
Inter-module credit assignment in modular reinforcement learning

Kazuyuki Samejimaa,b,*, Kenji Doyaa,b, Mitsuo Kawatoa

aHuman information science laboratories, ATR International,2-2-2 Hikaridai, Seika, Soraku, Kyoto 619-0288, Japan
bCreating the Brain, CREST, Japan Science and Technology Corporation,2-2-2 Hikaridai, Seika, Soraku, Kyoto 619-0288, Japan

Received 27 July 2002; revised 15 November 2002; accepted 15 November 2002

Abstract

Critical issues in modular or hierarchical reinforcement learning (RL) are (i) how to decompose a task into sub-tasks, (ii) how to achieve

independence of learning of sub-tasks, and (iii) how to assure optimality of the composite policy for the entire task. The second and last

requirements are often under trade-off. We propose a method for propagating the reward for the entire task achievement between modules.

This is done in the form of a ‘modular reward’, which is calculated from the temporal difference of the module gating signal and the value of

the succeeding module. We implement modular reward for a multiple model-based reinforcement learning (MMRL) architecture and show

its effectiveness in simulations of a pursuit task with hidden states and a continuous-time non-linear control task.

q 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Reinforcement learning; Hierarchical/modular architecture; MOSAIC non-linear control task; Inter-module credit assignment; Modular reward

1. Introduction

In order to scale up reinforcement learning (RL) to real-

world problems, modular or hierarchical RL algorithms

have been proposed which decompose a complex task into

simpler sub-tasks, and which reuse sub-modules for similar

tasks. Crucial issues in modular or hierarchical RL are (i)

how to decompose a task into sub-tasks, (ii) how to achieve

independence of learning of sub-tasks, and (iii) how to

assure optimality of the composite policy for the entire task.

The second and third requirements are often subject to

trade-off.

We have proposed multiple model-based reinforcement

learning (MMRL), which adaptively decomposes a task

based on the predictability of the environmental dynamics

(Doya, Samejima, Katagiri, & Kawato, 2002). Here we

propose a new scheme for enabling the independent learning

of each module while assuring the optimality of the entire

task. This scheme can be applied to MMRL and other

modular RL.

Previous modular or hierarchical RL methods provided

only partial solutions to the above issues. In Feudal Q

learning (Dayan & Hinton, 1993), sub-tasks are learned

independently based on the sub-goals set by the upper level,

but there is no guarantee of optimality of the composite

policy for the entire task. CQ learning (Singh, 1992)

requires that the weighted sum of the modular value

functions equals that of the entire task, which makes

learning of modules dependent on each other. MAXQ

learning (Wiering & Schmidhuber, 1997) achieves inde-

pendent learning of modules by aiming for a weaker form of

optimality, recursive optimality. In order for MAXQ

learning to find a global optimal policy, it is necessary to

design appropriate ‘pseudo rewards’ for sub-tasks. In both

Feudal Q and MAXQ learning, task decomposition is pre-

defined by the designer. In CQ learning, task decomposition

is realized with the help of an ‘augmenting bit’ reporting the

change in the context. In ‘option’ (Sutton & Precup, 1999)

and HAM (Parr & Russell, 1997) approaches, modular

policies are not learned at all.

In a generic form of MMRL (Doya et al., 2002),

modular value functions are learned so that their

weighted sum represents the value function for the entire

task, the same as in CQ learning. We have also proposed

a variant of MMRL, multiple linear quadratic controllers

(MLQC) (Doya et al., 2002), which learns locally linear

dynamic models and locally quadratic reward models for

efficient design of locally optimal policies. Although

0893-6080/03/$ - see front matter q 2003 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0893-6080(02)00235-6

Neural Networks 16 (2003) 985–994

www.elsevier.com/locate/neunet

* Corresponding author. Address: Creating the Brain, CREST, Japan

Science and Technology Corporation, 2-2-2 Hikaridai, Seika, Soraku,

Kyoto 619-0288, Japan. Tel.: þ81-774-95-1211; fax: þ81-774-95-1259.

E-mail address: samejima@atr.co.jp (K. Samejima).

http://www.elsevier.com/locate/neunet


MLQC demonstrated efficient learning of non-linear and

non-stationary control tasks, its success depended on the

landscape of the reward function so that the combination

of locally optimal policies are globally optimal. For

example, MLQC does not work in a task in which the

reward is given only at the goal.

In this paper, we propose a new modular RL method for

realizing optimality of the composite value function and

policy while promoting independence of learning in

separate modules. We introduce a concept, ‘modular

reward’, which is the sum of the actual reward and the

imaginary reward for passing the task on to an appropriate

module. The imaginary reward is given by the product of the

modular value function and the temporal difference (TD) in

the module gating signal. This is a generalization of the

value function update methods in MAXQ and CQ learning

to cases of continuous module gating and non-unique end

points of sub-tasks.

We derive a condition for the modular reward so that the

standard RL of each module with the modular reward

enables correct estimation of the global value function for

the composite policy. We consider three candidate methods

for the distribution of modular reward and show in

simulation that the one that promotes the back-up of the

modular reward to the finished module gives the best

performance.

In Section 2, we formulate the class of modular RL

architectures which uses a continuous module gating

signal, including MMRL. In Section 3, we define

modular reward and derive the constraints for estimation

of the global value function for the composite policy

while each module performs standard RL independently.

Implementation of modular reward in MMRL is

described in Section 4. The effectiveness of modular

reward is tested in discrete and continuous state cases in

Section 5. We discuss the remaining problems and

possible future work in Section 6.

2. Modular reinforcement learning

2.1. Reinforcement learning

RL (Sutton & Barto, 1998) is a learning paradigm which

uses restricted feedback information as an evaluation of a

system’s output. When the system observes environmental

state xðtÞ and outputs an action uðtÞ; the system transits into

state xðt þ 1Þ and receives a reward rðtÞ as an evaluation of

the output. The aim of the system is to learn the state-action

map or ‘policy’, in order to receive maximal cumulative

reward through acting in the environment

VpðxðtÞÞ ¼ E{rðtÞ þ grðt þ 1Þ þ g2rðt þ 2Þ þ · · ·}; ð1Þ

where g is a discount factor which determines how long the

system should account for rewards in future steps.

Though the system cannot know the true value of

expectation of future reward, the approximated reward

expectation called ‘value function’ VðxðtÞ can be learned

from the TD of approximated value function gVðxðt þ 1Þ2

VðxðtÞÞ and reward rðtÞ;

dðtÞ ¼ rðtÞ þ gVðxðt þ 1ÞÞ2 VðxðtÞÞ: ð2Þ

The TD error d approaches zero when the value function

VðxÞ approaches the true value of reward expectation VpðxÞ:

This is because the TD of the true expectation value of

future reward is zero due to the following Bellman equation

VpðxðtÞÞ ¼ rðtÞ þ
X
x0

gPðx0lxðtÞ; uðtÞÞVpðx0Þ; ð3Þ

where Pðx0lxðtÞ; uðtÞ is a transition probability when the

system transits to x0 when it is in xðtÞ and performs the action

uðtÞ:

2.2. Modular reinforcement learning with continuous gating

signal

Modular/hierarchical architectures for RL can be cate-

gorized into two kinds according to the module gating

strategy used. The first is the switching type in which the

system selects one module at a time and a change in the

selection occurs when the termination predicate is satisfied

(Parr & Russell, 1997; Sutton & Precup, 1999) or when the

system reaches a sub-goal state set by the upper layer

(Dayan & Hinton, 1993; Morimoto & Doya, 1998; Wiering

& Schmidhuber, 1997). The second is a modular architec-

ture with a continuous gating signal (Doya et al., 2002;

Singh, 1992), in which the output and learning of each

module are weighted by ‘responsibility’, that is, by

determining which module is responsible for the current

situation. We denote the weighting for the i-th module as the

responsibility signal li (0 # li # 1;
P

i li ¼ 1).

In CQ-L (Singh, 1992), the responsibility signal is given

by the gating network (Jacobs, Jordan, Nowlan, & Hinton,

1991) based on action value predictability, while in MMRL

(Doya et al., 2002), it is given by the competition of multiple

dynamic state predictors in each module (Wolpert &

Kawato, 1998). Implementation of the responsibility signal

in MMRL is described in Section 4.1.

The output of the system or policy is decided

stochastically by the distribution that is the weighted

summation of each module action selection probability as

PðuðtÞlxðtÞÞ ¼
X

i

lipiðuðtÞ; xðtÞÞ; ð4Þ

where pi is the conditioned probability PðuðtÞlxðtÞ; iÞ of

taking action uðtÞ when module i is selected in state xðtÞ:

2.3. Weighted temporal difference learning

In order to make the learning of each module consistent

with the goal of the entire task, a commonly used condition

K. Samejima et al. / Neural Networks 16 (2003) 985–994986



is that in which the weighted sum of the modular

value functions Vi is equal to the value function for the

entire task

VðxðtÞÞ ¼
Xn

i¼1

liðtÞViðxðtÞÞ: ð5Þ

One straightforward method of achieving this condition is

first to compute the TD error (Sutton and Barto, 1998) for

the entire task

dðtÞ ¼ rðtÞ þ gVðxðt þ 1ÞÞ2 VðxðtÞÞ; ð6Þ

and then to distribute it to the modules in proportion to the

responsibility signals (Doya et al., 2002)

diðtÞ ¼ liðtÞdðtÞ: ð7Þ

The modular value functions Vi are learned by the modular

TD error Eq. (11) and gradient of parameter uV
i as

uV
i ˆ uV

i þ aliðtÞdiðtÞ
›ViðxðtÞ; u

V
i Þ

›uV
i

; ð8Þ

where a . 0 is a parameter for the learning rate.

We can also use the modular eligibility traces for

parameter

1Vi
ðt þ 1Þ ¼ ð1 2 hÞ1Vi

ðtÞ þ hliðtÞ
›ViðxðtÞ; u

V
i Þ

›uV
i

ð9Þ

where h is a parameter for discounting the eligibility.

Parameter updating with eligibility 1vi
is given by

uV
i ˆ uV

i þ adiðtÞ1Vi
: ð10Þ

In this way, if the total value function (5) becomes accurate,

the TD error Eq. (6) becomes close to zero, and the

learning of each module based on the TD error Eq. (7)

converges.

One of the advantages of modular architecture is re-

usability of modular policy for another task with the same

elemental sub-tasks. However, one problem in this method of

how a task can be decomposed is left open to the particular

choice of function approximators used for each module. As is

apparent from Eq. (5), for a given responsibility signal vector

lðtÞ ¼ ðl1ðtÞ;…;lnðtÞ; a different combination of modular

value functions ðV1ðxðtÞ;…;VnðxðtÞÞÞ can achieve the total

value function VðxðtÞÞ: Even if the total value function is

learned by weighted TD error Eq. (7), the modular policy

based on the modular value function may not learn any goal-

directed policy.

3. Modular reward

Here, we propose a method for appropriately backing

up the value of the next module to the preceding module.

We base our derivation on three constraints: (1) each

module and the entire system follow a similar TD

learning algorithm, (2) the TD learning in each

module assures consistent learning of the total value

function, and (3) among simultaneously activated mod-

ules, the one that is finishing a sub-task should take the

largest credit.

To achieve (1), we formulate a modular TD algorithm in

which each modular value function ViðtÞ learns to reduce

modular TD error

diðtÞ ¼ riðtÞ þ gViðxðt þ 1Þ2 ViðxðtÞÞ; ð11Þ

where riðtÞ is a ‘modular reward’ which is derived by

constraints (2) and (3). For constraint (2), we require that the

weighted sum of the modular TD error

dðtÞ ¼
X

i

liðtÞdiðtÞ ð12Þ

is equivalent to the total TD error Eq. (6). This way, the

reduction of the modular TD error ensures the reduction of

the total TD error. From definitions (5) and (6), we have

dðtÞ ¼ rðtÞþg
X

i

liðtþ1ÞViðxðtþ1ÞÞ2
X

i

liðtÞViðxðtÞÞ

¼ rðtÞþg
X

i

ðliðtþ1Þ2liðtÞÞViðxðtþ1ÞÞ

þ
X

i

liðtÞ½gViðxðtþ1ÞÞ2ViðxðtÞÞ�: ð13Þ

Therefore, constraint (2), i.e. Eq. (12) is satisfied by defining

the modular rewards riðtÞ such that

X
i

liðtÞriðtÞ ¼ rðtÞþg
X

i

ðliðtþ1Þ2liðtÞÞViðxðtþ1ÞÞ: ð14Þ

The second term on the right-hand side is positive if a

module with a high value ðVi . 0Þ is activated ðliðtþ1Þ

2liðtÞ. 0Þ: Accordingly it can be regarded as a ‘imaginary

reward’ at the time of module transition.

One possible method of distributing the right-hand side is

Eq. (14) uniform distribution, as

riðtÞ ¼ rðtÞ þ g
X

j

ðljðt þ 1Þ2 ljðtÞÞVjðxðt þ 1ÞÞ: ð15Þ

However, a more reasonable way to proceed is to distribute it

to the module that is finishing a sub-task. To

achieve constraint (3), we define a backing-up modular

reward

riðtÞ ¼ rðtÞ þ
l2i ðtÞX

k

l2k ðtÞ
2

� g
X

j

ðljðt þ 1Þ2 ljðtÞÞVjðxðt þ 1ÞÞ

2
4

3
5 ð16Þ

K. Samejima et al. / Neural Networks 16 (2003) 985–994 987



where l2i ðtÞ is the decreasing responsibility signal

l2i ¼
liðtÞ if liðt þ 1Þ , liðtÞ

0 otherwise

(
: ð17Þ

4. Multiple model-based reinforcement learning with

modular reward

In this section, we implement modular rewards for a

MMRL architecture (Doya et al., 2002). Fig. 1 shows the

overall organization of the MMRL architecture. It is

composed of n modules, each of which consists of a state

prediction model and an RL controller.

Basically, this architecture decomposes a non-linear

and/or non-tationary task into multiple domains in space and

time so that within each of the domains the environmental

dynamics is well predictable.

4.1. Responsibility signal by predictability

The action outputs of the RL controllers as well as the

learning rate of both the predictors and controllers are

weighted by the ‘responsibility signal’, liðtÞ; defined by the

relative accuracy of prediction by the modular predictors,

fiðx
0; x; uÞ; which approximates transition probability

Pðx0lx; uÞ from state x to x0 when the system takes action u:
After the observation of actual transition to xðt þ 1Þ; we

can get a posterior probability of the module selection based

on the prediction model as a generative model of state

transition. This posterior probability of module selection is

called the ‘responsibility signal’ and is defined by a

normalized probability of the output of state prediction

models fiðtÞ as a likelihood of module selection

liðtÞ ¼
l̂iðtÞfiðxðt þ 1Þ; xðtÞ; uðtÞÞXn

j

l̂jðtÞfjðxðt þ 1Þ; xðtÞ; uðtÞÞ;

ð18Þ

where l̂iðtÞ is the prior probability of selection of module

i; which we call the responsibility predictor. One example

of responsibility predictor is smoothing responsibilty

predictor which use responsibilty signal in previous time

step as a prior probability of present module selection (see

Appendix A).

4.2. Model-based reinforcement learning

Model-based RL is an efficient RL algorithm using a

state prediction model and a reward model to update the

value function (Doya, 2000) and select action by longer time

step planning (Sutton, 1991).

In MMRL (Doya et al., 2002), parameters u
f
i and ur

i for

multiple prediction models fiðx
0; x; u; uf Þ and reward models

r̂iðx; u; u
rÞ are updated by actual observation of the next state

xðt þ 1Þ and the reward rðtÞ: The responsibility signal liðtÞ is

used for weighting the parameter update of these models. In

discrete state task, we implement state prediction models

using histograms of observed transitions. In continuous state

task, we use linear model with deviations. These implemen-

tation methods are described in Sections 5.1.2 and 5.2.2.

The reward models r̂i are updated by weighted error

between estimation r̂iðxðtÞ; uðtÞÞ and modular reward riðtÞ of

Fig. 1. MMRL.

K. Samejima et al. / Neural Networks 16 (2003) 985–994988



Eqs. (15) or (16)

ur
i ˆ ur

i þ arliðr̂iðx; uÞ2 riðtÞÞ
›r̂i

›ur

; ð19Þ

where ar . 0 is the learning rate parameter.

Using state prediction models fi and reward models r̂i;

each module can estimate the action value function,

r̂iðx; u
0Þ þ

P
x0 fiðx

0; x; u0ÞViðx
0Þ; for action u0 by simulating

value function Viðx
0Þ in next state x0 and getting reward

r̂iðx; u
0Þ: For example, if we use a greedy policy as a modular

policy, the modular policies piðu; xÞ select the best action-

value in next state x0 and expected reward r̂i when simulated

action u0 is selected

ui ¼ arg max
u0

{r̂iðx; u
0Þ þ

X
x0[X

fiðx
0
; u0

; xÞViðx
0Þ}; ð20Þ

where X is a set of possible states.

5. Simulations

5.1. Pursuit problem

In order to test the effectiveness of MMRL with modular

rewards, we investigate its performance in pursuit problem

with hidden states. This task consists of four different sub-

tasks reward is given at the end of only one sub-task.

This problem cannot be learned by learning methods such as

MLQC in which policies are derived from local rewards.

5.1.1. Task

The agent’s task is to catch a moving target in a grid

world of a 7 £ 7 torus (Fig. 2). The possible actions U of the

agent are one-step movements in one of four directions {N,

E, S, W}. The state observation x of the agent is the relative

position of the target. There are four kinds of targets

{T1;T2;T3;T4}; which move in either one of four direc-

tions{NE, SE, NW, SW}. First, a target appears at a random

position in the grid world. If the agent catches the target,

another target appears at a random position. The agent

cannot directly observe which one of the four targets is

present. In the simulation below, the targets were presented

in a deterministic order {T1;T2;T3;T4; T1; T2;…} as shown

in Fig. 2(c).

The reward r ¼ 10 was given only at the time where T4

was caught. Because these is no reward, just a cost for each

movement 20:01; when the agent catches T1; T2 and T3; the

modules solving the sub-task for catching these targets

could not learn catching behavior just from getting a local

reward in the sub-task.

5.1.2. Implementation of prediction model and RL

controller

The state prediction model fiðx
0; x; uÞ was implemented

by using a table Q
f
i ðx

0; x; uÞ of histogram of observation of

state x; action u; and next state x0: The table Q
f
i ðx; u; x

0Þ for

prediction model fi was updated with weighting by

responsibility

Q
f
i ðxðt þ 1Þ; xðtÞ; uðtÞˆQ

f
i ðxðt þ 1Þ; xðtÞ; uðtÞÞ þ liðtÞ

� ð2jQ
f
i ðxðt þ 1Þ; xðtÞ; uðtÞ þ 1Þ; ð21Þ

where 0 , j , 1 is the forgetting rate. When the agent’s

state is x and action u is taken, the output of the model as a

probability of going to x0 is

fiðx
0
; x; uÞ ¼

Q
f
i ðx

0; x; uÞX
s[X

Q
f
i ðs; x; uÞ

; ð22Þ

where X is the set of possible states. The initial parameter

Qf ðx0; x; uÞ is set as a small random value with uniform

distribution between 0.0 and 1.0. Using this prediction

model, we can get the responsibility signal with a smoothing

responsibility predictor (see Appendix A) by Eqs. (A2)–

(A.4).

The modular value functions ViðxÞ; which were rep-

resented by a table for each observation x; are updated by

Eq. (10). The eligibility traces for updating the modular

value functions were used with h ¼ 0:5:

Fig. 2. Pursuit problem: (a) action of target and an agent in a grid world of a torus; (b) observation of hunter agent; (c) appearance order of targets.

K. Samejima et al. / Neural Networks 16 (2003) 985–994 989



We implemented a model-based RL controller for each

module while using modular state dynamic predictors and

reward predictors. The outputs of modular RL controllers ui

are chosen based on the action value Qiðx; uÞ ¼ r̂iðx; uÞ þP
x0[X fiðx

0; x; uÞViðx
0; x; uÞ: The reward model r̂iðx; uÞ is also

implemented by using parameter table ur
i ðx; uÞ ¼ r̂iðx; uÞ

which is updated by Eq. (19).

An action was chosen from possible actions U by the

Gibbs distribution

piðx; uÞ ¼
ebQiðx;uÞX

a[U

ebQiðx;aÞ
; ð23Þ

where b . 0 is a parameter for controlling the randomness

of an action.

Parameters were set as a ¼ 0:2; g ¼ 0:95;

h ¼ 0:5,r ¼ 0:5; and j ¼ 0:001: The action disturbance

parameter b was scheduled as bðiÞ ¼ ntrial=500; where ntrial

was the number of trials for annealing.

5.1.3. Results

MMRL with backing-up modular reward succeeded in

learning both modular control policies and the transitions

between these policies (Fig. 3(b)). Modular value functions

had a high value in the catching position (0,0), and their

levels are consistent with the total value function (see scale

bars in Fig. 3(a)). The time course of the total value function

monotonously increased toward the goal state except at the

time when a new target appeared in a random position

(Fig. 3(c) thin line). Fig. 3(e) compares the performances of

MMRL with modular reward Eq. (16) and MMRL with

weighted total TD error Eq. (7). The MMRL with modular

reward achieved near-optimal policy faster than the MMRL

with weighted total TD error.

We tested the proposed method with wide ranges of

parameter settings, namely, learning rate for value function

a ¼ 0.01, 0.1, 0.7, time scale of eligibility traces h ¼ 0.01,

0.2, 0.5, and timescale of responsibility signal r ¼ 0.01, 0.1,

0.7.

Successful swing-up was achieved except a ¼ 0:7 and

r ¼ 0:7; where a large time constant of responsibility

resulted in delayed selection of appropriate modules.

We also tested CQ-L (Singh, 1992) with this task. CQ-L

failed to assign four modules to four different targets, even

in the easiest case when the reward was given after catching

each of the four targets.

5.2. Pendulum swing-up task with limited torque

In the pursuit task in the previous section, each sub-tasks

had only one sub-goal. In this section, we show our

approach is effective in the case where module switching

occurs not only at a particular point, but on distributed sets

in continuous space. We implement MMRL with modular

reward in a pendulum swing-up task in which reward is

given only near the swinging up position (Fig. 4) (Doya,

2000; Doya et al., 2002).

Fig. 3. Result of learning MMRL with modular reward in Pursuit problem: (a) modular value function. Time course of (b) responsibility signal li; (c) modular

value function liðtÞViðtÞ (thick lines) and total value function VðtÞ ¼
P

i liVi (thin line); and (d) modular reward ri; (e) performance measured by cumulative

reward in one trial.

K. Samejima et al. / Neural Networks 16 (2003) 985–994990



5.2.1. Task

The state space was two-dimensional, i.e. x ¼ ðx; _xÞT [
S £ R; where x [ S is the joint angle with periodic space in

S ¼ [2p,p] and _x [ R is angular velocity. The driving

torque u ¼ T is limited in ½2Tmax; Tmax� with Tmax , mgl:

The pendulum has to be swung back and forth at the bottom

to build up enough momentum for a successful swing up.

Although the task setting was almost the same as in

(Doya et al., 2002), the reward for the state was given only

in the neighborhood of the goal state so that no reward was

given near the bottom, i.e.

rðtÞ ¼ 2uðtÞ0QcuðtÞ

þ
1 if 2 p

8
, ðx mod 2pÞ2 p , p

8

0 otherwise

(
; ð24Þ

where the cost parameter Qc ¼ 0:01: The initial state was

set randomly with x [ ½2p=4;p=4�; _x [ ½21; 1�:

5.2.2. Implementation of prediction models and RL

controller

MMRL can approximate the non-linear system dynamics

in this case with two modular predictors of a linear model

using at least two modules (Doya et al., 2002).

In this example, we use MMRL with continuous time and

space in which the state prediction model tries to predict

state dynamics _x ¼ dx=dt: Here, we describe the modular

predictors using linear modular state dynamic predictors Eq.

(25) with Gaussian noise of fixed variance

fið_x
0
; xðtÞ;uðtÞ ¼

1

Z
expðð_x 2 AixðtÞ þ BiuðtÞÞ

0S21ð_x

2 AixðtÞ þ BiuðtÞÞÞ; ð25Þ

where Ai; Bi are coefficient matrices for the linear prediction

model, S is the covariance matrix for Gaussian noise, and Z

is the normalizing constant.

The responsibility signal is given by a soft-max function

of prediction error EðtÞ ¼ _xðtÞ2 {AixðtÞ þ BiuðtÞ}

liðtÞ ¼
1

Z
L̂iexp 2 1

2
EiðtÞ

TS21EiðtÞ
� 	

ð26Þ

where Z is the normalizing term

Z ¼
X

i

l̂i exp 2
1

2
EiðtÞ

TS21EiðtÞ


 �
:

We use the smoothing responsibility predictor (see

Appendix B) with diffusing parameter tr ¼ 1:We use action

output with Gaussian distribution

piðuðtÞ;xðtÞÞ¼
1

Z
expððuðtÞ2ûiðxðtÞÞÞ

TbðuðtÞ2ûixðtÞÞÞÞ ð27Þ

with variance b and average control output

ûiðxðtÞÞ¼BT
i

›V

›xðtÞ


 �T

ð28Þ

using the steepest value gradient ascending (Doya, 2000).

State prediction and action output of the entire system is

given by the expectated value of the mixture of the

Gaussians, namely

~_xðt þ 1Þ ¼
Xn

i¼1

liðtÞðAixðtÞ þ BiuðtÞÞ;

uðtÞ ¼
Xn

i¼1

liðtÞûiðxðtÞÞ þ nðtÞ;

where nðtÞ is Gaussian noise with variance b:

Parameters of state prediction model fi are analytically

derived by the system dynamic equation around the hanging

down position x ¼ ð0; 0Þ and the swinging up position x ¼

ðp; 0Þ as

Ai ¼
0 1

ai 20:1

 !
; B1;B2 ¼

0

1

 !
;

where a1 ¼ 29:8 and a2 ¼ 9:8: The value functions Vi are

approximated by Gaussian radial basis functions and

updated by a continuous-time version of MMRL (Doya

et al., 2002) with modular reward Eq. (B5) or Eq. (B6) (see

Appendix B). We set the action perturbation parameter b ¼

1:0 and the variance of Gaussian forward model with

variance S ¼ 1:

5.2.3. Results

We compared the performances of MMRL with two

kinds of modular reward Eqs. (B5) and (B6) to that of the

original MMRL with weighted TD error Eq. (7). The top

row of Fig. 5 compares their performance measured by the

average reward ð1=dÞ
Ðd

0 rðtÞdt ðd ¼ 20Þ: The middle row of

Fig. 5 shows learned value functions of individual modules

in the responsible regions, which are x [ ½2p=2;p=2� for

module 1 and x [ ½p=2; 3p=2� for module 2. The bottom

row of Fig. 5 shows modular value liðtÞViðtÞ in the

successful swing-up trajectories, which are superimposed

on the middle row of Fig. 5.

Using the weighted total TD error, successful swing-

up was rarely achieved within 200 trials. This was

Fig. 4. Pendulum swing-up task with limited torque.

K. Samejima et al. / Neural Networks 16 (2003) 985–994 991



because the reward given to module 2 did not effectively

motivate module 1, which was responsible in the hanging

down region. By using a uniform modular reward Eq.

(15), the value function near the transition points of

module 1 was elevated. By comparing Figs. 5(b) and (c),

we can see that the value was more effectively

propagated with the backing-up modular reward Eq.

(16), which enabled faster learning.

6. Conclusion

We introduced a new concept of modular reward,

which enables the learning of modular policies directed

toward the optimization of an entire task. A backing-up

modular reward Eq. (15) is given to a module that is

deactivated when another module with a higher value is

activated. In the simulations of discrete-time and

continuous-time tasks, we showed that a modular reward

with module level backing-up enables quicker and more

robust learning than MMRL using the weighted TD error

of the total value function.

In the present example, the activation of modules was

performed in a fixed order. An interesting future work

will be the learning of sequential module activation,

possibly with the introduction of an upper-level value

function.

Appendix A. Smoothing responsibility predictor

A.1. Discrete-time case

We adopt the responsibility signal of the preceding step

as the responsibility predictor for the present step as

l̂iðtÞ ¼
liðt 2 1ÞrXn

j

ljðt 2 1Þr
: ðA1Þ

This responsibility predictor restrains a rapid change in the

responsibility signal. The parameter r ð0 , r , 1Þ chooses

the time scale for changing the responsibility signal. In this

case, the responsibility signal and responsibility predictor

are calculated as

liðtÞ ¼
eliðtÞX
j

eljðtÞ
; ðA2Þ

l̂iðtÞ ¼
erliðt 2 1ÞX
j

erlj ðt 2 1Þ
: ðA3Þ

by a short-term cumulative log-likelihood liðtÞ ¼Pt
s¼0 r

ðt2sÞ logfiðsÞ: We can calculate liðtÞ incrementally as

liðtÞ ¼ logðfiðtÞÞ þ rliðt 2 1Þ for t . 0: ðA4Þ

Fig. 5. Value function for each module after 200 learning trials. Top: performance as cumulative reward in five simulation runs. Middle: Modular value

function in each responsible region (a lighter color indicates a higher value). Bottom: time course of modular value Vi in successful swing-up trial: (a) MMRL

with total TD error; (b) MMRL with uniform modular reward; and (c) MMRL with the backing-up modular reward.

K. Samejima et al. / Neural Networks 16 (2003) 985–994992



A.2. Continuous-time case

In the continuous-time case, we use the Gaussian

diffusing process for modular prediction models

fiðxðtÞ;uðtÞ; xðt þ sÞÞ ¼ Piðxðt þ sÞlxðtÞ;uðtÞÞ ðA5Þ

fiðxðtÞ;uðtÞ; xðt þ sÞÞ

¼
1

Z
expð2ðxðtÞ2 mðt; sÞÞT ðsSÞ21ðxðtÞ2 mðt; sÞÞÞ ðA6Þ

at short time s after observation of xðtÞ and action selection

uðtÞ: The means state change is modeled as a linear function

as

miðxðtÞ;uðtÞ ¼ AixðtÞ þ BiuðtÞ; ðA7Þ

for module i: We set the diffusion parameter matrix S as the

same for all modules.

The log-likelihood to select module i is

log Liðt; sÞ ¼ 2
1

2
sEiðt; sÞ

TS21Eiðt; sÞ; ðA8Þ

where

Eðt; sÞ ¼
xðt þ sÞ2 xðtÞ

s
2 ðAixðtÞ þ BiuðtÞÞ:

We adopt the responsibility predictor as the diffusing

probability distribution at s after selection time t as

l̂iðt þ sÞ ¼
liðtÞ

e2s=tr

Pn
j ljðtÞ

e2s=tr
; ðA9Þ

where tr is a time constant for diffusing module selection

probability.

The responsibility signal and responsibility predictor can

be calculated incrementally by an equation of log-likelihood

liðtÞ ¼ log fiðt; sÞ þ e2s=tr liðt 2 sÞ

liðtÞ2 liðt 2 sÞ ¼ log fiðt; sÞ2 ð1 2 es=tr Þliðt 2 sÞ: ðA10Þ

As a limit of s !þ0; Eq. (A10) becomes

dliðtÞ

dt
¼ 2

1

tr
liðtÞ2

1

2
{_xðtÞ2 miðxðtÞ;uðtÞÞ}

T

£ S21{_xðtÞ2 miðxðtÞ;uðtÞÞ}: ðA11Þ

The solution liðtÞ of Eq. (A11) is interpreted as the

short-term weighted average of the normalized squared

error of linear prediction model Eq. (A7) to predict state

change _xðtÞ:

The responsibility signal li is given by Eq. (A2) using

solution liðtÞ of differential Eq. (A11). In the continuous-

time case, the responsibility predictor is the same as the

responsibility signal.

Appendix B. Continuous-time reinforcement learning

and modular reward

B.1. Continuous-time and -space RL

In continuous-time and -space TD learning (Doya, 2000),

TD error is given by

dðtÞ ¼ rðtÞ þ _VðxðtÞÞ2
1

t
VðxðtÞÞ; ðB1Þ

where 1=t corresponds to discount factor g of discrete time

TD learning.

B.2. Modular reward

Modular TD error is given by

diðtÞ ¼ riðtÞ þ _Viðxðt þ 1ÞÞ2
1

t
ViðxðtÞÞ: ðB2Þ

The weighted sum of modular TD error Eq. (B2) is

equivalent to total TD error Eq. (B1) to achieve constraint

2), i.e. Eq. (12). From the definition of Eq. (5) and its change

_VðxðtÞÞ ¼
Xn

i¼1

{liðtÞ _ViðxðtÞ þ _liðtÞViðxðtÞÞ};

we have

dðtÞ ¼ rðtÞþ
Xn

i¼1

{liðtÞ _ViðxðtÞÞþ _liðtÞViðxðtÞÞ}

2
1

t

Xn

i¼1

liðtÞViðxðtÞÞ

¼ rðtÞþ
Xn

i¼1

_liðtÞ{ViðxðtÞÞþ
Xn

i¼1

lit{ _ViðxðtÞÞ2
1

t
ViðxðtÞÞ}

ðB3Þ

Therefore, Eq. (12) is satisfied by defining the continuous-

time modular reward riðtÞ such that

X
i

liðtÞriðtÞ ¼ rðtÞþ
Xn

i¼1

_liðtÞViðxðtÞÞ: ðB4Þ

Moreover, the continuous-time uniform distributed modular

reward is given by

riðtÞ ¼ rðtÞþ
Xn

j¼1

_ljðtÞVjðxðtÞ: ðB5Þ

To achieve constraint (3), the backing-up modular reward is

given by

riðtÞ ¼ rðtÞþ
l2ðtÞX

j

l2ðtÞ2

Xn

j¼1

_ljðtÞVjðxðtÞÞ

2
4

3
5 ðB6Þ

K. Samejima et al. / Neural Networks 16 (2003) 985–994 993



where l2i ðtÞ is the decreasing responsibility signal

l2i ¼
liðtÞ if _liðtÞ, 0

0 otherwise
:

(
ðB7Þ

References

Dayan, P., & Hinton, G. (1993). Feudal reinforcement learning (vol. 5).

Advances in neural information processing systems, Cambridge, MA:

MIT press, pp. 271-278.

Doya, K. (2000). Reinforcement learning in continuous time and space.

Neural Computation, 12, 219–245.

Doya, K., Samejima, K., Katagiri, K., & Kawato, M. (2002). Multiple

model-based reinforcement learning. Neural Computation, 14,

1347–1369.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E.

(1991). Adaptive mixtures of local experts. Neural Computation, 3,

79–87.

Morimoto, J., & Doya, K. (1998). Reinforcement learning of dynamic motor

sequence: learning to stand up. Proceedings of IEEE/RSJ International

Conference on Intelligent Robots and Systems, 3, 1721–1726.

Parr, R., & Russell, S. (1997). Reinforcement learning with hierarchies of

machines (vol. 10). Advances in Neural Information Processing

Systems, Cambridge: MIT Press, pp. 1043–1049.

Sutton, R. S. (1991). Plannning by incremental dynamic programing. In

L. A. Birnbaum, R. S. Sutton, & G. C. Collins (Eds.), Proceedings of the

Eighteenth International Workshop on Machine Learning (pp.

353–357). San Mateo, CA: Morgan Kaufmann.

Singh, S. (1992). Transfer of learning by composing solutions of elemental

sequential tasks. Machine Learning, 8, 323–339.

Sutton, R., Precup, D., & Singh, S. (1999). Between MDPs and semi-

MDPs: A framework for temporal abstraction in reinforcement

learning. Artificial Intelligence, 112, 181–211.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning. Cambridge,

MA: MIT Press.

Wiering,M.,&Schmidhuber,J. (1997).HQ-learning.AdaptiveBehavior,6(2).

Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse

models for motor control. Neural Networks, 11, 1317–1329.

K. Samejima et al. / Neural Networks 16 (2003) 985–994994


	Inter-module credit assignment in modular reinforcement learning
	Introduction
	Modular reinforcement learning
	Reinforcement learning
	Modular reinforcement learning with continuous gating signal
	Weighted temporal difference learning

	Modular reward
	Multiple model-based reinforcement learning with modular reward
	Responsibility signal by predictability
	Model-based reinforcement learning

	Simulations
	Pursuit problem
	Pendulum swing-up task with limited torque

	Conclusion
	Smoothing responsibility predictor
	Discrete-time case
	Continuous-time case

	Continuous-time reinforcement learning and modular reward
	Continuous-time and -space RL
	Modular reward

	References


