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A computational model of spatio-temporal dynamics in depth filling-in
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Abstract

We present a computational model based on the heat conduction equation, which can well explain human performance of depth

interpolation. The model assumes that the depth information is locally represented and spatial integration is made by iterative processing of

mutual interaction of neighbors. It reconstructs a dynamically transforming surface which is in good agreement with the results of

psychophysical experiments on depth perception of untextured (uniform-colored) surface moving in depth. The model can also explain a

temporal-frequency property of human percept. We conclude that the local ambiguity, which is quite common in everyday visual scenes, is

solved by an interpolation mechanism based on iterative local interaction of locally represented visual information.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Retinal images are measured locally via the receptive

fields of cells in the visual cortex. Some information is lost

in this process, and it causes an ill-posed problem of local

measurement. While we usually perceive a stable and

consistent world, each fragment of an image observed by

these cells is not always correct as a part of the percept of

the whole object. The visual system must have a mechanism

that integrates fragments of images into a consistent percept.

Computational research has shown that many important

visual tasks can be formulated as optimization problems

which can be solved by relaxation methods (Geman &

Geman, 1984; Grossberg & Grunewald, 2002; Grossberg

& Mingolla, 1985; Hildreth, 1984; Kawato, Hayakawa, &

Inui, 1993; Mumford, 1991, 1992; Poggio, Torre, & Koch,

1985; Ullman, 1979; von der Malsburg & Schneider, 1986).

Although these theories assume that the percept of an area is

gradually formed by iterative calculation, as the information

obtained at its borders propagates over the area, it is still

important to clarify whether biological systems utilize such

iterative processing.

A problem caused by localized measurement also exists

in depth perception based on horizontal disparities. As a

typical case, the depth of a point on an untextured horizontal

line is ambiguous because the correspondence between left

and right images cannot be uniquely determined (Kham &

Blake, 2000; Nakayama & Shimojo, 1990). It is known that

many binocular neurons in the primary visual cortex show

disparity selectivity (Poggio, 1995; Poggio, Gonzales, &

Krause, 1988; Prince, Cumming, & Parker, 2002). When a

horizontal line without any discontinuities is observed by

one of such neurons, no depth will be detected by the neuron

itself because the signals from the left and right eyes are

completely the same. However, the whole line is usually

perceived as if it is at the same depth as the endpoints of the

line. It seems that the ambiguous depths of the points on the

line are determined using the endpoints’ disparities.

We have examined the mechanism of how this ambiguity

is solved with psychophysical methods (Nishina, Okada, &

Kawato, 2003). To investigate dynamical properties of the

percept, we adopted a horizontal bar moving in depth as a

visual stimulus and examined spatio-temporal properties of

this integration process. By gradually changing the disparity

at the endpoints, the whole horizontal bar is perceived as

moving in depth. Although, the depth of the central part of

the bar is physically ambiguous, a certain depth is perceived

as a result of depth interpolation. By using a phase-matching

task, we carefully measured the perceived depth of the

ambiguous region while the disparity at the endpoints was

continuously changing according to a sinusoidal function at

frequency f : As a result, we found that the perceived depth
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of the ambiguous region slightly differed from the depth of

the endpoints. In the experiments, we manipulated length of

the bar, vertical position of the bar and temporal-frequency

of disparity change at the endpoints as experimental

variables. Then, we found that the observed temporal

discrepancy of the percept was not a phasic delay but a

temporal delay, which roughly depended on the cortical

length of the stimulus, that is, cortical distance between the

center and the endpoints of the bar. These results indicate

that the depth ambiguity is solved by propagating depth

information represented in the visual cortex. In the present

study, we investigate whether the experimental results are

reproduced with a computational theory, which describes

our hypothesis. In Section 2, we present a computational

model based on the heat conduction equation which solves

the local ambiguity with time-consuming calculation. And

then we show the psychophysical results on depth percep-

tion and verify that the experimental data are well explained

by the proposed model in the following sections.

2. Computational model

The depth ambiguity of intermediate part of an

untextured horizontal bar is solved by using the depth

information available at the endpoints of the bar. This

phenomenon, ‘depth filling-in’, can be considered as

interpolation of locally represented depth information.

Consider a heat conduction equation as a model of depth

filling-in. The depth D behaves as temperature in the

equation. Suppose the time parameter t (s) and the space

parameter l (m) are constant and do not depend on the

frequency of the oscillation of the stimulus

t
›D

›t
¼ l2 ›

2D

›x2
: ð1Þ

According to this equation, the depth diffuses over the

surface of the bar. After a certain amount of time, the model

reconstructs a surface, which interpolates two endpoints. To

show a typical behavior of this model, consider a case of

static stimulus, a horizontal bar with two endpoints at

different depth. If the bar has a uniform color and no texture,

the depth is ambiguous except its endpoints because of lack

of left–right correspondence. A human observer, however,

usually perceives a horizontal bar slant in depth, although

there’s no disparity information in the intermediate region.

The model can exactly reproduce this phenomenon. When

our model is applied to this stimulus, the depth of the

intermediate area, which is initially ambiguous, gradually

varies due to the depth propagation from the endpoints.

Fig. 1 shows the temporal transition of the state calculated

by the model. Depth of the ambiguous region is gradually

interpolated and finally a slant surface is formed.

Next, to clarify the temporal characteristics of the model,

let us consider the sinusoidally varying depth of the

endpoints. For time periodic oscillations, we rewrite

the last expression using the following transformation of

parameters from the time and space constants to the velocity

and angular velocity

l2

t
¼

v2

2v
; ð2Þ

where v (m/s) is a parameter corresponding to the

propagation velocity, v ¼ 2pf (s21) is the angular fre-

quency at the endpoints and f (s21) is the frequency of

oscillation at endpoints. Now we can calculate the velocity

v ¼

ffiffiffiffiffiffiffiffi
2l2v

t

s
: ð3Þ

Using the velocity and the angular frequency, we can

rewrite the heat conduction equation as

›D

›t
¼

v2

2v

›2D

›x2
: ð4Þ

Under the boundary condition of sinusoidally changing

depth ðsinðvtÞÞ; the analytical solution can be derived as

Dðx; tÞ ¼ c exp
v

v
x

� �
sin vt 2

v

v
x þ u

� �
: ð5Þ

It is confirmed that v is actually the propagation velocity in

the above equation. We can then calculate the depth at the

center of the horizontal bar ðx ¼ 0Þ and at endpoints ðx ¼ LÞ

Dð0; tÞ ¼ 2c sinðvt þ uÞ

DðL; tÞ ¼ Dð2L; tÞ ¼ c exp
v

v
L

� �
sin vt 2

v

v
L þ u

� �

þ c exp 2
v

v
L

� �
sin vt þ

v

v
L þ u

� �
¼ Ac sinðvt þ u2FÞ; ð6Þ

where

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp 2

v
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� �
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v
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v
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Suppose that ðv=vÞL is much smaller than one, then the

phase delay is well approximated as a concave quadratic

Fig. 1. Simulated time series of the interpolation of two points at different

depths. Each figure shows a top view at a certain point of time during the

progress of the integration. The time goes from top-left to top-right and

from bottom-left to bottom-right. When two endpoints of a bar are statically

presented at different depths, a slanted surface is gradually formed.
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function

A , 2 þ OðL2Þ ð9Þ

F ,
v

v
L

� �2

: ð10Þ

It should also be noted that the amplitude of oscillation at

the center is smaller than that of the edges, but the

difference is very small (small order of the square of the

bar length).

3. Psychophysical experiment

We have shown spatio-temporal properties of depth

filling-in in the previous psychophysical study, and argued

that the depth filling-in is a dynamic integration process,

that is, propagation of depth information in the visual

cortex. Detail of the experiments are described in Nishina

et al. (2003). Here we introduce a part of the experiments

relevant to the present study. In the experiment, we

measured processing time of depth interpolation in the

following way. A uniform-colored horizontal bar was

presented as a stimulus on a dark background. By using

LCD stereo shutter glasses, we continuously changed the

disparities at the two endpoints of the bar simultaneously

according to the equation

d ¼ A sinð2pftÞ; ð11Þ

with A ¼ 0:18 (Fig. 2). Although only the disparity of the

endpoints was altered and the other part of the horizontal bar

was completely fixed, the observers perceived depth motion

of the whole horizontal bar. Because the bar was uniform-

colored and did not have any texture on it, perceived depth

change at the center of the bar is considered as a result of

depth filling-in. A vertical bar was presented as a depth probe

at the center of the horizontal bar (Fig. 2). The probe also

oscillated in depth with the same frequency and amplitude as

the horizontal bar according to the equation

dp ¼ A sinð2pft þ fÞ: ð12Þ

The initial phase difference at the beginning of a trial was

randomly set between the range of 2p and p: The subjects

could change f; the phase difference between the endpoints

of the horizontal bar and the vertical probe, by pressing keys

(Fig. 3). Subjects adjusted the phase of the probe oscillation

to match it to the center of the horizontal bar in perceived

depth. With this phase-matching task, we can measure the

perceived depth of the center of an untextured horizontal bar

that moves sinusoidally in depth. A fixation point was

presented near the intersection point of two bars. The fixation

point was always presented with zero disparity. A chin rest

was used to maintain the head position during each session.

There were three experimental parameters, i.e. length of the

horizontal bar (8, 10, 12, 14 or 168), vertical position of

the horizontal bar (0.5 or 3.08) and the frequency of the

oscillation (1.0 or 1.5 Hz). Five subjects participated in the

experiment and each subject performed 300 trials for each

vertical position and frequency condition.

4. Experimental results and model prediction

The results showed that in all cases, the perceived depth

at the center was delayed relative to that at the endpoints

(Fig. 4). The analysis of variance reveals that the delay at the

center significantly increased as the bar became longer

ðF4;8 ¼ 5:28; p , 0:001Þ: As for the vertical position, the

delay was significantly shorter when the stimulus was

presented farther from the fixation point ðF1;4 ¼ 15:4; p ,

0:002Þ: The cortical sizes of objects of a physically equal

size differ when presented at different retinal locations. The

density of the receptive fields is the highest at the fovea and

becomes lower toward the periphery. Accordingly, a

stimulus with a fixed size covers fewer neurons in the

cortex when presented peripherally than when presented

foveally. If the depth information were propagated via local

mutual interactions of neurons, the time for the endpoints’

depth information to reach the center would depend on the

number of neurons. Furthermore, the number of neurons is

expected to be smaller for the periphery. The results are

Fig. 2. The visual stimulus used in the psychophysical experiments

consisted of a horizontal bar and a vertical bar. The vertical bar was used as

a probe. Only the vertical edges shown as dark lines in this figure have

disparity. The disparities of the edges were continuously updated according

to the equations indicated with the arrows in this figure. Note that the

arrows, equation, and the darker vertical edges are shown here for

explanation, and were not presented during the experiment. The subjects

adjusted the oscillation phase f of the vertical bar so as to make it moving

perceptually together with the center of the horizontal bar.

Fig. 3. Horizontal disparities of both the endpoints of the horizontal line and

the vertical bar were modulated sinusoidally in the same amplitude and

frequency. Only the phase between them ðfÞ were varied by the subjects.
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qualitatively consistent with this interpretation. The effect

of frequency was also important. We compared the results

under two oscillating frequencies conditions. The effect of

oscillation frequency was significant for the phase differ-

ence ðF1;2 ¼ 108:8; p , 0:01Þ but insignificant for the time

difference ðF1;2 ¼ 1:34; p ¼ 0:367Þ: The results showed that

the temporal difference was almost constant when it was

considered to be a time delay. This indicates that the phase

difference can be treated as a time delay.

The curved lines plotted in the graphs are predictions

made by the computational model of the depth propagation

proposed in Section 2. As for the length values between four

and eight, the experimental data were very well predicted by

the model. The fitting parameters were determined by only

using the results of 1.0 Hz frequency condition. That is, the

prediction curve plotted for 1.5 Hz frequency was calcu-

lated using the parameters obtained by fitting the data of

1.0 Hz condition. The frequency property of the model is

very consistent with the experimental data. The model

prediction is invariant for frequency when the delay is

considered temporal, and not invariant when considered

phasic. This behavior is also in agreement with the

experimental data. The propagation speed predicted

by fitting the model to the experimental data was

v ¼ 95:3 deg/s when the vertical position was 0.58 and v ¼

116:7 deg/s when the vertical position was 3.08. Bringuier,

Chavane, Glaeser and Frégnac (1999) measured propagation

speed of visual signals in cat area 17. The typical propagation

speed reported in their study is 0.1 m/s, which is approxi-

mately 100 deg/s under an average cortical magnification

factor of 1 mm in the cortex for 18 in visual angle (conversion

ratio used in Bringuier et al. (1999)). Paradiso and Nakayama

(1991) and Rossi and Paradiso (1996) reported estimated

propagation speeds in terms of brightness filling-in with

psychophysical experiments. They performed brightness

masking experiment (Paradiso and Nakayama) or temporal

brightness induction experiment (Rossi and Paradiso) and

estimated 110–150 or 140–180 deg/s. Our estimation is

approximately comparable to theirs.

5. Conclusion

In this study, we showed the depth interpolation is

well explained by a computational model based on the

heat conduction equation, by combining the model and a

psychophysical experiment which had been designed

carefully to verify the model. The temporal property of

human depth interpolation measured with a psychophysi-

cal method was highly compatible with the prediction of

the diffusion model based on local connection of locally

represented depth information and iterative processing.

These results strongly supports a propagation mechanism

based on a kind of neural spreading. Local represen-

tations, local interactions and iterative calculations appear

to form a fundamental mechanism of visual information

processing in the brain.
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propagation of visual activity in the synaptic integration field of area 17

neurons. Science, 283(5402), 695–699.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution

and the Bayesian restoration of images. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 6(6), 721–741.

Grossberg, S., & Grunewald, A. (2002). Temporal dynamics of binocular

disparity processing with corticogeniculate interactions. Neural Net-

works, 15(2), 181–200.

Fig. 4. (a) Effect of the line length from the results of the psychophysical

experiment is shown for each vertical position (vpos). (b, c) Effect of

frequency. The same data are plotted as phase delay (b) and time delay (c).

The error bars show the standard errors of the means (SEM). SEM is an

index of the uncertainty in the average of the measurement and calculated

as SEM ¼
ffiffiffiffiffi
s=n

p
: The thin lines show quadratic functions fitted to the data

(see text).

S. Nishina, M. Kawato / Neural Networks 17 (2004) 159–163162



Grossberg, S., & Mingolla, E. (1985). Neural dynamics of form perception:

boundary completion, illusory figures, and neon color spreading.

Psychological Review, 92(2), 173–211.

Hildreth, E. C. (1984). The measurement of visual motion. Cambridge: MIT

Press.

Kawato, M., Hayakawa, H., & Inui, T. (1993). A forward-inverse optics

model of reciprocal connections between visual areas. Network:

Computation in Neural Systems, 4, 415–422.

Kham, K., & Blake, R. (2000). Depth capture by kinetic depth and by

stereopsis. Perception, 29(2), 211–220.

Mumford, D. (1991).On the computationalarchitectureof the neocortex. I.The

role of the thalamo-cortical loop. Biological Cybernetics, 65(2), 135–145.

Mumford, D. (1992). On the computational architecture of the neocortex. II.

The role of cortico-cortical loops. Biological Cybernetics, 66(3), 241–251.

Nakayama, K., & Shimojo, S. (1990). Toward a neural understanding of

surface representation. Cold Spring Harbor Symposia on Quantitative

Biology, LV, 911–924.

Nishina, S., Okada, M., & Kawato, M. (2003). Spatio-temporal dynamics of

depth propagation on uniform region. Vision Research, 43(24), 2493–2503.

Paradiso, M. A., & Nakayama, K. (1991). Brightness perception and filling-

in. Vision Research, 31(7/8), 1221–1236.

Poggio, G. F. (1995). Mechanisms of stereopsis in monkey visual cortex.

Cerebral Cortex, 5(3), 193–204.

Poggio, G. F., Gonzales, F., & Krause, F. (1988). Stereoscopic mechanisms

in monkey visual cortex: binocular correlation and disparity selectivity.

Journal of Neuroscience, 8(12), 4531–4550.

Poggio, T., Torre, V., & Koch, C. (1985). Computational vision and

regularization theory. Nature, 317(6035), 314–319.

Prince, S. J., Cumming, B. G., & Parker, A. J. (2002). Range and

mechanism of encoding of horizontal disparity in macaque V1. Journal

of Neurophysiology, 87(1), 209–221.

Rossi, A. F., & Paradiso, M. A. (1996). Temporal limits of brightness

induction and mechanisms of brightness perception. Vision Research,

36(10), 1391–1398.

Ullman, S. (1979). The interpretation of visual motion. Cambridge: MIT

Press.

von der Malsburg, C., & Schneider, W. (1986). A neural cocktail-party

processor. Biological Cybernetics, 54(1), 29–40.

S. Nishina, M. Kawato / Neural Networks 17 (2004) 159–163 163


	A computational model of spatio-temporal dynamics in depth filling-in
	Introduction
	Computational model
	Psychophysical experiment
	Experimental results and model prediction
	Conclusion
	Acknowledgements
	References


