI (Fetz, 1969). Most of the BMI systems
based on electroencephalogram, often called a brain com-
puter interface, depend heavily on this first element of user
training.

The second element is neural decoding by machine learn-
ing techniques. For example, in the Duke-JST BMI con-
trolled robot (Fig. 3), the neural activities of a few hundred
motor cortical neurons were recorded simultaneously with
the three-dimensional positions of the monkey’s legs. Linear
regression models were trained to predict the kinematic pa-
rameters from neural firing rates (Nicolelis, 2001), and they
were used in real time decoding of leg position from the
brain activity (Cheng et al., 2007a). Generally speaking, any
machine-learning technique can be used to reconstruct
physical variables such as motor apparatus position, velocity
or acceleration, and different kinds of movements from brain
activity such as neural firings of many neurons or non-
invasive brain signals such as electroencephalogram. Typi-
cally, training data and test data sets consist of pairs of neural
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Figure 3. Experimental overview of brain controlled robot. After
decoding walking-related information from a monkey’s brain activity
while walking on a treadmill, we were able to relay these data from
Duke University in USA to the Advanced Telecommunication Re-
search (ATR) in Japan in real time. We were then able to control our
humanoid robot in Japan to execute locomotion-like movements in a
similar manner as the monkey (with visual feedback of the robot
presented to the monkey.).

activity X and some target variable Y, (X,Y). A machine-
learning algorithm is used to determine the optimal function
F that can predict Y from X; Y=F(X) only using the training
data set. A machine-learning algorithm is considered
successful if it generalizes well even for an unseen test data
set, that is, F(X) effectively predicts Y not only for the
training set but also for the test set. For example, Honda
Research Institute of Japan, in collaboration with ATR
Computational Neuroscience Laboratories (ATR-CNS),
demonstrated real-time control of a robot hand by decoding
three motor primitives (rock-paper-scissors, as in the
children’s game) from the fMRI data of a subject’s motor
cortex activity [press release 2006 (http://www.atr.jp/html/
topics/press_060526_e.html)]. This was based on the
machine-learning algorithm called support vector ma-
chine, previously utilized by Kamitani and Tong (2005,
2006) for decoding the attributes of visual stimuli from fMRI
data.

The third element is the neuroscience knowledge. In the
case of the Duke-JST BMI-controlled robot, neural record-
ings were made in the primary motor cortex, which is known
as the motor control center in neuroscience for a long time.
Instantaneous neural firing rates (pulses per millisecond)
were utilized as regressors to estimate the kinematic param-
eters, since firing rates are believed to be the most important
information carriers in the brain. fMRI signals in visual cor-
tical areas were used in Kamitani and Tong (2005, 2006) for
decoding visual attributes. This third element is further
elaborated in the following sections.

BRAIN NETWORK INTERFACE
From a computational point of view, our understanding of
neural mechanisms for sensory-motor coordination has not
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Figure 4. Brain controlled humanoid robot.

yet been fully utilized in BMI design. For example, the
population-coding hypothesis of movement directions by an
ensemble of motor cortical neurons (Georgopoulos et al.,
1982) was advocated as the basis of some BMI design
(Taylor et al., 2002), but the hypothesis itself is still contro-
versial (Todorov, 2000). In most motor BMI systems, cursor
positions or arm postures are determined directly from neu-
ral decoding and no computational model of sensory-motor
integration was seriously incorporated [with a small number
of exceptions such as Koike ef al. (2006)]. However, it is ob-
vious that a simple approach of decoding the three dimen-
sional positions of hands or legs and giving the results to a
simple position controller as a desired trajectory cannot deal
with practical control problems such as object manipulation,
locomotion, or posture control. All of these control problems
incorporate instability of mechanical dynamics, thus requir-
ing intelligent and autonomous control algorithms such as
CPGs, internal models, and force control with passive dy-
namics on the robot side. To be more specific, let us take an
example of locomotion. Ifjoint torques or joint angles during
monkey locomotion were decoded from monkey brain activ-
ity and then simply and directly fed into a torque or joint
angle controller of CB-i, CB-i could not achieve stable loco-
motion because its body is different from the monkey’s body,
so the same dynamic or kinematic trajectories would lead
to the robot falling down (Fig. 4). CB-i should possess an
autonomous and stable locomotion controller such as CPGs
on its controller side. A simple trajectory control approach
can work only for the simplest control problems, such as
visually-guided arm reaching or cursor control, which have
been the main tasks investigated in the BMI literature. We
definitely need some autonomous control capability on the
robot’s side to deal with real-world sensory-motor integra-

tion problems. The Duke-JST BMI experiment is very
important in highlighting this requirement for future BMI
research.

Masa-aki Sato and his colleagues at ATR-CNS have been
developing a “brain-network interface” (BNI) based on a
hierarchical, variational Bayesian technique to combine in-
formation from fMRI and magnetoencephalography (Sato
et al., 2004). They succeeded in estimating brain activities
with spatial resolution of a few millimeters and millisecond-
level temporal resolution for various domains such as visual
perception, visual feature attention, and voluntary finger
movements. In collaboration with the Shimadzu Corpora-
tion, we aim to develop within ten years a portable and wire-
less combined EEG/NIRS (electroencephalography/near
infrared spectroscopy)-based Bayesian estimator for milli-
meter and millisecond accuracy. “Brain-network interface”
is a term we have created for this project, and it is similar to a
brain-machine interface or a brain-computer interface. BNI
noninvasively estimates brain activity by solving the inverse
problem, and it also estimates neural activities and recon-
structs represented information. Accordingly, it is not a
brain-machine interface because it is noninvasive, and it is
not a brain-computer interface because it does not require
extensive user training since it decodes information. We have
already succeeded, for example, in estimating the velocity
of wrist movements from single trial data without subject
training (Toda et al., 2007).

HIERARCHICAL CONTROL AND DECODING MODELS

The brain utilizes its hierarchical structure in solving the
most difficult optimal control problems in sensory-motor in-
tegration. This is because a simple randomly connected uni-
form neural network cannot be powerful enough to solve
complicated optimal and real-time control issues with a large
degree of freedom and strong nonlinearity in controlled ob-
jects, and large time delays are associated with feedback
loops (Kawato and Samejima, 2007). Consequently, differ-
ent brain areas contribute to the solution by solving different
sub-problems; the cerebellum for internal models (Kawato,
2008), the premotor cortex for trajectory planning, and the
basal ganglia for reward prediction in reinforcement learning
(Kawato and Samejima, 2007). For tackling real-world
sensory-motor control problems that any practical BMI
controlled robots may face, we definitely need to introduce
such a hierarchy and modularity into the controllers of ro-
bots. These controllers should be as close as possible to real
brain movement controllers. We need to decode different
neural representations in a different hierarchy of brain con-
trollers, and then provide these decoded representations to
the corresponding hierarchy of the robot controller. BNI
could be an ideal framework to simultaneously estimate
hierarchically arranged neural representations from the brain
in a noninvasive manner. For an example of locomotion,
self-motion could be estimated from MST; the decision to
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Figure 5. BNI controlled humanoid robots as a future telecom-
munication interface. Let us assume that a husband and wife who
enjoy playing tennis are living apart because the wife lives in Japan
and the husband has been stationed in the US for work. Never-
theless, they want more than anything to be able to play tennis
together. In order to actually play tennis (to experience the physical
feelings), there would have to be an “agent” robot of the husband
near the wife, and an “agent” robot of the wife near the husband,
with the two playing tennis in Japan and the US at the same time.
The greatest obstacle to enabling these two people to play simulta-
neously is the time delay that accompanies communications;
accordingly, BNI and quantitative brain models seem ideal solutions
to this most difficult obstacle.

move, stay, turn left or right could be estimated from the pre-
frontal cortex; planning to start motion could be estimated
from the pre-motor cortex; joint angles and torques could be
estimated from the primary motor cortex; and predictions
and estimations of the current states and motor commands
could be decoded from the cerebellum. Maximum benefit
could be derived from such a hierarchically arranged list of
neural representations if the robot’s locomotion controller
had a similar hierarchical and modular structure.

Estimating cortical electrical currents at thousands of lat-
tice points on the cortical surface from electrical or magnetic
signals measured by hundreds of electroencephalogram or
magnetoencephalogram sensors is called the inverse prob-
lem, since it is the inverse of the forward process modeled by
electromagnetic equations in physics, making it mathemati-
cally ill-posed and the most difficult part of BNI. The current
realization of BNI utilizes somewhat ad hoc sparseness and
spatial continuity assumptions in this inverse problem (Sato
et al., 2004; Toda et al., 2007), but in the future to attain a
better BNI we must incorporate dynamical models of the
brain activity used in solving the inverse problem. We believe
that there should be a mathematical duality relationship be-
tween the models used in this observation process and the
models used for control described above. Both kinds of mod-
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els should possess hierarchy and modularity and be math-
ematically matched to each other. This is an interesting fu-
ture mathematical issue associated with BNI controlled
robots.

FUTURE OF BRAIN CONTROLLED ROBOTS
Ahumanoid robot that can be controlled by natural brain ac-
tivity at will might be regarded as a second body for humans,
and this conceptualization can open up a wide area of appli-
cations. It could be utilized as a nursing robot for disabled
people as their second body to help them in a natural way. If
exoskeleton or power suits replaced humanoid robots, move-
ment reconstruction could be possible for paralyzed people.
However, we will oppose any military applications of this
technology by all means. In telecommunication, BNI con-
trolled robots can be postulated as future cellular phones
having all of the capabilities of the human body, such as
movement execution, tactile sensing and so on, in contrast to
the current cellular phones that mimic only visual and audi-
tory senses and speech motor control (Fig. 5). Face-to-face
bodily communication may become possible in the future at
temporally and spatially distant locations based on BNI-
controlled humanoid robots. Bearing in mind the Duke-JST
BMI controlled robot, this possibility cannot be dismissed as
a mere whim of science-fiction fantasy.
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