
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Neural Networks 23 (2010) 836–842

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

The role of chaotic resonance in cerebellar learning
Isao T. Tokuda a,∗, Cheol E. Han b, Kazuyuki Aihara c, Mitsuo Kawato d, Nicolas Schweighofer e
a School of Information Science, Japan Advanced Institute of Science and Technology, Isikawa, Japan
b Computer Science, University of Southern California, Los Angeles, USA
c Institute of Industrial Science, University of Tokyo, Tokyo, Japan
d Advanced Telecommunication Research, Kyoto, Japan
e Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, USA

a r t i c l e i n f o

Article history:
Received 16 November 2009
Received in revised form 9 April 2010
Accepted 27 April 2010

Keywords:
Chaotic resonance
Inferior olive
Cerebellar learning
Synchronization

a b s t r a c t

According to the cerebellar learning hypothesis, the inferior olive neurons, despite their low firing rates,
are thought to transmit high-fidelity error signals to the cerebellar cortex. ‘‘Chaotic resonance’’, viamoder-
ate electrical coupling between inferior olive neurons, has been proposed to realize efficient transmission
of the error signal by desynchronizing spiking. Here, we first show that chaotic resonance is a robust phe-
nomenon, as it does not depend upon the details of the inferior olive neuronal model. Second, we show
that chaotic resonance enhances learning of a neural controller for fast arm movements. Furthermore,
when both coupling and noise are considered simultaneously, we found that chaotic resonance widens
the range of noise intensitywithinwhich efficient learning can be realized.We suggest that, from an ener-
getic viewpoint, the spiking activity induced by chaos can bemore economical than that induced by noise.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The anatomy and the physiology of the cerebellum make it
ideally suited to learn how to refine motor commands (Albus,
1971; Ito, 1970; Ito, Sakurai, & Tongroach, 1982; Kawato & Gomi,
1992;Marr, 1969; Schweighofer, Spoelstra, Arbib, & Kawato, 1998;
Shidara, Kawano, Gomi, & Kawato, 1993) or to learn sensory
predictions from motor commands (Miall, Christensen, Cain, &
Stanley, 2007;Miall,Weir,Wolpert, & Stein, 1993; Tseng, Diedrich-
sen, Krakauer, Shadmehr, & Bastian, 2007). The Purkinje cells, the
sole output neurons of the cerebellar cortex, receive two major
types of synaptic inputs: (i) numerous parallel fibers that relay in-
formation from much of the cerebral cortex and spinal cord, and
(ii) a single climbing fiber, which is an axon from an inferior
olive (IO) neuron, that has been shown to transmit error signals
(Gilbert & Thach, 1977; Kitazawa, Kimura, & Yin, 1998).When con-
jointly activated with parallel fibers, IO spikes modify cerebellar
input–output transformations, in agreementwith the known long-
term depression (LTD) at the parallel fiber–Purkinje cell synapse
(Ito et al., 1982).
Two apparently contradictory constraints must be met, how-

ever, for the cerebellum to realize efficient adaptive motor con-
trol or prediction. First, the IO must transmit error signals with
high temporal resolution despite its low firing rate. Second, IO
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neurons must fire at a low firing rate so that complex spikes en-
coding error signals do not interfere with simple spikes carrying
motor control commands or predictions (Kawato & Gomi, 1992;
Kobayashi et al., 1998). We previously proposed that these two
constraints are simultaneously met via low-rate IO chaotic spike
firing (Schweighofer et al., 2004). Such chaotic behavior leads to
the generation of IO spikes at different timings at each trial. Specif-
ically, we showed that electrical coupling via gap junctions can
provide the source of disorder that induced a ‘‘chaotic resonance’’
(Nishimura, Katada, & Aihara, 2000) in IO networks. Here, chaotic
dynamics is not supplied externally but it originates internally
fromcomplex interaction among the neurons. This resonance leads
to an increase in information transmission in IO neurons by dis-
tributing high-frequency components of the error inputs over the
sporadic, irregular, and non-phase-locked spikes. Desynchroniza-
tion is indeed necessary for scattering the spike timings of each
neuron to increase the time resolution of the population rate cod-
ing (Masuda & Aihara, 2002, 2003). Purkinje cells can then recon-
struct the complete error signal via spatio-temporal integration
because functionally related Purkinje cells and IO cells are grouped
in ‘‘microcomplexes’’ (Ito, 1990; Schweighofer, 1998).
The direct effect of electrical coupling in enhancing cerebellar

learning has yet to be shown, however. Furthermore, the robust-
ness of chaotic resonance is unclear for two reasons. First, chaos
does not always imply destruction of synchrony, since synchro-
nization between chaotic oscillators has been commonly observed
in a variety of physical or biological systems (Pikovsky, Rosenblum,
& Kurths, 2001). Second, in our original study, we used a rather
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complicated compartment model (Schweighofer, Doya, & Kawato,
1999), and many physiological parameters can be chosen rather
arbitrarily in this model. Finally, it is unclear whether chaos is in-
dispensable to desynchronize IO neurons and to realize efficient
information transmission, since neural noise can also desynchro-
nize IO neurons.
Here, we develop a simple model of IO neurons to test the hy-

pothesis that chaotic spiking induced via electrical coupling in IO
neurons robustly enhances the learning of complex motor com-
mands compared to non-chaotic or noise-induced jittered spiking.
In our simulations, the IO neurons provide error signals to an ide-
alized model of the cerebellar cortex that learns, via feedback er-
ror learning (Kawato, Furukawa, & Suzuki, 1987; Kawato & Gomi,
1992), to control a simplified model of the human arm in rapid
reaching movements.

2. Methods

2.1. Inferior olive model

The dynamical properties of the IO neuron can be sum-
marized as follows. (i) Under an isolated condition, a single
IO neuron generates a limit cycle oscillation (Manor, Rinzel,
Segev, & Yarom, 1997). (ii) Through gap-junction connections
with other neurons, the IO neuron gives rise to more complex
spike patterns (Lang, Sugihara, & Llinas, 1996; Makarenko & Lli-
nas, 1998; Schweighofer et al., 2004). The µ-model is a simpli-
fied two-dimensional neuronal model that satisfies these dyna-
mical characteristics (Fujii & Tsuda, 2004; Tsuda, Fujii, Tadokoro,
Yasuoka, & Yamaguti, 2004). In particular, when embedded in a
one-dimensional chain, complex spiking patterns such as chaotic
itinerancy can be generated (Tsuda et al., 2004). The dynamics of a
one-dimensional chain of µ-neurons is given by

η1
dxi
dt
= −yi − µix2i

(
xi −

3
2

)
+ I + Ji + ξi,

η2
dyi
dt
= −yi + µix2i ,

(1)

where

Ji =

{g(x2 + xN − 2x1) (i = 1)
g(xi+1 + xi−1 − 2xi) (i = 2, . . . ,N − 1)
g(x1 + xN−1 − 2xN) (i = N),

(2)

xi and yi represent the membrane potential and ion channel activ-
ity of the ith neuron (i = 1, 2, . . . ,N), N is the total number of the
neurons, µ is a system parameter, η1 and η2 are time constants, g
is the coupling strength of the gap junctions, and I is an external
input. An advantage of using this model is its weak dependence on
the parameter value, since µ is the only parameter that controls
the qualitative dynamics of the neuron; the time constants, which
are set equal in this study (η1 = η2), do not change the qualita-
tive dynamics of the neuron. Furthermore, because the parameter
dependence on the neural dynamics has been thoroughly analyzed
(Fujii & Tsuda, 2004), the proper parameter value forµ to generate
spiking dynamics is also well understood.
Real neurons are subject to various kinds of noise. Since noise

can destroy synchronous firing activity in a similar way as chaos,
it is natural to consider that noise can also enhance information
transfer in the IO. To take into account such a noise effect, we added
independent white Gaussian noise ξi(t) to the original µ-model,
with E[ξi(t)] = 0, E[ξi(t)ξj(s)] = 2Dδ(t− s)δ(i− j), where D is the
noise intensity, as in Collins, Chow, and Imhoff (1995).
The spiking activity of the kth IO neuron is defined as a

membrane potential that exceeds a threshold value of xth. In the
case of noise-free simulations (D = 0), Eq. (1) is integrated by the
fourth-order Runge–Kutta algorithm started from a random initial
condition. In the presence of noise, Eq. (1) becomes a stochastic
differential equation, which is simulated by Euler’s algorithm (Fox,
Gatland, Roy, & Vemuri, 1988). In the following experiments, five

simulations were run to compute the average quantities so that
the dependence of the neural dynamics on the random initial
conditions is weakened.

2.2. Mutual information

As a basic study to evaluate the information transmission of the
IO network, we measured the mutual information (Rényi, 1970)
between an input signal and the spike responses. As an input signal,
we used chaotic signals from the Rössler equations (dx/dt = −y−
z, dy/dt = x + 0.36y, dz/dt = 0.4x − (4.5 − x)z) (Rössler,
1979). The y-variable is injected to all neurons in the samemanner
as I = I0 + β · y (I0 = 0.01 and β = 0.002). The output
S(t) represents a time sequence of a number of spikes generated
from the population of neurons within a time interval of 0.02.
Then the mutual information between input I(t) and output S(t)
is computed, where the signals are discretized into 25 bins for
calculating the probability distributions.
It is noted that the chaotic input signal has been utilizedmerely

as a typical example of complex signal in the brain. The same re-
sults can be obtained when a periodic or noisy signal is used as the
input.

2.3. Synchrony

For the IO neurons with low firing frequency to transmit infor-
mation efficiently, synchronous activity is not desired, because in
this condition the network becomes equivalent to a single neuron.
As an index to detect such synchronized activity of the neurons,
the order parameter R (Kuramoto, 1984) has been utilized. The
order parameter is defined as R exp(iΦ) = (1/N)ΣNj=1 exp(iφj),
where φj represents phase of the jth neuron given by angle φj =

arctan
(
xj(t−0.2)
xj(t)

)
. The order parameter takes a real value between

0 and 1, where a large value close to R = 1 implies strong mutual
synchronization and a small value close to R = 0 implies desyn-
chronization.

2.4. Chaos

We quantified the strength of chaotic activity of the IO neurons
with the Lyapunov exponents, computed as in Shimada and
Nagashima (1979). From the Lyapunov exponents ordered in a
descending manner λ1 ≥ λ2 ≥ · · · ≥ λ2N , the Lyapunov
dimension is defined as DL = k +

∑k
i=1 λi/|λk+1|, where k is

the maximal value of j such that
∑j
i=1 λi ≥ 0 (Kaplan & Yorke,

1970). The Lyapunov dimension represents an effective dimension
of the chaotic dynamics in the 2N-dimensional state space. A
larger Lyapunov dimension implies more complex dynamics of
IO neurons. In the scenario of chaotic resonance, the information
transmission is expected to bemaximized in the regimewhere the
Lyapunov dimension takes the largest value.

2.5. Feedback error learning

The IO neurons are supposed to provide error signals to
an idealized model of the cerebellar cortex. Here, we assume
that the cerebellum learns an inverse model of an arm via
feedback error learning (Kawato et al., 1987; Kawato & Gomi,
1992; Schweighofer et al., 1998; Shidara et al., 1993). In feedback
error learning, supervised learning of a feedforward controller
occurs using a feedback control signal as the error signal. As the
feedforward controller improves, the reliance on the feedback
controller decreases. Note that our purpose here is to show that
chaotic resonance of IOs with very low firing rates can enhance
the learning of complex mappings, such as an inverse model
for arm control; thus other complex mappings such as forward
models would have been possible as well. We therefore do not
model the cerebellum in great detail, but instead we model a
simple network composed of granule cells that project to Purkinje
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cells with modifiable weights, as in Schweighofer, Doya, and Lay
(2001). The granule cells receive a desired state in joint space with
(fixed) random weights. Importantly, the Purkinje cells receive
both granule cells and spiking IO inputs, the latter of which
transmit the feedback error signals.
The feedback error learning controller controls a two-link hu-

man arm on a horizontal plane, with parameters adapted from
Katayama and Kawato (1993). The arm dynamics is given by

M(θ)θ̈ + C(θ̇ , θ)θ̇ = τ , (3)

where θ is the vector of the arm joint angles and τ is the motor
command (see below). The inertial and Coriolis matrices M and C
are given by

M11 = I1 + I2 + 2W2L1 cos(θe)+W1L21,
M12 = M21 = I2 +W2L1 cos(θe), M22 = I2,
C11 = −2W2L1 sin(θe)θ̇s,
C12 = −W2L1 sin(θe)θ̇e = −C21, C22 = 0,

where θe is the elbow joint angle, θs is the shoulder joint angle, L1
and L2 are segment lengths, I1 and I2 are inertia parameters, and
W1 andW2 are two other parameters.
In feedback error learning, the output of a crude feedback con-

troller and the output of a feedforward controller are summed and
form the motor command. The controller receives a desired mini-
mum jerk trajectory (Flash&Hogan, 1985) in joint coordinates. The
vectors of motor commands are given by the sum of the feedback
and feedforward motor commands, ufb and uff , respectively:

τ = ufb+ uff . (4)

We used a simple PD feedback controller.

ufb = KP · (θd − θsensed)+ KD · (θ̇d − θ̇sensed),

where θd and θsensed are the vectors of the desired and sensed
joint position, simply taken as the actual joint position; neither
delay nor sensory noise is considered in this simple model. Note
that ufb is an error signal, which is used both for feedback control
and as input to the IO that will train the cerebellum/feedforward
controller. This feedforward controller consists of a neural network
with a ‘‘granule cell’’ layer, which sends its output to a ‘‘Purkinje
cell’’ layer.

GCj = tanh

(∑
i

vjisi

)
, (5)

PCk =
∑
j

wkjGCj, (6)

where GCj is the jth granule cell activity, PCk is the kth Purkinje
cell activity, v represents the fixed weights from the inputs to the
granule cells, w represents the modifiable weights from the gran-
ule cells to the Purkinje cells, and the input s = [θe, θs, θ̇e, θ̇s, θ̈e, θ̈s]
represents the desired state vector.
The weights from the granule cells to the Purkinje cell layer are

updated based on a simplified model of plasticity at the granule
cell–Purkinje cells synapses, as in Kawato and Gomi (1992):

wkj = wkj + α · (IOk − IOmean) · GCj (7)

where IOk is the spiking activity of the kth IO neuron and α is
a learning rate. The error input to the IO cells is then given by
I = I0+β ·ufb, where I0 and β are theminimal input and the input
gain, respectively. Before learning, the mean firing rate IOmean is
determined by averaging the mean firing rates over all IO neurons
with constant input I = I0.

2.6. Simulation parameters

The motor task is to reach successively four targets forming a
square of 20 × 20 cm with a movement time of 0.5 s. The center

location of the square is [0, 0.4] m, where the shoulder is located
at [0, 0]. During 30 learning trials, the feedback command ufb is in-
tegrated as a learning error. We modeled 100 granule cells, which
send their inputs to 50 Purkinje cells for each joint.We also have 50
IO cells per joint and one-to-one connections between each IO and
Purkinje cell. The fixed weights from the desired state to the gran-
ule cells layer are initialized by random variables N(0, 1) and the
modifiable weights from the granule cell to the Purkinje cell layer
are initialized to zero. Theµ-values for the IO neurons are set inho-
mogeneously asµ ∈ [0.99·1.65, 1.01·1.65], where themean value
of µ = 1.65 is considered as a physiologically plausible value for
the spiking neuron (Fujii & Tsuda, 2004; Tsuda et al., 2004). To sim-
ulate the low firing frequency of the IO neuron, the time constants
η1, η2 are set such that themean firing rate becomes 2 Hz for a con-
stant input. Other simulation parameters are given as xth = 0.75,
η1 = η2 = 0.04, I0 = 0.2, β = 0.05, α = 0.02, L1 = 0.33 m,
L2 = 0.34, I1 = 0.067 kg m2, I2 = 0.97 kg m2,W1 = 1.52 kg, and
W2 = 0.34 kg m, KP = 100, KD = 1, and the time step dt = 0.003.

3. Results

3.1. Information transmission

The mutual information was calculated in the noise-free condi-
tion (D = 0) for the chaotic input signal. The coupling strengthwas
varied in the range of g ∈ [0, 0.3]. The upper, middle, and lower
graphs of Fig. 1 show themutual information, the Lyapunovdimen-
sion, and the synchronization quantity, respectively. In the regime
of weak coupling, a strong coherent activity was induced due to
a common input signal (see Fig. 2(a)). Because of this synchrony,
the efficiency of the information transmission was low, indicated
by the small mutual information. Here, each neuron generated a
simple limit cycle oscillation. As the coupling was increased, the
network dynamics became chaotic, as indicated by the sudden in-
crease in the Lyapunovdimension (g ≈ 0.03). This chaos destroyed
synchronous firings of the neurons as shown in Fig. 2(b). Accord-
ingly, the synchronization quantity was decreased (see Fig. 1(c))
and the desynchronized firings enhanced the information transfer,
as indicated in Fig. 1(a). Similarity between the input signal and
the network output can be also confirmed in Fig. 3. By this mecha-
nism, the peak of the Lyapunov dimension coincides with the peak
of the mutual information. As the coupling was further increased,
the Lyapunov dimension and efficiency of the information trans-
mission were lowered (see also Fig. 3(c)).
To study how the three quantities (mutual information, chaos,

and synchrony) are related, their correlations were computed. The
correlation coefficient between the mutual information and the
Lyapunov dimension was 0.84 (p < 0.0001), whereas the corre-
lation coefficient between the mutual information and the syn-
chrony was −0.69 (p < 0.001). Since the correlation coefficient
between the mutual information and the largest Lyapunov expo-
nent was merely 0.31 (significance level of p = 0.12), the Lya-
punov dimension seems to be more appropriate than the largest
Lyapunov exponent to measure the chaotic resonance.

3.2. Feedback error learning

We then inserted the network of IO neurons in the feedback
error learning control scheme. Fig. 4(a) shows the dependence
of the asymptotic learning error on the coupling strength. The
solid line corresponds to the noise-free case (D = 0). The error
was minimized at around g ≈ 0.05. This is in good agreement
with the maximal position of the mutual information of Fig. 1(a),
implying that the optimal information transmission observedwith
the intermediate coupling is also important for efficient learning.
Thus, chaos plays a key role in desynchronizing IO firings and
enhancing the feedback error learning. It should be noted that
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Fig. 1. Transmission of a chaotic signal via a network of coupled inferior olive neurons. The coupling strength is varied between g ∈ [0, 0.3]. (a)Mutual information between
input and output. (b) Lyapunov dimension of the network dynamics of the inferior olive. (c) Synchronization index measured by computing the order parameter R.

Fig. 2. Superimposed drawing of membrane potential activity of 20 neurons, which receive a common input signal. (a) No coupling (g = 0). (b) Intermediate coupling
(g = 0.05).

a relatively small learning error is observed in a broad range of
g ∈ [0.02, 0.1] in Fig. 4(a).
Next, we studied the effect of noise. Fig. 4(b) shows the results

of applying the dynamical noise in the range ofD ∈ [0, 1]. Without
coupling (g = 0; the solid line), the error was quite large for
a weak noise (D < 0.04), because the noise was too weak to
destroy the synchronous firings. As the noise level increased, the
coherence disappeared and learning improved. Best learning was
realized at the intermediate level of noise of aroundD ≈ 0.1. As the
noisewas further increased, the efficiency of the error transmission
decreased and learning deteriorated.

The dotted line of Fig. 4(b) shows the effect of noise in the case
of intermediate coupling between the IO neurons (g = 0.05).
The main difference with no coupling is that efficient learning
was also realized in the range of weak noise (D < 0.05), where
chaos enhances the learning process. Furthermore, worsening of
the learning performance was to some extent suppressed in the
range of large noise (D > 0.4).
Thedotted line of Fig. 4(a) shows thedependence of the learning

error on the coupling strength in the presence of intermediate
noise (D = 0.1). Compared to the noise-free curve (the solid
line), such intermediate noise realized good learning even for small
coupling (g < 0.05), where the noise destroyed the coherence
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Fig. 3. (a) Input signal I(t) to a network of inferior olive neurons. (b), (c) Firing rate S(t) defined by the number of spikes within a time window of 0.02 normalized by the
total neuron number and the time window. g = 0.05 for (b), g = 0.3 for (c).

of the neural activity instead of chaos. In the range of a strong
coupling, which tends to induce synchronous activities of the
neurons, the noise again destroyed the synchrony and maintained
good learning.
Finally, as a simple quantity to measure the energy required for

the neural activity, we computed the spike amplitudes with and
without coupling (Fig. 4(c)). In the overall range of the noise, the
spike amplitudewas significantly lower in the presence of coupling
than in its absence.

4. Discussion

To summarize, we used the µ-model as a simplified model for
the electrically coupled IO neurons. We studied the capability of
information transmission by a network of spatially coupled µ-
neurons and found that there exists an intermediate strength of
coupling that maximizes the complexity of chaotic firings and si-
multaneously optimizes the information transmission. The exis-
tence of such an optimal regime can be understood as follows. For
weak coupling, a signal input common to all the neurons induces
a strong coherent neuronal activity (Fig. 2(a)). This synchrony lim-
its the efficient information transmission (Fig. 1(a)). An increase in
the coupling strength induces chaotic dynamics, which destroys
synchronous firings of the neurons (Fig. 1(b) and (c)). Since the
desynchronized firings enhance the information transfer, the peak
of the Lyapunov dimension coincides with the peak of the mutual
information (Fig. 1(a) and (b)). As the coupling is further increased,
the Lyapunov dimension is lowered rather quickly (Fig. 1(b)). As
studied in detail by Tsuda et al. (2004), this is due to the charac-
teristics of this particular neural system. Namely, after the system
passes through the peak of the Lyapunov dimension, a fully de-
veloped chaos becomes localized in a relatively low-dimensional
space with a strong coherent property. Such low-dimensional
coexisting attractors are eventually destabilized and linked via

high-dimensional dynamical paths to form intermittent switching
between ruins of the attractors, known as chaotic itinerancy (Tsuda
et al., 2004). Because of the low-dimensional coherent motion, the
efficiency of the information transmission is lowered (Figs. 1(a) and
3(c)).
These observations lead to the first part of our conclusion

that desynchronization of the neural firings is essential for real-
izing efficient information transfer (Masuda & Aihara, 2002, 2003;
Schweighofer et al., 2004).With an intermediate coupling strength,
chaos destroys synchronization andmaximizes information trans-
mission. This regime corresponds to the chaotic resonance, which
has been predicted by Schweighofer et al. (2004). Our finding with
the µ-model implies that the chaotic resonance is a general phe-
nomenon, which does not depend upon the details of the neuronal
models.
In the second part of our study, the IO network was embed-

ded into the framework of feedback error learning. The simulation
study demonstrated that chaotic resonance can greatly enhance
the motor learning, where the optimal learning point is located
closely to the point of chaotic resonance indicated with the max-
imal Lyapunov dimension (the solid line of Fig. 4(a)). Compared
with the regime of efficient information transmission (Fig. 1(a)),
a small learning error was observed in a relatively broad range of
g ∈ [0.02, 0.1]. This implies that an efficient learning is realized
also in a regime where the information transmission is not highly
efficient. Two reasons can be considered for this broadening effect.
The first reason might be due to the robustness of the learning.
Even if the signals transmitted by the IO network contain certain
amount of error or noise, the iterative learning procedure makes
up such error to smooth out the noise effect (Holmström & Koisti-
nen, 1992; Matsuoka, 1992). The second reason may come from
the simplicity of the control problem. The two-link planar robotics
is much simpler than any actual dynamics of human body parts.
Especially for complicated movement control of manipulation of
objects or locomotion on uneven terrains, different fidelities of the
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Fig. 4. Effect of coupling and noise in the inferior olive network on feedback error learning. (a) Dependence of the learning error on the coupling strength g ∈ [0, 0.6].
The solid line represents the case without noise (D = 0), whereas the dotted line represents the case with dynamical noise (D = 0.1). The small graph (inset) represents
an enlargement of the small region g ∈ [0, 0.02]. (b) Dependence of the learning error on noise intensity D ∈ [0, 1]. The solid line represents the case without coupling
(g = 0), whereas the dotted line shows the case with intermediate coupling (g = 0.05). (c) Dependence of the spiking amplitude on noise intensity D ∈ [0, 1]. The solid
line represents the case without coupling (g = 0), whereas the dotted line shows the case with intermediate coupling (g = 0.05).

error signal should lead to quite different levels of learning errors.
With more complicated problems, the learning curve may become
more sensitive to the precision of the signal transmission.
Our key question on the feedback error learning was whether

chaos is indispensable to enhance the motor learning. To compare
the functionality of chaos with that of noise, a dynamical noise in-
put was introduced to the µ-model. In the no-coupling case, we
showed that a small amount of noise is not sufficient to destroy
synchronous firings, which results in a large asymptotic error (see
the solid line of Fig. 4(b)). Too strong noise, on the other hand, re-
duces the transmitted information and is again not adequate for
learning. For an intermediate level of noise (D ≈ 0.1 in Fig. 4(b)),
the coherence of the neural dynamics disappears and learning is
much enhanced, similarly to what is observed with intermediate
coupling. The existence of this kind of optimal noise level is rem-
iniscent of stochastic resonance in neural networks (e.g. Collins
et al., 1995).
In the presence of the electrical coupling (the dotted line of

Fig. 4(b)), efficient learning can be found even in the range of a
weak noise (D < 0.05), where chaotic resonance enhances the
learning process instead of noise. Moreover, in the range of a large
noise (D > 0.4), learning is less degraded with coupling than
without coupling. Here, electrical coupling weakens the noisy dy-
namics by cancelling the noise acting on opposite directions in the
interconnected neurons. Thus, coupling is highly advantageous for
widening the range of the noise intensity, which enhances the
learning process.
Noise, on the other hand, can compensate for weak coupling.

In the presence of an intermediate noise level (the dotted line
of Fig. 4(a)), efficient learning is realized when coupling alone
is too weak to induce chaos. The same effect can also be seen

for a stronger coupling. These findings imply that coupling and
noise can compensate each other. Namely, in the absence of noise,
coupling enhances learning, whereas noise enhances learning if
the coupling is too weak or too strong to induce chaos. This kind
of interplay between coupling and noise enlarges the parameter
ranges of both coupling strength and noise intensity that provide
efficient learning.
Since the effects of noise and coupling in enhancing learning

is similar, is there an advantage of chaos-induced learning over
noise-induced learning? Our results on spike amplitude suggest
that, from an energetic viewpoint, chaos may provide more
economical desynchrony than noise for two reasons. First, we
found that, in the overall range of noise, the spike amplitude is
significantly lower in the presence of coupling than in its absence
(Fig. 4(c)). Electrical coupling diminishes the spike amplitudes as
follows: if a neuron spikes with relatively strong amplitude, the
neighboring (desynchronized) neurons tend to pull the neuronal
state back. Thus, chaotic spikes induced by electrical coupling give
rise to relatively smaller spike amplitudes, which may require
less energy expenditure. According to Lennie (2003), the recovery
of ion imbalance associated with spike generation is the major
energy consumption for spiking activity. Because the membrane
potential is a temporal integration of the incoming ion flux, the
spike amplitude may represent the total number of ions which
are pumped out after the spiking, thus providing a good estimate
for energy expenditure. Second, noise in the nervous system is
thought to arise mainly from synaptic noise (Hubbard, Stenhouse,
& Eccles, 1967). The generation of such noise is energetically
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costly because it requires spike generations in the presynaptic
neurons and postsynaptic potentials in the postsynatic neurons.
On the other hand, electrical coupling itself does not consume too
much energy. Finally, our results show that the improvements in
learning occur only for limited ranges of coupling strengths and
noise amplitudes; thus, to be effective, the coupling or noise level
should be relatively well controlled. It has been suggested that the
coupling strength between IO neurons is modulated by inhibitory
inputs from the cerebellar nucleus (Best & Regehr, 2009). It is
unclear however how the noise level in neural systems could be
controlled.
In summary, a comparison between our simulations with and

without coupling showed that the presence of the electrical cou-
pling can be advantageous in the sense that (1) chaotic resonance
enlarges the range of noise level that realizes efficient learning and
(2) the spiking activity is kept at relatively low amplitudes, leading
to a reduction in the amount of energy necessary for spiking. Ad-
dition of the dynamical noise showed that noise can also improve
learning with an enlarged range of the efficient coupling strength,
where the interplay between noise and chaos works in a comple-
mentary manner. In future work, we will validate the hypothe-
sis that physiological electrical coupling strengths induce chaotic
firings in real inferior olive neurons.

Acknowledgements

This research was partially supported by Grants-in-Aid for
Scientific Research (C) (No. 20560352) from MEXT of Japan
and SCOPE (071705001) of the Ministry of Internal Affairs
and Communications (MIC) of Japan to IT, by National Science
Foundation Grant IIS 0535282 to NS, and by Grants-in-Aid for
Scientific Research on Priority Areas (No. 17022012) from MEXT
of Japan to KA.

References

Albus, J. S. (1971). The theory of cerebellar function. Mathematical Biosciences, 10,
25–61.

Best, A. R., & Regehr, W. G. (2009). Inhibitory regulation of electrically coupled
neurons in the inferior olive is mediated by asynchronous release of GABA.
Neuron, 62(4), 555–565.

Collins, J. J., Chow, C. C., & Imhoff, T. T. (1995). Stochastic resonance without tuning.
Nature, 376, 236–238.

Flash, T., & Hogan, N. (1985). The coordination of arm movements: an experimen-
tally confirmed mathematical model. Journal of Neuroscience, 5, 1688–1703.

Fox, R. F., Gatland, I. R., Roy, R., & Vemuri, G. (1988). Fast accurate algorithm for
numerical simulation of exponentially correlated colored noise. Physical Review
A, 38, 5938–5940.

Fujii, H., & Tsuda, I. (2004). Itinerant dynamics of class I∗ neurons coupled by gap
junctions. Lecture Notes in Computer Science, 3146, 140–160.

Gilbert, P. F., & Thach, W. T. (1977). Purkinje cell activity during motor learning.
Brain Research, 128, 309–328.

Holmström, L., & Koistinen, P. (1992). Using additive noise in back-propagation
training. IEEE Transactions on Neural Networks, 3, 24–38.

Hubbard, J. I., Stenhouse, D., & Eccles, R. M. (1967). Origin of synaptic noise. Science,
157, 330–331.

Ito, M. (1970). Neurophysiological aspects of the cerebellar motor control system.
International Journal of Neuroscience, 7, 162–176.

Ito, M. (1990). A new physiological concept on cerebellum. Revue Neurologique
(Paris), 146, 564–569.

Ito, M., Sakurai, M., & Tongroach, P. (1982). Climbing fibre induced long term
depression of both mossy fibre responsiveness and glutamate sensitivity of
cerebellar Purkinje cells. The Journal of Physiology, 324, 113–134.

Kaplan, J. L., & Yorke, J. A. (1970). Chaotic behavior of multidimensional difference
equations. In H. O. Walter, & H. Peitgen (Eds.), Lecture notes in mathematics:
Vol. 730. Functional differential equations and approximations of fixed points
(pp. 204–227). Berlin: Springer-Verlag.

Katayama, M., & Kawato, M. (1993). Virtual trajectory and stiffness ellipse during
multijoint arm movement predicted by neural inverse models. Biological
Cybernetics, 69, 353–362.

Kawato, M., Furukawa, K., & Suzuki, R. (1987). A hierarchical neural-networkmodel
for control and learning of voluntary movement. Biological Cybernetics, 57,
169–185.

Kawato, M., & Gomi, H. (1992). A computational model of four regions of the
cerebellum based on feedback-error learning. Biological Cybernetics, 68, 95–103.

Kitazawa, S., Kimura, T., & Yin, P. B. (1998). Cerebellar complex spikes encode both
destinations and error in arm movements. Nature, 392, 494–497.

Kobayashi, Y., Kawano, K., Takemura, A., Inoue, Y., Kitama, T., Gomi, H., & Kawato,
M. (1998). Temporal firing patterns of Purkinje cells in the cerebellar ventral
paraflocculus during ocular following responses in monkeys II. Complex spikes.
Journal of Neurophysiology, 80, 832–848.

Kuramoto, Y. (1984). Chemical oscillations, waves and turbulence. Berlin: Springer.
Lang, E. J., Sugihara, I., & Llinas, R. (1996). GABAergic modulation of complex
spike activity by the cerebellar nucleoolivary pathway in rat. Journal of
Neurophysiology, 76, 255–275.

Lennie, P. (2003). The cost of cortical computation. Current Biology, 13, 493–497.
Makarenko, V., & Llinas, R. (1998). Experimentally determined chaotic phase
synchronization in a neuronal system. Proceedings of the National Academy of
Sciences of the United States of America, 95, 15747–15752.

Manor, Y., Rinzel, J., Segev, I., & Yarom, Y. (1997). Low-amplitude oscillations
in the inferior olive: a model based on electrical coupling of neurons with
heterogeneous channel densities. Journal of Neurophysiology, 77, 2736–2752.

Marr, D. (1969). A theory of cerebellar cortex. The Journal of Physiology, 202,
437–470.

Masuda, N., & Aihara, K. (2002). Briding rate coding and temporal spike coding by
effect of noise. Physical Review Letters, 88, 248101.

Masuda, N., & Aihara, K. (2003). Duality of rate coding and temporal coding in
multilayered feedforward networks. Neural Computation, 15, 103–125.

Matsuoka, K. (1992). Noise injection into inputs in back-propagation learning. IEEE
Transactions on Systems, Man, and Cybernetics, 22, 436–440.

Miall, R. C., Christensen, L. O., Cain, O., & Stanley, J. (2007). Disruption of state
estimation in the human lateral cerebellum. PLoS Biology, 5, e316.

Miall, R. C., Weir, D. J., Wolpert, D. M., & Stein, J. F. (1993). Is the cerebellum a Smith
predictor? Journal of Motor Behavior , 25, 203–216.

Nishimura, H., Katada, N., & Aihara, K. (2000). Coherent response in a chaotic neural
network. Neural Processing Letters, 12, 49–58.

Pikovsky, A., Rosenblum, M., & Kurths, J. (2001). Synchronization: a universal concept
in nonlinear sciences. Cambridge: Cambridge University Press.

Rényi, A. (1970). Probability theory. Amsterdam: North-Holland.
Rössler, O. E. (1979). Continuous chaos. Annals of the New York Academy of Sciences,
31, 376–392.

Schweighofer, N. (1998). A model of activity-dependent formation of cerebellar
microzones. Biological Cybernetics, 79, 97–107.

Schweighofer, N., Doya, K., Fukai, H., Chiron, J. V., Furukawa, T., & Kawato, M.
(2004). Chaos may enhance information transmission in the inferior olive.
Proceedings of the National Academy of Sciences of the United States of America,
101, 4655–4660.

Schweighofer, N., Doya, K., & Kawato, M. (1999). Electrophysiological properties of
inferior olive neurons: a compartmental model. Journal of Neurophysiology, 82,
804–817.

Schweighofer, N., Doya, K., & Lay, F. (2001). Unsupervised learning of granule cell
sparse codes enhances cerebellar adaptive control. Neuroscience, 103, 35–50.

Schweighofer, N., Spoelstra, J., Arbib, M. A., & Kawato, M. (1998). Role of the
cerebellum in reaching movements in humans. II. A neural model of the
intermediate cerebellum. European Journal of Neuroscience, 10, 95–105.

Shidara, M., Kawano, K., Gomi, H., & Kawato, M. (1993). Inverse-dynamics model
eye movement control by Purkinje cells in the cerebellum. Nature, 365, 50–52.

Shimada, I., & Nagashima, T. (1979). A numerical approach to ergodic problem of
dissipative dynamical systems. Progress of Theoretical Physics, 61, 1605–1616.

Tseng, Y. W., Diedrichsen, J., Krakauer, J. W., Shadmehr, R., & Bastian, A. J. (2007).
Sensory prediction errors drive cerebellum-dependent adaptation of reaching.
Journal of Neurophysiology, 98, 54–62.

Tsuda, I., Fujii, H., Tadokoro, S., Yasuoka, T., & Yamaguti, Y. (2004). Chaotic
itinerancy as a mechanism of irregular changes between synchronization and
desynchronization in a neural network. Journal of Integrative Neuroscience, 3,
159–182.


