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Abstract

In our previous research, we proposed a method for the reproduction of complex movement trajectories and robot arm control that could

mimic fast, skilled human movements. That method is based on bi-directional theory and uses a representation of a set of via-points as

boundary conditions or control variables to perform robot arm trajectory control. The via-points are extracted from human movement data

and the resultant via-point representation is able to regenerate handwritten characters, control a Kendama toy, and perform a tennis serve. The

via-point information contains both spatial and temporal information, that is, the position on the trajectory and the time of passing through the

via-point position, respectively. Trajectory generation is performed using the trajectory formation model based on the optimal criterion,

namely, the smoothness criterion, for which the boundary conditions are both the position and the timing of the via-point information.

However, generating a smooth trajectory at different movement speeds is quite difficult if the time of passing through the via-point position is

unknown or different from the extracted via-point time.

In this paper, we therefore propose a new algorithm which can determine temporal via-point information. Our proposed algorithm can

generate roughly the same trajectory as the measured human trajectory from only the spatial information of via-point locations. The

optimality and the convergence of the new algorithm are investigated theoretically, and the trajectory generated by the algorithm is

shown in numerical experiments. It is shown that starting from arbitrary temporal information the proposed algorithm can produce an

appropriate trajectory.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In our previous research, we proposed a method for the

reproduction of complex movement trajectories and robot

arm control that could mimic fast, skilled human movements.

That method is based on bi-directional theory (Kawato,

1995) and uses a representation of a set of via-points as

boundary conditions or control variables to achieve robot

arm trajectory control. The via-point representation is able to

regenerate handwritten characters, control a Kendama toy,

and perform a tennis serve (Miyamoto & Kawato, 1998;

Miyamoto et al., 1996; Wada & Kawato, 1995).

The via-point representation we proposed is based on a

computational theory for human arm movement control.

Several computational theories have been proposed for

human arm movement control and planning, including

theories of the dependence on the dynamics of the

controlled object, such as the minimum torque change

criterion (Uno, Kawato, & Suzuki, 1989), minimum

commanded torque change criterion (Nakano et al., 1999),

minimum muscle tension change criterion (Dornay, Uno,

Kawato, & Suzuki, 1996) and minimum motor command

change criterion (Kawato, 1996). To generate a trajectory

based on the above computational theories, a trajectory

formation model based on the above criteria and the bi-

directional approach (Kawato, 1995) has already been

proposed, called Forward Inverse Relaxation Model (FIRM)

(Wada & Kawato, 1993), which is shown to regenerate

complicated human motion trajectories well. In the model, a

complicated sequential trajectory is expressed using a set of

via-points and the trajectory passing through the via-points
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is produced based on the minimum commanded torque

change criterion.

Unfortunately, generating a slow movement trajectory

and a fast movement trajectory for the same motion task is

not possible using Wada and Kawato’s trajectory formation

model FIRM. This is because the via-point information

contains spatial and temporal information, which are both

boundary conditions, and this information is already learned

and saved as position and time pairs. Therefore, in order to

generate different movement speeds using FIRM, via-point

information pairs for slow movement and for fast movement

would need to be learned and saved in advance.

To overcome this drawback, in this paper, we propose a

revised FIRM incorporating a new algorithm that can

reproduce complicated trajectories without the need for a

priori temporal information about the via-points. That is to

say, our proposed new algorithm can determine the time of

passing through the via-point position. It should be noted

that our research aim here is not to reproduce a trajectory

identical to the measured human trajectory, but to produce

roughly the same trajectory from only the spatial infor-

mation of the via-points. In the case of handwriting, it is

important to be able to generate a script such as ‘hello’ that

can be recognized by almost everyone, not to try to

regenerate an ‘ideal’ script. Similarly, in the case of robot

control, it is not necessary to teach the robot precisely in

order for it to be able to execute a movement to succeed at

a task.

The rest of our paper is as follows. In Section 2, we

present a summary of FIRM based on the optimization

principle, propose a new algorithm that can determine

the time of passing through each via-point, and consider the

theoretical foundations with respect to optimality and

convergence. In Section 3, we present experimental results

of trajectory formation by a two-joint manipulator. We

conduct two experiments, the first of which is trajectory

formation using one via-point and the second of which

involves cursive handwritten character generation using

several via-points, which is a complex sequential move-

ment. We show that although the algorithm presented in our

previous research cannot generate the appropriate trajectory

without adequate temporal information the proposed

algorithm can do so by using initial temporal information,

which is given at random. Finally, in Section 4, we discuss

the applicability of the proposed algorithm.

2. A computational trajectory formation model

2.1. A trajectory formation model based

on the optimization principle

Fig. 1 shows the trajectory formation model, which

consists of a hierarchical structure of motion planning

(Wada & Kawato, 1995). Several conditions required for

achieving movement are derived from visual information,

for example, the start point, end point, and motion duration

of a reaching movement are specified. These can also be

regarded as a representation of the reaching movement. A

minimization principle, namely, the minimum commanded

Fig. 1. Point-to-point movements and complex trajectory formation model.
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torque change criterion (Nakano et al., 1999) is used to plan

the trajectory. The minimum commanded torque change

model is shown in the following equation:

CCTC ¼
1

2

ðtf

0

XK
k¼1

dtk

dt

 !2

dt ! Min; ð1Þ

where tk is the commanded torque of joint k; K is the

number of joints, and tf is the motion duration. The FIRM

(Wada & Kawato, 1993) provides a hardware model as well

as an algorithm for generating the optimal trajectory.

Finally, a joint torque or a muscle tension stream is

computed in order to accomplish the movement and achieve

the movement trajectory.

To plan a complex sequential movement, an optimization

problem needs to be solved, which has boundary conditions

that consist of many via-point positions (x; y and z

coordinates) and the times of passing through those via-

point positions. However, determining the via-point rep-

resentation of a complex sequential trajectory is quite

difficult. Wada and Kawato (1995) proposed an algorithm

that can extract the via-points of a complex trajectory by

solving an optimization problem as follows (Wada &

Kawato, 1995). Let us assume that Xdata is a given trajectory

and Xreconst is a trajectory regenerated by the trajectory

formation model. The via-point estimation problem is to

find a set of minimum number of via-points n that satisfies

Eq. (2):

lXdata 2 Xreconstl , 1: ð2Þ

That is, the via-point estimation algorithm finds the set

containing the minimum number of via-points from among

the sets of via-points that satisfy the error value of lXdata 2

Xreconstl under the threshold 1: The extracted via-point

information contains ðXvia; tviaÞ; where Xvia ¼ XdataðtviaÞ

ðvia ¼ 1; 2;…; nÞ: The coordinate Xvia is the coordinate on

Xdata and the timing tvia shows the time of passing through

Xvia: Therefore, the trajectory formation model generates the

trajectory Xreconst that passes through Xvia at time tvia: The

timing tvia is important information, along with the spatial

coordinate Xvia; for generating the trajectory.

FIRM consists of a Forward Dynamics Model (FDM)

and an Inverse Dynamics Model (IDM). FIRM also has a

mechanism for smoothly updating the torque command and

a mechanism for generating the compensatory trajectory

needed to satisfy the boundary conditions (Fig. 2). FIRM

can generate a trajectory that has several via-points within a

small number of iterations. The optimal trajectory based on

the minimum commanded torque change model is obtained

by repeating Steps 1 to 4 of Fig. 2. FIRM is an algorithm that

solves the following optimization problem bound by both

spatial and temporal information about the via-points:

CCTC ¼
1

2

ðtf

0

XK
k¼1

dt k

dt

 !2

dt ! Min ð3Þ

Xreconstð0Þ ¼ Xstart; _Xreconstð0Þ ¼ 0; €Xreconstð0Þ ¼ 0

ðboundary conditions for start pointÞ

XreconstðtviaÞ ¼ Xvia ðvia ¼ 1; 2;…; nÞ

ðboundary conditions for via-pointsÞ

XreconstðtfÞ ¼ Xfinal; _XreconstðtfÞ ¼ 0; €XreconstðtfÞ ¼ 0

ðboundary conditions for final pointÞ

In the case of the trajectory formation with one via-point

based on the minimum jerk criterion, the via-point time, t1;

is derived from the optimization techniques of Bryson and

Ho (1975) and Flash and Hogan (1985):

ðtf

0

d3x

dt3

 !2

þ
d3y

dt3

 !2

dt

¼
ðt1

0

d3x

dt3

 !2

þ
d3y

dt3

 !2

dt

þ
ðtf

t1

d3x

dt3

 !2

þ
d3y

dt3

 !2

dt ! Min ð4Þ

xð0Þ ¼ xstart; _xð0Þ ¼ 0; €xð0Þ ¼ 0

yð0Þ ¼ ystart; _yð0Þ ¼ 0; €yð0Þ ¼ 0

ðboundary conditions for start pointÞ

xðt1Þ ¼ x1; yðt1Þ ¼ y1 ð0 , t1 , tfÞ

ðboundary conditions for via-pointÞ

xðtfÞ ¼ xfinal; _xðtfÞ ¼ 0; €xðtfÞ ¼ 0

yðtfÞ ¼ yfinal; _yðtfÞ ¼ 0; €yðtfÞ ¼ 0

ðboundary conditions for final pointÞ

where x and y are hand position coordinates with respect to a

Cartesian coordinate system and t1 is not specified beforehand.

Fig. 2. Forward-Inverse Relaxation Model.
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The analytical solution of the minimum jerk trajectory

is given by a polynomial expression, however, that of

the minimum commanded torque change trajectory cannot

be derived. Therefore, in practice, it is impossible to

determine more than 10 optimal via-point times in nonlinear

optimization problems such as the minimum commanded

torque change criterion.

2.2. A via-point time optimization algorithm

In the trajectory formation algorithm proposed in this

paper, the time of passing through each via-point is not

constrained. Rather, only the spatial information, that is, the

position(s) of the via-point(s), is given as boundaries. Of

course, the motion duration from the start point to the end

point is specified. The computational framework of the

trajectory formation model is same as the model shown in

Fig. 1. That is, the via-point time optimization algorithm

proposed in this paper is based on the minimum commanded

torque change shown in Eq. (1).

However, two additional steps, Step 5 (minimization

of the commanded torque change) and Step 6 (compen-

sation for the motion duration), are added to FIRM,

as shown in Fig. 3. We now explain the optimization

algorithm of the via-point time shown in Fig. 3 in

three parts.

(I) A trajectory is generated by applying FIRM to a set

of initial via-point times.

(II) Next, in order to reduce the performance index of

the minimum commanded torque change using the

steepest descent method, the movement time

between each via-point is updated in Step 5. The

minimum commanded torque change criterion basi-

cally decreases when the movement time is

lengthened (see Appendix A). The performance

index of the minimum commanded torque change

between via-point i and via-point i 2 1 is

CðtiÞ ¼
ðti

0

XK
k¼1

dt k

dt

 !2

dt: ð5Þ

Here, ti indicates the movement time between via-

point i 2 1 and via-point i ði ¼ 1; 2;…; nÞ: Via-point

0 represents the starting point and via-point n

represents the end point.

The movement time between via-point i 2 1 and

via-point i is updated with the following equation.

This equation is derived from the steepest descent

method:

Dti ¼ 1
1

ti

ðti

0

XK
k¼1

dtpk
i

dt

 !2

dt; ð6Þ

where tp represents the commanded torque by which

CðtiÞ is minimized and 1 is an appropriate positive

coefficient. Therefore, the movement time between

the via-points shown above is extended according to

the commanded torque change criterion and the

entire motion duration exceeds the given motion

duration, as shown in Fig. 4(A) and (B),

respectively.

(III) In order to satisfy the given entire motion duration,

the via-point time obtained in Step 5 is corrected in

Step 6 according to the following equation (resulting

in Fig. 4(C)):

ti ˆ
ti þ Dti

tf þ Dtf

tf ; ð7Þ

where Dtf ¼
P
Dti:

Thus, the proposed model includes two additional

processes, which are similar to Step 2 and Step 4 in

FIRM, namely, smoothing the commanded torque

Fig. 3. Structure of via-point time estimation model.
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and compensating for error, respectively. The commanded

torque is smoothed by lengthening the movement time using

Eq. (6). The error of the motion duration is compensated by

normalization using Eq. (7).

2.3. Theoretical considerations

In this section, the optimality and convergence of the

new algorithm proposed in Section 2.2 are discussed. When

the movement time, ti; between via-points is given, we

assume that the optimal commanded torque that satisfies the

minimum commanded torque change criterion can be

obtained. This means that the optimal trajectory of the

minimum commanded torque change could be calculated

with FIRM using the via-point time. The via-point time is

corrected by normalization in Step 6 of Fig. 3 and the

optimal trajectory is generated in the original FIRM, before

returning to Step 5.

Let us assume that tpi is the optimal commanded

torque and that the optimal object function is denoted as in

Eq. (8). The object function of the trajectory for the

entire motion duration tf is divided by the integration

interval of each movement time between the via-points as

shown in Eq. (9).

Cp
i ðtiÞ ¼

ðti

0

XK
k¼1

dtpk
i

dt

 !2

dt ð8Þ

Cpðt1; t2;…; tnÞ

¼
ðt1

0

XK
k¼1

dtpk
1

dt

 !2

dt þ
ðt2

0

XK
k¼1

dtpk
2

dt

 !2

dt

þ · · · þ
ðtn

0

XK
k¼1

dtpk
n

dt

 !2

dt

¼
Xn

i¼1

ðti

0

XK
k¼1

dtpk
i

dt

 !2

dt ¼
Xn

i¼1

Cp
i ðtiÞ ð9Þ

where

tf ¼
Xn

i¼1

ti:

The motion time change between the via-points is

given by the steepest descent method as

Dti ¼ 21
›Cp

i

›ti
ð1 . 0Þ: ð10Þ

The following equation is now assumed:

t ¼ tis ð0 # t # tiÞ ð11Þ

tðtÞ ¼ tðtisÞ ¼ ~tðsÞ ð12Þ

›Cp
i

›ti

¼
›

›ti

ðti

0

XK
k¼1

dtpk
i

dt

 !2

dt

¼
›

›ti

ð1

0

XK
k¼1

1

ti

d ~tpk
i

ds

 !2

ti ds

¼ 2
ð1

0

XK
k¼1

1

ti

d ~tpk
i

ds

 !2

ds

¼ 2
1

ti

ðti

0

XK
k¼1

dtpk
i

dt

 !2

dt ð13Þ

Thus, we obtain the following equation, which is the same

as Eq. (6):

Dti ¼ 1
1

ti

ðti

0

XK
k¼1

dtpk
i

dt

 !2

dt ð1 . 0Þ: ð14Þ

The amount of update for the movement time between

via-points is thus given by Eq. (14). Since Dti is positive,

the motion time between each via-point is changed so that

all via-point intervals become long. Now we consider the

optimality and the monotone convergence of the proposed

algorithm.

(1) Optimality. The motion duration, ti; is updated by

Eq. (14) and the time at which the via-points are passed

through is recalculated to satisfy the given entire motion

duration, as shown above in Section 2.2 (III). Then, the

evaluation function of the optimal trajectory can be given

Fig. 4. Algorithm of via-point time estimation.
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as in Eq. (15):

Cpðt1; t2;…; tnÞ ¼
X

Cp
i

ti þ Dti

tf þ Dtf

tf

� �

¼
X

Cp
i ti þ

tfDti 2 Dtf ti

tf þ Dtf

� �
ð15Þ

Eq. (16) is obtained using Taylor’s expansion of Eq. (15):

Cpðt1; t2;…; tnÞø
X

Cp
i ðtiÞþ

X tfDti 2Dtf ti

tf þDtf

›Cp
i

›ti

¼
X

Cp
i ðtiÞþ

1

tf þDtf

�
X

ti

X
Dti

›Cp
i

›ti
2
X

Dti
X

ti

›Cp
i

›ti

� �
ð16Þ

The expression inside the parentheses of Eq. (16) is

arranged using Eq. (10) as follows:

ðexpression inside the parentheses ð16ÞÞ

¼ 1
X›Cp

i

›ti

X
ti

›Cp
i

›ti
2
X

ti

X ›Cp
i

›ti

� �2
 !

¼ 1
X
i,j

ti

›Cp
j

›tj
2 tj

›Cp
i

›ti

 !
›Cp

i

›ti

2
›Cp

j

›tj

 !
ð17Þ

Therefore, Eq. (15) converges if

ðAÞ
›Cp

i

›ti
¼

›Cp
j

›tj

or ðBÞ
1

ti

›Cp
i

›ti
¼

1

tj

›Cp
j

›tj

holds:

First, we examine condition (A). The problem of

determining via-point times should be equivalent to the

following optimization problem with constraints. That is,

the object function to be minimized should be the sum of

the evaluation function of the minimum commanded torque

change criterion between via-points. The constraint

condition is such that sum of the time between via-points

must be equivalent to tf :

Cpðt1; t2;…; tnÞ ¼
X

CpðtiÞ!Min; ð18Þ

where t1 þ t2 þ · · ·þ tn ¼ tf : Therefore, using Lagrange’s

multiplier method, the above problem takes a minimum

value when Eq. (19)

›Cp
i

›ti
¼

›Cp
j

›tj
holds: ð19Þ

That is, Cpðt1; t2;…; tnÞ converges when (A) holds, and

t1; t2;…; and tn become the optimal solutions.

Next, condition (B) is considered. We can show that

Cpðt1; t2;…; tnÞ is not an optimal solution when condition

(B) holds. Let us assume that ti is updated by incrementing

aDti ða . 0Þ: In order to adjust the entire movement time to

tf ; a movement duration, tj ðj – iÞ; between via-points must

be in decrement with aDti: Therefore, the following two

equations are obtained using Taylor’s expansion of Cp
i ;

which is the motion duration ti þ aDti; and Cp
j ; which is the

motion duration tj 2 aDti:

Cp
i ðti þ aDtiÞ ø Cp

i ðtiÞ þ aDti

›Cp
i

›ti

ð20Þ

Cp
j ðtj 2 aDtiÞ ø Cp

j ðtjÞ2 aDti

›Cp
j

›tj

ð21Þ

The sum of Cp
i and Cp

j is given by Eq. (22) using the

conditions from (B):

Cp
i ðti þ aDtiÞ þ Cp

j ðtj 2 aDtiÞ

¼ Cp
i ðtiÞ þ Cp

j ðtjÞ þ aDti

›Cp
i

›ti

2
›Cp

j

›tj

 !

¼ Cp
i ðtiÞ þ Cp

j ðtjÞ2 a1
›Cp

i

›ti

� �2

1 2
tj

ti

� �
ð22Þ

That is, Eq. (22) decreases at ti . tj:

Accordingly, when (B) holds, Cpðt1; t2;…; tnÞ is not an

optimal solution. However, the evaluation function con-

verges when ti is equivalent to tj:

The object function converges and reaches the optimal

value when the movement time average of the minimum

commanded torque change criterion between each via-point

is equal, that is, when Eq. (19) holds. When condition (B)

holds, the algorithm can converge; however, this solution is

not necessarily optimal. Therefore, the convergence of the

algorithm is a necessary condition for an optimal solution,

but it is not a sufficient condition.

(2) Monotone decrease. Here, we show that the

performance index decreases as a result of the iterative

calculations of Step 5 and Step 6 in Fig. 3. Eqs. (16) and (17)

show that the following equations hold.

Cpðtlþ1
1 ; tlþ1

2 ;…; tlþ1
n Þ

¼
X

Cp
i

tl
i þDtl

i

tf þDtl
f

tf

 !

ø
X

Cp
i ðt

l
iÞþ

X tfDtl
i 2Dtl

f t
l
i

tf þDtl
f

›Cp
i

›tl
i

¼
X

Cp
i ðt

l
iÞþ

1

tf þDtl
f

X
tl
i

X
Dtl

i

›Cp
i

›tl
i

2
X

Dtl
i

X
tl
i

›Cp
i

›tl
i

 !

¼
X

Cp
i ðt

l
iÞþ

1

tf þDtl
f

�
X
i,j

tl
i

›Cp
j

›tl
j

2 tl
j

›Cp
i

›tl
i

 !
›Cp

i

›tl
i

2
›Cp

j

›tl
j

 !8<
:

9=
; ð23Þ

Here, tl
i and Dtl

i show the movement time and increments of

movement time between via-point i21 and via-point i;

respectively. In addition, l shows the l-th iteration in the

iterative calculation.

We assume that the commanded torque change

is smoother when the movement duration is longer

(see Appendix A). This assumption yields Eq. (24) for

Y. Wada, M. Kawato / Neural Networks 17 (2004) 353–364358



ti . tj:

0 .
›Cp

i

›ti
.

›Cp
j

›tj

ð24Þ

Eq. (25) also holds at this time.

ti

›Cp
j

›tj

2 tj

›Cp
i

›ti

, 0 ð25Þ

Therefore, the following equation is based on Eqs. (24)

and (25):

Cpðtlþ1
1 ; tlþ1

2 ;…; tlþ1
n Þ2 Cpðtl

1; t
l
2;…; tl

nÞ

¼
1

tf þDtl
f

X
i,j

tl
i

›Cp
j

›tl
j

2 tl
j

›Cp
i

›tl
i

 !
›Cp

i

›tl
i

2
›Cp

j

›tl
j

 !8<
:

9=
;, 0

ð26Þ

The performance index Cp steadily decreases, as

shown by Eq. (27).

Cpðtlþ1
1 ; tlþ1

2 ;…; tlþ1
n Þ , Cpðtl

1; t
l
2;…; tl

nÞ ð27Þ

Hence, the performance index uniformly converges as a

result of the iterative calculation shown in Fig. 3.

3. Experimental results

The numerical results of the trajectory generation are

shown as follows. The forward dynamics model and the

inverse dynamics model of FIRM are manipulators of two

joints shown in the equations below.

t1 ¼ ðI1 þ I2 þ 2M2L1S2cos u2 þ M2ðL1Þ
2Þ €u1

þ ðI2 þ M2L1S2cos u2Þ €u2 2 M2L1S2ð2 _u1 þ _u2Þsin u2

þ B11
_u1 þ B12

_u2

ð28Þ

t2 ¼ ðI2 þ M2L1S2cos u2Þ €u1 þ I2
€u2 þ M2L1S2ð _u2Þ

2

� sin u2 þ B21
_u1 þ B22

_u2 ð29Þ

Here, ti; ui; _ui and €ui represent the actuated torque, position,

velocity, and acceleration of each joint, respectively. In

addition, Mi; Li; Si; Ii; and Bij represent the mass, length,

distance from the mass center to the joint, the rotary inertia

of link i around the joint, and the coefficients of viscosity,

respectively. Bij shows that the joint angle velocity of link j

influences the actuated torque of link i: Joints 1 and 2

correspond to the shoulder and the elbow, respectively. Joint

1 is located at the origin of the coordinate system. The value

of each parameter is shown in Table 1. Importantly, the

coefficients of viscosity are assumed to be the values

indicated by Nakano et al. (1999). The following parameter

values are used in the experiments:

1¼ b
1P
Dt0i

; Dt0i ¼
1

ti

ðti

0

XK
k¼1

dtpk
i

dt

 !2

dt ðb¼ 0:65Þ

(1) Movement with one via-point. Fig. 5 shows the result

of generating the trajectory with one via-point (start point S,

via-point V, and end point E). The trajectory was measured

using a three-dimensional position measurement device

(OPTOTRAK3020, Northern Digital Inc.). The sampling

frequency was 100 Hz. The measured motion was restricted

to the horizontal plane by two degrees of freedom for the

shoulder and the elbow. The trajectory shown in Fig. 5 was

measured from one subject.

The start point and the end point were determined by

searching for a point below 5% of the peak velocity and were

Table 1

Parameters of dynamics

Parameter Link 1 Link 2

Mi (kg) 1.4950 1.0600

Li (m) 0.2750 0.3570

Si (m) 0.1130 0.1600

Ii (kg m2) 0.0294 0.0405

Bi (kg m2/s) 0.7 0.8

Bij (kg m2/s) 0.18 0.18

The three-dimensional shape of a male’s arm was measured by a

Cyberware Laser Range Scanner (Koike & Kawato, 1995). We calculated

the arm as a homogeneous material with a specific gravity of 1.0 and

computed its mass, center of mass, and moment of inertia from its volume.

The arm parameters for the subject were calculated using the ratio of the

arm length based on the measured data. Viscosity Bij was calculated by

basically the same method as Nakano et al. (1999).

Fig. 5. Trajectory of via-point movement S – V – E (number of

iterations ¼ 18). The dotted line shows the trajectory generated by FIRM

when the via-point time is 0.25 s. The solid line is the trajectory generated

after 18 iterations. The dashed line corresponds to the measured trajectory.
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used in the numerical experiment. For the via-point, a set

point position was used. The duration of the motion was

0.77 s. An initial value of the via-point time was given as a

random number; 0.25 s in this experiment. Fig. 6 shows the

tangential velocity. For the trajectory produced using the via-

point time of 0.25 s, the velocity shows a large fluctuation in

the first half, while in the latter half the path is more curved

than the measured trajectory. The reproduced trajectory is

not smooth and is quite different from the measured

trajectory. However, after 18 iterations, the via-point time

is estimated as 0.43 s and both the path and velocity do not

show such a large variation and are comparatively smooth.

Both results come within a reasonable distance of the

measured trajectory. Since the via-point V is located almost

at the midpoint between the start point S and the end point E,

the via-point time need only be approximated at the middle in

the entire movement time 0.77 s. The velocity profile shows

that the time of passing through the via-point is that for a

point in the direction of the end point near the velocity

minimum. This is one feature of the optimal trajectory that is

generated by the minimum commanded torque change

criterion.

Both the performance index of the minimum commanded

torque change criterion and the standard deviation of the

average ðDt0iÞ of the minimum commanded torque change

criterion between via-points are plotted in Fig. 7. In this

figure, the horizontal axis shows the number of iterative

calculations. The minimum commanded torque change

criterion decreases and converges through iterative calcu-

lations. Moreover, the standard deviation of the average of

the minimum commanded torque change criterion between

via-points also converges to a small value at the same time.

This means that the average of the minimum commanded

torque change between via-points becomes almost equal.

Thus, the optimal via-point times can be obtained from the

theoretical considerations described in Section 2.3. Also, the

value of the minimum commanded torque change criterion

and the standard deviation of the average ðDt0iÞ for the

regenerated trajectory are approximately equivalent to

the performance index and the standard deviation of the

measured trajectory. The standard deviation of the average

ðDt0iÞ of the minimum commanded torque change criterion

between via-points for the measured trajectory is calculated

using the via-point time (0.43 s) estimated by the via-point

estimation algorithm (Wada & Kawato, 1995).

(2) Movement with several via-points (handwritten

characters ‘abc’). Next, as an example of complex

trajectory formation, in Fig. 8 we show the results of

handwritten movement. We used the measured trajectory

shown in Fig. 8 in the same way as for Fig. 5. The via-point

positions were extracted from a human handwriting

trajectory for ‘abc’ (Wada & Kawato, 1995). Here, the

via-point times were given as random numbers so as not to

invert the order of the via-points. In this experiment, 15 sets

of initial via-point times were tested. The average ^

standard deviations of the given random via-point times

were as follows: 0.09 ^ 0.08, 0.23 ^ 0.11, 0.35 ^ 0.13,

0.49 ^ 0.13, 0.65 ^ 0.15, 0.81 ^ 0.15, 0.96 ^ 0.13,

1.10 ^ 0.13, 1.27 ^ 0.16, 1.46 ^ 0.20, 1.63 ^ 0.19,

1.80 ^ 0.21, 2.00 ^ 0.21, 2.19 ^ 0.21, 2.33 ^ 0.18,

2.48 ^ 0.20, 2.69 ^ 0.21, 2.88 ^ 0.27, 3.06 ^ 0.31,

3.32 ^ 0.33, and 3.52 ^ 0.34 s. The start point and end

point times were 0.0 and 4.18 s, respectively. Then, we

generated trajectories using the revised FIRM. The following

Fig. 7. Convergence of minimum commanded torque change criterion and

the average time change of the criterion. The solid line shows the

performance index of the minimum commanded torque change criterion.

The performance index converges at between approximately 18 and 25

iterative calculations. The dotted line shows that the standard deviation of

the average of the minimum commanded torque change criterion between

via-points becomes small. Moreover, the performance index and the

standard deviation of the measured trajectory are close to the values of the

convergent points using the proposed algorithm.

Fig. 6. Speed profile of S–V–E movement. The dotted line shows the speed

profile generated by FIRM when the via-point time is 0.25 s. The solid line

is the speed profile generated after 18 iterations. The dashed line is the

velocity profile of the measured trajectory.
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are the via-point times determined by starting from the

above random initial via-point times: 0.22 ^ 0.015,

0.56 ^ 0.021, 0.76 ^ 0.027, 1.16 ^ 0.044, 1.37 ^ 0.048,

1.50 ^ 0.052, 1.69 ^ 0.052, 1.83 ^ 0.039, 2.11 ^ 0.042,

2.27 ^ 0.052, 2.41 ^ 0.047, 2.56 ^ 0.052, 2.68 ^ 0.054,

2.85 ^ 0.071, 2.99 ^ 0.063, 3.15 ^ 0.038, 3.30 ^ 0.027,

3.42 ^ 0.024, 3.54 ^ 0.022, 3.74 ^ 0.022, and 3.95 ^

0.026 s. The number of iterative calculations was 35.

The via-point times estimated by the previous via-point

estimation algorithm (Wada & Kawato, 1995) are 0.33, 0.58,

0.92, 1.32, 1.56, 1.69, 1.76, 1.86, 2.07, 2.30, 2.40, 2.48, 2.61,

2.70, 2.86, 2.99, 3.08, 3.16, 3.26, 3.58, and 3.81 s. The

average absolute value of the difference between the random

via-point time and the via-point time estimated by Wada and

Kawato (1995), and the via-point time estimated by the

proposed algorithm and the via-point time estimated by

Wada and Kawato (1995) are 0.57 and 0.13 s, respectively.

The random via-point times are modified toward the via-

point time estimated by Wada and Kawato (1995). That is,

the via-point time decided by the new algorithm seems to be

appropriate.

The generated trajectory using random via-point times

for the two sets shown in Fig. 8 is markedly different from

the human handwriting data. Figs. 9 and 10 show the all

regenerated trajectories. The trajectories shown in Fig. 9

approximate those of the human handwriting data.

The tangential velocity profile is shown in Fig. 10. Though

the profile is slightly different from the actual data, the

minimum or maximum points appear to be close to the

actual movement.

Next, we examined the trajectory errors as follows:

(a) Error between the measured trajectory xmeasured;

ymeasured and the trajectory xoriginalFIRM; yoriginalFIRM

produced using the via-point times that were estimated

by Wada and Kawato’s (1995) model,

Fig. 8. Handwritten characters ‘abc’ (initial condition). The dotted line and

the dashed line show the trajectories generated by FIRM using two of the

initial via-point times. FIRM cannot regenerate the original human

trajectory.

Fig. 9. The handwritten characters ‘abc’ (number of iterations ¼ 35). The

dotted line is the trajectory generated after 35 iterations.

Fig. 10. Speed profile of the handwritten characters ‘abc’. The dotted line is

the speed profile generated after 35 iterations.

Erra ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxoriginalFIRMðtÞ2 xmeasuredðtÞÞ2 þ ðyoriginalFIRMðtÞ2 ymeasuredðtÞÞ2

q
;
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(b) Error between the measured trajectory and 15 trajec-

tories xrevisedFIRM
i ; yrevisedFIRM

i produced by the proposed

model,

(c) Error between the measured trajectory and 15 trajec-

tories xrandom
i ; yrandom

i produced using initial random

via-point times,

The results were Erra ¼ 1:44; Errb ¼ 11:0; Errc ¼ 42:4:

Error (b) for our proposed algorithm is larger than error (a);

however, it is shown that the proposed algorithm can

generated almost the same trajectory as the measured

trajectory without appropriate via-point times.

Moreover, Fig. 11 shows that both the performance

index of the minimum commanded torque change criterion

and the standard deviation of the average ðDt0iÞ of the

minimum commanded torque change criterion between

the via-points decrease and converge. The value of the

minimum commanded torque change criterion of

the regenerated trajectory is approximately equivalent to

the performance index of the measured trajectory. The

value of the standard deviation of the average ðDt0iÞ of the

minimum commanded torque change criterion between

the via-points of the regenerated trajectory is approximately

equivalent to the standard deviation of the measured

trajectory and also converges to a very small value.

In other words, the proposed algorithm can be used to

estimate optimal via-point times.

4. Discussion

In the present paper, we have proposed the incorporation

of a new algorithm to the FIRM to estimate via-point time

when the via-point time is not given in the motion plan and

have clarified the theoretical background thereof. Moreover,

the model’s suitability was proved in a numerical exper-

iment by applying the via-point time optimization algorithm

to a trajectory formation with one via-point and to a more

complicated trajectory formation containing several via-

points.

Humans can write characters at different movement

speeds once they have learned to do so at a certain speed

without the need to learn to write at all those speeds. Our

algorithm determines the via-point time(s) for various entire

movement speeds from via-point information learned at just

one particular speed. Fig. 12 shows that a faster movement

(motion duration 2.09 s) can be adequately generated using

the via-point spatial information of the movement with a

motion duration of 4.18 s.

Modification of the via-point times according to intended

motion duration is easy and is described below.

tintended
i ¼ tlearnt

i

T intended

T learnt
;

where tintended
i and tlearnt

i indicate the movement time

between via-point i 2 1 and via-point i for the intended

movement and learned movement, respectively. T intended

and T learnt denote the intended motion duration and learned

motion duration, respectively. In the experiments, we used

random numbers as the initial via-point times. Here, tintended
i

can be used as appropriate initial values. The proposed

algorithm produced, as expected, an appropriate trajectory

in a short time if the learned motion duration and intended

motion duration were similar. The proposed algorithm also

Fig. 11. Convergence of the minimum commanded torque change criterion

and the average time change of the criterion. The solid line shows the

performance index of the minimum commanded torque change criterion.

The dotted line shows the standard deviation of the average of the minimum

commanded torque change criterion between via-points. Both the decrease

and convergence are similar to the movement of one via-point (Fig. 7). The

performance index and standard deviation of the measured trajectory are

similar to the values of the convergent points obtained using the proposed

algorithm.

Errb ¼
1

15

X15

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxrevisedFIRM

i ðtÞ2 xmeasuredðtÞÞ2 þ ðyrevisedFIRM
i ðtÞ2 ymeasuredðtÞÞ2

q
;

Errc ¼
1

15

X15

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxrandom

i ðtÞ2 xmeasuredðtÞÞ2 þ ðyrandom
i ðtÞ2 ymeasuredðtÞÞ2

q
:
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planned the complex trajectory even if the intended motion

duration were somewhat different than the learned motion

duration.

Models have been developed in which complex sequen-

tial movements are generated with motor control synergies

or groups of muscles working which overlap in time. An

inevitable problem encountered with such models is how to

generate complex sequential overlapping movements with

proper timing, that is to say, how to determine appropriate

temporal information. Researchers in this area have not yet

been able to propose an algorithm that can determine

overlap timing using only motion duration (Morasso &

Sanguineti, 1993; Plamondon & Guerfali, 1998; Scho-

maker, Thomassen, & Teulings, 1989). Via-points could

conceivably be used for switching timing in motor control

for sequential movement generation. Recently, Grossberg

and Paine (2000) proposed a memory-based model which

alters the timings stored in a cortical working memory and

which learns through the imitation of handwriting move-

ments. They demonstrated that the model could generate a

movement at different speeds other than the learned speed.

However, our proposed algorithm is the first to estimate

switching timing using only the entire motion duration

based on the smoothness criterion.

For robot arm control, our proposed algorithm can

regenerate the trajectory from the current state to the final

state according to feedback information and can adjust the

trajectory. For example, if the current state departs from the

planned trajectory significantly, the algorithm can re-plan

the trajectory using the via-points from the current state to

the final point according to the remaining time.

In the present paper, we have not discussed the adequacy

of the revised FIRM incorporating the new algorithm as

a human motor planning and control model. In the future,

we intend to investigate the adequacy of the proposed model

compared to the Central Nervous System by considering the

Isogony Principle, the two-thirds power law that relates

velocity and curvature, and various human experimental

data. However, we have demonstrated that the proposed

algorithm can plan almost the same trajectory as that

performed by a human. In complex trajectory formation

such as handwriting or sign language particularly, our

algorithm can generate a trajectory with an intelligible result

by using a set of via-points consisting of just spatial

information. The experimental results for our proposed

algorithm suggest that the CNS might plan a complex

trajectory using via-point information and that it might be

able to do so using only the spatial information.

We have previously proposed a handwriting model that

recognizes characters, which is based on the motor theory of

speech perception (Kawato, 1989; Liberman & Mattingly,

1985) in Wada, Koike, Vatikiotis-Bateson, & Kawato,

(1995). The via-point obtained in that model is thought to be

a feature of the pattern space. However, the via-point is not

necessarily a universal feature. Estimating a universal

feature by applying the proposed algorithm to trajectory

generation and via-point estimation is an important problem

to be investigated in future studies.
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Appendix A

We show that the minimum commanded torque change

criterion decreases when the motion duration is lengthened.

Let us briefly explain this by using the dynamic equation

that contains inertia I and viscosity B.

tðtÞ ¼ I €uðtÞ þ B _uðtÞ

Here, the following is considered:

t ¼ as 0 # t # a ð0 # s # 1Þ

uðtÞ ¼ uðasÞ ¼ ~uðsÞ

Therefore,

d

dt
uðtÞ ¼

d

ds
uðasÞ

ds

dt
¼

1

a

d

ds
~uðsÞ

d2

dt2
uðtÞ ¼

1

a2

d2

ds2
~uðsÞ

d3

dt3
uðtÞ ¼

1

a3

d3

ds3
~uðsÞ

Fig. 12. Handwritten characters ‘abc’ for a motion duration of 2.09 s using

the via-point spatial information of a movement with a motion duration of

4.18 s. The trajectories for 2.09 s and for 4.18 s are generated after 35

iterations.

Y. Wada, M. Kawato / Neural Networks 17 (2004) 353–364 363



The following equation holds:

ða

0

dtðtÞ

dt

� �2

dt ¼
ð1

0
I

1

a3

d3 ~uðsÞ

ds3
þ B

1

a2

d2 ~uðsÞ

ds2

( )2

a ds

¼
ð1

0

1

a5
I

d3 ~uðsÞ

ds3

( )2

þ
1

a3
B

d2 ~uðsÞ

ds2

( )2"

þ
2

a4
I

d3 ~uðsÞ

ds3

( )
B

d2 ~uðsÞ

ds2

( )#
ds

From the equation, it is clear that when the motion duration

is short, the time integral of the square of the commanded

torque change rate becomes large. Conversely, when the

motion duration is long, the time integral becomes small.
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