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Near-infrared spectroscopy (NIRS) has recently been used to measure human motor-cortical activation,
enabling the classification of the content of a sensory-motor event such as whether the left or right hand was
used. Here, we advance this NIRS application by demonstrating quantitative estimates of multiple sensory-
motor events from single-trial NIRS signals. It is known that different degrees of sensory-motor activation are
required to generate various hand/finger force levels. Thus, using a sparse linear regression method, we
examined whether the temporal changes in different force levels could be reconstructed from NIRS signals.
We measured the relative changes in oxyhemoglobin concentrations in the bilateral sensory-motor cortices
while participants performed an isometric finger-pinch force production with their thumb and index finger
by repeatedly exerting one of three target forces (25, 50, or 75% of the maximum voluntary contraction) for
12 s. To reconstruct the generated forces, we determined the regression parameters from the training
datasets and applied these parameters to new test datasets to validate the parameters in the single-trial
reconstruction. The temporal changes in the three different levels of generated forces, as well as the baseline
resting state, could be reconstructed, even for the test datasets. The best reconstruction was achieved when
using only the selected NIRS channels dominantly located in the contralateral sensory-motor cortex, and with
a four second hemodynamic delay. These data demonstrate the potential for reconstructing different levels of
external loads (forces) from those of the internal loads (activation) in the human brain using NIRS.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Near-infrared spectroscopy (NIRS) is an emerging neuroimaging
technique, which allows measurement of human brain activity while
people perform a wide range of daily tasks (Villringer and Chance,
1997; Obrig and Villringer, 2003; Hoshi, 2003; Koizumi et al., 2003).
Due to its practical advantages of portability, simplicity of use,
freeness from electrical-noise, and lower sensitivity to body-motion
artifacts, NIRS has also been used to investigate brain activity related
to human motor control.

Although several NIRS studies have shown the importance of
sensory-motor cortical regions in human motor control (Obrig et al.,
1996; Watanabe et al., 1996; Miyai et al., 2001; Hatakenaka et al.,
2007), as well established by other neuroimaging techniques such as
functional magnetic resonance imaging (fMRI) and positron emission
tomography (PET), the interpretation of NIRS data remains contro-
versial (Boas et al., 2004). This is mainly because NIRS signals are

considered to contain background physiological signals such as
cardiac pulsations, respiration, and blood pressure variations, which
change with the task epoch (Obrig et al. 2000; Boas et al. 2004).
Indeed, previous studies have suggested that NIRS signals may reflect
changes in systemic signals that can be observed in brain areas which
are probably not related to a task (Leung et al., 2003; Tachtsidis et al.,
2008a,b). Thus, the conventional approach of averaging NIRS signals
may be limited for purely identifying a task-related activation that
essentially reflects its brain computation.

To examine whether brain activation is essentially related to
neuronal computation in a motor task and necessary to perform that
task, one possible approach is single-trial reconstruction where task-
related variables (e.g., generated forces or muscular activity) are
reconstructed or predicted from a selected set of brain activation.
Evaluating the reconstruction accuracy increases the chance of
identifying the essential set of brain activation for a motor task.
However, even the most advanced NIRS application is still limited to
the binary classification of a single sensory-motor event, e.g., whether
the left or right hand was used when performing or imagining hand
movements in a single trial (Coyle et al., 2004, 2007; Sitaram et al.,
2007). In the present study, we advance the current level of NIRS
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application by demonstrating the reconstruction of temporal changes
in the dynamic aspects of multiple sensory-motor events from a NIRS
signal, thus validating the use of a single-trial NIRS signal to
quantitatively estimate a task-related variable.

In humans (Dettmers et al., 1995, 1996; Thickbroom et al., 1998;
Dai et al., 2001; Cramer et al., 2002) and non-human primates (Evarts,
1968; Cheney and Fetz, 1980), it is well established that sensory-
motor cortical regions, especially in the contralateral hemisphere, are
involved in the generation of a hand/finger force, and that the
neuronal activities of these regions correlate with the magnitude of
the generated force. This fact, which was revealed by averaging
multiple datasets/sessions, directly indicates that the magnitude of a
generated force can be reconstructed from human sensory-motor
cortical activation. Indeed, it has been demonstrated that it is possible
to reconstruct the magnitude of a generated force and the level of
muscular activity from neuronal activity in sensory-motor areas on
single-trial basis (Carmena et al., 2003; Morrow andMiller, 2003; Ting
et al., 2005, 2008; Koike et al., 2006). Furthermore, a recent non-
invasive human study demonstrated reconstruction of individual
muscular activity from blood oxygenation level-dependent (BOLD)
signals (Ganesh et al., 2008). Thus, if the NIRS signal reflects local
activation in sensory-motor cortical regions then quantitative changes
in finger-pinch forces should be able to be reconstructed from the
sensory-motor cortical activation, especially from those in the
contralateral hemisphere. Furthermore, since the NIRS signal largely
depends on relative changes in the regional cerebral blood flow in the
cortical regions (Hoshi et al., 2001; Obrig and Villringer, 2002), then
the best single-trial reconstruction are achievedwhen considering the
physiological factor of its hemodynamics (hemodynamic delay).

In the present study, using NIRS we measured the oxyhemoglobin
concentrations (oxy-Hb) in the bilateral sensory-motor cortices
while participants generated three different levels of isometric
finger-pinch forces with their thumb and index finger. To select the
set of NIRS channels that contain task-relevant information for
reconstruction, we used a sparse linear regressionmethod (Sato et al.,
2004b; Toda et al., 2007; Ting et al., 2005, 2008), which automatically
determines the essential channels for linear regression. The recon-
struction performance using this method was then compared with
that of ordinary linear regression using all channels without channel
selection, as well with only channels selected through a brute-force
channel search.

Material and methods

Participants

Five right-handed healthy volunteers (four male and one female,
23 to 38 years of age) participated in this experiment. The ethical
committee of the National Institute of Information and Communica-
tions Technology (NICT) approved the experiment, and all partici-
pants gave written informed consent. The experiment was performed
in accordance with the latest version of the Declaration of Helsinki.

Protocol

The participants generated isometric finger-pinch forces with their
thumb and index finger (Fig. 1a) using either the left- or right-hand
for 12 s at 1 Hz, paced by a beep sound (Fig. 1b). The force was exerted
on an acrylic board to which a force transducer was attached (PS-
10KA; Kyowa Electronic Instruments, Chofu, Japan). Each force
generation lasted for approximately 500 ms. Prior to the experiment,
the force level of the maximal voluntary contraction (MVC) between
the fingers was measured for each participant, and all participants
were trained to exert target forces at three different levels,
corresponding to 25%, 50%, and 75% of the MVC. The exerted force
levels were continuously monitored by software (PowerLab; AD
Instruments, Castle Hill, Australia) and displayed on a monitor as
visual feedback. For the behavioral training, the participants repeated
the task by viewing the feedback about their exerted force levels until
they could successfully exert the target forces with their eyes closed.
The experiments were then performed while the participants closed
their eyes to avoid the concomitance of visual effects into the NIRS
signals. During the experiment, an observer monitored the target
forces, and when latter became markedly greater or smaller than the
targets, a short verbal feedback was given.

In the experiment, ten sessions were assigned for each hand. Three
participants conducted the task with both their left- and right-hands,
and two participants completed the task with only the right hand. The
left-hand experiments were cancelled according to the Declaration of
Helsinki, as these two participants felt discomfort and pain generated
by NIRS holders during the experiment. Overall, a total of eight
datasets (hands) were obtained in the experiment. Each session
consisted of six 12 s epochs with inter-epoch-intervals of 21 s. The

Fig.1. Experimental procedure. (a) An isometric force production task using the right thumb and index finger. Forcemagnitudes weremeasured using a force transducer on an acrylic
board. (b) Time-course of measured force. The force that was actually generated (thin line) was smoothed at 1 Hz (bold line). In one epoch, the 1 Hz force productionwas repeated for
12 s. (c) Channel locations in NIRS measurement. A channel (black number) was defined as an intermediate position between a light-emitter (red circle) and a light-detector (blue
rectangle). The distance between the emitter and detector was 30 mm. The emitter in the center of each holder was located at C3 (left) and C4 (right), respectively, based on the
International 10–20 System.
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exerted forces were measured at a sampling rate of 1 kHz. In each
session, the three force levels were repeated twice and their order was
pseudo-randomized. The participants were informed of the force
levels just before each trial was started.

NIRS measurements

We used a 24-channel NIRS system (ETG-100; Hitachi Medical
Corporation, Tokyo, Japan) to measure the relative changes in oxy-Hb
and deoxyhemoglobin (deoxy-Hb) concentrations at 780 nm and
830 nm wavelengths, respectively. The principles of this system have
been previously described (Maki et al., 1995; Koizumi et al., 1999). A
pair of NIRS holders, each of which contained 12 channels, was placed
over the sensory-motor regions of the left and right hemispheres (Fig.
1c). The centers of these holders were located at positions C3 (left)
and C4 (right) of the International 10–20 System, respectively. The
NIRS signal was recorded at a sampling rate of 10 Hz.

Preprocessing

For the present analysis we only used oxy-Hb data as it reflects
changes in regional cerebral blood flow better than deoxy-Hb (Hoshi
et al., 2001), and because our NIRS systemwas not completely suitable
for detecting deoxy-Hb changes due to the wavelengths (Sato et al.,
2004a). For each session, the raw oxy-Hb data was averaged every
second, and then these data were converted into a z-score that was
normalized by its variance in each session. The exerted force was also
averaged for every second and normalized in the same way (Fig. 1b).

Single-trial reconstruction of force

We used linear regression to reconstruct the changes in the force
levels based on the changes of oxy-Hb concentrations in multiple
channels (Fig. 2). The force y at time t is described as,

y tð Þ = b +
X

C

X15

u= −5
wC uð Þ xC t + uð Þ + e tð Þ; ð1Þ

where xc(t) is the oxy-Hb concentration of NIRS channel C at time t.
The allocation of the channel index C is shown in Fig. 1c. The variable
u denotes the time lag between the exerted force and oxy-Hb in
seconds. Thus, the linear weight wC(u) is the weight parameter of

channel C with a lag of u seconds. The term b denotes the bias and ɛ
(t) is the residual error term that obeys a zero-mean Gaussian
distribution.We defined lag u of−5 to 15 s as the calculation range in
order to avoid concomitance of data from the previous and following
epochs. The resulting time-lag dimension was 21. For simplicity,
Eq. (1) can be rewritten when considering all of the data samples in
matrix form,

Y = WX + e; ð2Þ

where Y(=[y(1), y(2), …, y(T)]) is a 1×T matrix representing the
measured force, and T is the number of samples. X is a M×T matrix,
where M is the number of inputs, including the channels, time-lag
dimensions, and bias term b (when using 24 channels and 21 time-lag
dimensions, M is 505 (24×21+1 (bias b)). The linear weight W is a
1×Mmatrix and e is a 1×T residual term. The reconstructed force Ŷ is
given by,

Ŷ = ŴX; ð3Þ

where Ŵ is the estimated linear weight (1×M matrix).

Goodness-of-fit evaluation from cross-validation

To estimate the linear weight Ŵ and evaluate the reconstruction
performance independently, we divided the datasets of the 10
sessions into a training dataset of seven sessions and a test dataset
of three sessions.We first determined Ŵ from the training datasets by
a sparse linear regression (see below). Next, in order to evaluate the
generalization performance, i.e., how applicable the estimated weight
was to unknown datasets, a goodness-of-fit (GOF) value was
computed by applying Ŵ to the test datasets, which were not used
for the weight estimation.

GOF = 1− ‖ Ŷ−Y ‖
2
= ‖ Y−Y ‖

2
: ð4Þ

Here, ‖ ‖ indicates the Euclidean norm, and Y is themean of Y. If the
GOF value is 1, the reconstruction is perfect and has no error, while a
GOF value that is lower than zero indicates a poor reconstructionwith
large errors. In order to reduce the procedural bias due to the selection
of particular training and test datasets, we performed cross-validation
by repeating the above process for all of the combinations of the seven
training and three test sessions (a total of 120 sets).

Fig. 2. Regression scheme with channel selection for a single-trial reconstruction. Linear regression was applied using a channel combination (C) determined by a channel selection
method (the BRUTE-FORCE or the SPARSE method). For each selected channel, the NIRS signal (red line) of each time lag u, xC(t+u), was weighted by a linear weight wC(u) and
summed up within the time window. Finally, these values were summed across channels (

P15

u= −5
wC uð Þ xC t + uð Þ) to generate the reconstructed force signal ŷ (black line). The time

window was set from time lag u=−5 to 15.

630 I. Nambu et al. / NeuroImage 47 (2009) 628–637



Author's personal copy

Sparse linear regression (SPARSE)

We applied a sparse linear regression method, which have a
generalization capability for unknown datasets due to their ability to
remove irrelevant features (Sato, 2001; Ting et al., 2005, 2008; Ganesh
et al., 2008). Here, we used a modified version of the sparse selection
introduced in previous studies (Sato, 2001; Sato et al., 2004b; Toda et
al., 2007; Tinget al., 2005, 2008), but differs from the sparsemethod for
a previous fMRI study (Ganesh et al., 2008). We estimated the linear
weight and the automatic relevance determination (ARD) parameters
(Neal, 1996), which represent how the weight contributes to the
reconstruction. Due to the analytical difficulty of estimating the
parameters, we adopted the variational Bayesian method (Sato, 2001).

Thus, the present version is conceptually identical to those
described above sparse method, with the exception that we
considered ARD parameters for the spatial factor (i.e., channel) only,
instead of all weight dimensions. Based on these ARD parameters, the
SPARSE method identified only the channels that provided better
generalization properties by pruning the ineffective channels for

reconstruction (setting the linear weight value equal to zero). This
selection process provided a linear weight having a non-zero value
only for a few channels, i.e., sparse representation.

The SPARSE methodwas compared with ordinary linear regression
for all of the channels (ALL), as well as when using a brute-force
combinatorial search (BRUTE-FORCE). More details of the SPARSE,
ALL, and BRUTE-FORCE methods are described in the Appendix.

Results

Single-trial reconstruction performance of the sparse linear regression

By selecting the essential channels with the SPARSE method, the
temporal changes in the measured force were well reconstructed
from the oxy-Hb data. This was achieved by the estimation of the
weight using the training dataset, and verified by application of the
weight to the test dataset. The time-course for the measured force
(black line) and for its reconstructed force (red line) in a representa-
tive session obtained from each of two representative participants can

Fig. 3. Time-course of measured force and reconstructed force obtained from two participants. After the selection of the essential channels by the SPARSE method, the temporal
changes in the measured force within a single trial (black line) from test datasets (sessions 8–10) were reconstructed (red line) from the oxy-Hb data using the linear weight
obtained from the training datasets (sessions 1–7). The upper panel displays the right-hand data from session nine for a participant (P1; right-hand). The GOF value was 0.61. The
lower panel displays the right-hand data from session nine for another participant (P4; right-hand). The GOF value was 0.73. The vertical and horizontal axes indicate the force
amplitude (arbitrary unit; a.u.) and time (seconds).

Table 1
Reconstruction results from 120 cross-validation sets by the SPARSE method.

Participant GOF value
(mean (±SD))

Averaged number
of channels selected
(mean (±SD))

Frequency-based
selected channel (rate [%])

GOF-based
selected channel

Time lag provides
the highest peak
(uhighest [s])

Right-hand
P1 0.61 (±0.04) 3.9 (±0.9) CH9# (100) CH9# 5
P2 0.50 (±0.04) 3.6 (±1.0) CH6# (100) CH6# 4
P3 0.32 (±0.06) 4.5 (±0.9) CH8 (97) CH7# 14⁎
P4 0.68 (±0.04) 5.4 (±1.2) CH9#, 3 (85) CH9# 2
P5 0.37 (±0.06) 3.2 (±1.0) CH3 (92) CH3 0⁎⁎

Left-hand
P1 0.56 (±0.04) 3.3 (±0.9) CH16# (92) CH14 4
P2 0.39 (±0.09) 3.9 (±0.8) CH19# (88) CH22 5
P3 0.32 (±0.05) 3.8 (±0.7) CH24 (98) CH24 4

#These channels are located within approximately 30 mm of C3 or C4. Rate (%) equals the percentage of how often the channel was selected across 120 cross-validation sets. In
participant 4 (P4), both CH3 and CH9 were equally frequently selected. As CH9 is closely located to C3, the data from CH9 was used for the across-participant analysis. ⁎In participant
3 (P3), whenwe selected the channel (CH7) based on its GOF value (i.e., GOF-based selection), the time lag became 3 s. ⁎⁎In participant 5 (P5), the secondary, instead of the primary,
peak of weight value in CH3 was observed at 5 s (see detail in the text).
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be seen in Fig. 3. These were examples of the best reconstruction
in the present study, and their GOF values were 0.61 and 0.73,
respectively.

When the GOF values were averaged across all test datasets (not
from a particular session) for each hand, the average GOF values
across eight hands ranged from 0.32 to 0.68 (mean±SD: 0.47±0.14).
We remark that these values were obtained when only a limited
number (1 to 9) of channels were selected from all 24 channels. These
GOF values were significantly greater than the baseline GOF (mean±
SD: 0.04±0.21, Wilcoxon sign-rank test, n=8, Pb0.05), which was
computed by shuffling the channels of the test datasets 300-times.
Randomly permuting the channels equals shuffling the spatial
relation between the signals. In this way topographic information
of the NIRS signals is eliminated in the baseline GOF. Table 1
summarizes the number of selected channels and GOF value for each
hand.

Result of selected channels by cross-validation

Using the SPARSEmethod, we then validated the importance of the
selected channels by performing a cross-validation throughout all 120
sets. Fig. 4a shows a representative example of selected frequency of
each channel for right-hand sessions in a representative participant
(P1). In these data, a total of 14 channels were selected in both
hemispheres among all sets, while in individual set of cross-
validation, a smaller number of channels (mean±SD: 3.9±0.9) was

selected which was consistent across all hands in all participants
(mean±SD: 4.0±0.7). In this participant, the selected channels were
predominantly located in the contralateral hemisphere. Indeed, when
we evaluated the dominance of contralateral channels in all
participants, the average number of selected contralateral channels
across all of the cross-validation sets was significantly greater than
that of the ipsilateral channels (Wilcoxon sign-rank test, n=8,
Pb0.05; see Fig. 4b).

In order to determine the most important channel, we adopted
two selection criteria with respect to different aspects. In the first
criteria we evaluated how often the same channel was selected over
120 cross-validation sets (frequency-based selection), while in the
second criteria we searched for the channel having the highest GOF
value among all selected channels (GOF-based selection). From the
first criteria, we identified the most frequently selected channel
among all cross-validation sets, while from the second criteria we
determined the particular channel that most dominantly contributed
to the reconstruction among all channels.

Table 1 summarized selected channels based on these two criteria
in all hands (participants). In the frequency-based selection, the most
frequently selected channels were located in the hemisphere
contralateral to the performing hand, although their spatial location
varied across hands. Likewise, in the GOF-based selection, the
channels having the highest GOF values were located in the
contralateral hemisphere in all hands. Thus, the frequency-based
and the GOF-based selections provided identical channels or those
channels located in a quite similar region (Table 1). Importantly, the

Fig. 4. Selection frequency of NIRS channels from all cross-validation sets. (a)
Percentage of selected frequency in each channel over all 120 cross-validation sets in
a representative participant (P1). Each circle represents a channel location that
corresponds to that in Fig. 1c. The number in the circle, which is also graded by color,
indicates the selection percentage when this participant performed with the right-
hand. (b) The number of contralateral channels selected across the 120 cross-validation
sets for each hand was plotted against that of the ipsilateral channels. The averaged
number of selected channels across all cross-validation sets was calculated for each
hemisphere of each hand. Each dot represents the data obtained from each hand. The
horizontal axis (x-axis) indicates the number of the ipsilateral channels, and the vertical
axis (y-axis) represents that of contralateral channels. In the majority of the tested
hands, the contralateral channels were dominantly selected. The dashed line indicates
y=x.

Fig. 5. Temporal profile of linear regression weight. (a) Linear regression weight for a
representative participant (P1). The left panel summarizes the linear weight values for
each channel (vertical axis) and its time lag (horizontal axis) when this participant
performed with the right-hand. The linear weight is the average across those obtained
from all 120 cross-validation sets. The weight values are indicated by graded colors, and
the channels (1–12) belonging to the left hemisphere (LH) are displayed in the lower half
of the panel. Green color is assigned to channels that have a weight value of 0 (i.e.,
channels not selected by the SPARSE method). The right panel shows the weight value
changes for the most frequently selected channel (CH9). The dashed line indicates the
time lag (5 s) that provided the highest weight value (uhighest). (b) The averaged
normalized (z-scored) weight values across all of the hands for their most frequently
selected channels. Theweight values peaked at 4 s, as indicated by the dashed line. Error
bars indicate standard deviations ofweight values across all of the hands in each time lag.

632 I. Nambu et al. / NeuroImage 47 (2009) 628–637



Author's personal copy

contralateral channels were concentrated around C3 for right-hand
movement and around C4 for left-hand movement in five out of eight
hands in the frequency-based selection, and four out of eight hands in
the GOF-based selection. Those channels can be assumed to be located
close to the hand regions of the sensory-motor cortices.

Spatio-temporal linear weight

Fig. 5a (left panel) summarizes the average values of the linear
weights across 120 cross-validation sets for each channel at each time
lag u in the right-hand task of a representative participant (P1). The
participant's most frequently selected channel was CH9 (see Fig. 5a
right panel), the weight values of which changed according to time lag
u, but which became largest when u=5 s (uhighest). Similarly, the
weights changed in accordance with the time lag u in all hands, and
the time lags from the most frequently selected channels for all hands
ranged from 0 to 14 s. Table 1 lists the time lag uhighest that gives the
highest peakweight value for themost frequently selected channel for
each hand. The peaks of the weights ranged from 2 to 5 s in six out of
eight hands.

Next, we individually normalized the temporal profile of the
weight value of themost frequently selected channel in each hand and
then averaged across all hands (Fig. 5b). The averaged weight showed
a positive valuewhen the time lag u ranged from0 to 8 s. The averaged
weight value peaked at 4 s (uhighest=4 s) after the time point of force
exertion (=0 s).

Comparison with other linear regression methods

To examine whether the SPARSE method was appropriate for the
single-trial reconstruction of the finger-pinch force from NIRS signals,
we compared the GOF values of the test dataset averaged across
participants for the SPARSE, the BRUTE-FORCE, and the ALL methods
(Fig. 6). The GOF values for these three methods were significantly
different (Friedman test, n=8, Pb0.05), with post-hoc analysis
demonstrating that the GOF values for SPARSE was significantly
higher than those obtained for ALL and BRUTE-FORCE (Wilcoxon
signed-rank test, n=8, Pb0.01), while those for BRUTE-FORCE were
significantly higher than for ALL (Wilcoxon signed-rank test, n=8,
Pb0.01). In addition, the average number of channels across
participants selected by SPARSE (range: 3.2 to 5.4; mean±SD: 4.0±
0.7; see Table 1) was significantly lower than that identified by
BRUTE-FORCE (range: 6.0 to 9.4; mean± SD: 8.1±1.1; Wilcoxon
signed-rank test, n=8, Pb0.01), indicating that SPARSE may produce
a significantly higher GOF value while selecting a smaller number of
channels when compared with BRUTE-FORCE.

Discussion

In the present study, we showed that the temporal changes in
multiple finger-pinch force levels, including at resting state (force
level 0), can be reconstructed from human sensory-motor cortical
activation as measured by NIRS (oxy-Hb), thus advancing the current
level of NIRS application, i.e., a binary classification of a sensory-motor
event, to the level of linear reconstruction of a continuous event.

Methodological considerations

The reconstruction performance evaluated by the GOF values
indicated the suitability of the present SPARSE method in handling
NIRS oxy-Hb concentration data. As expected, the SPARSE and BRUTE-
FORCE methods were superior to the ALL method, which may be the
result of the channel selection process decreasing the possibility of
over-fitting the oxy-Hb signals to the force data. It is generally
accepted that over-fitting easily occurs when the number of samples is
relatively small in comparison to the size of the estimated parameter
dimension. This may have been the case in the present study when
using ALL method. The size of the estimated linear weight dimension
(= 505) may still have been too large when considering the number
of samples, i.e., the training datasets (199×7=1393 samples). In
contrast, by selecting the essential channels with SPARSE and/or
BRUTE-FORCE, we reduced the size of the estimated linear weight
dimension (mean±SD: 83±15, 170±23, respectively) while the
number of samples remains the same.

Over-fitting can also be observed by examining the difference in
the GOF values between the training and test datasets. If over-fitting
of training data occurs then the GOF value should become
drastically smaller in the test datasets compared with the training
datasets. Indeed, the reduction in the GOF value from the training
datasets to the test datasets ([GOF in the training]− [GOF in the
test]) was significantly greater in ALL (mean±SD: 0.54±0.17)
compared with SPARSE (0.11±0.03) and BRUTE-FORCE (0.25±
0.06) (Wilcoxon signed-rank test, n=8, Pb0.01, respectively).
Thus, even though the NIRS parameter dimension was relatively
small compared with other neuroimaging techniques such as fMRI,
ALL had the problem of over-fitting, which was improved by using
SPARSE and BRUTE-FORCE.

When we compared the two channel selection methods, SPARSE
was superior to BRUTE-FORCE in terms of the GOF value and its
computational cost. The total number of possible combinations in an
exhaustive search was approximately sixteen million, which was too
large for a best channel combination search. Even when we used the
BRUTE-FORCE method, which efficiently searches for the best channel
combination from a limited number of combination sets, the
computational cost was greater than that for SPARSE. Indeed, SPARSE
required a tenth of the computational time required by BRUTE-FORCE
in the present study. In support of the view that SPARSE has an ad-
vantage for generalization, previous studies demonstrated the validity
of sparse feature selection when muscular activity was reconstructed
from unit recording data (Ting et al., 2005, 2008) and fMRI activation
(Ganesh et al., 2008), as well as when various types of visual stimuli
were decoded from fMRI activation (Yamashita et al., 2008). It is
important to note, however, that SPARSE has a limitation in that we
may have excluded some important channels (i.e., over-pruning)
(Ganesh et al., 2008; Yamashita et al., 2008). Of course, increasing the
number of collected data and improving the measurement accuracy
may avoid over-pruning, and thereby improve the GOF value. Never-
theless, as far as the spatial location of selected channels is biologically
plausible (see below), we believe that channel selection, such as with
the SPARSE method, is useful to effectively select NIRS channels that
reflect task-relevant brain activation while excluding those having
false correlations with tasks containing background physiological
signals.

Fig. 6. Averaged GOF values for a test dataset across all of the hands in the three linear
regression methods. The GOF value by the SPARSEmethod was significantly higher than
those by the ALL and BRUTE-FORCEmethods (Pb0.01). Error bars show standard errors.
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Physiological plausibility of NIRS data

Using the present SPARSE method we found that the most
frequently selected channels (i.e., the most important channels for
reconstruction) were located in the hemisphere contralateral to the
performing hand, particularly around C3 in the left hemisphere and C4
in the right hemisphere for five out of eight performing hands. Many
event-related brain potential (ERP) studies have shown that brain
activity recorded from those sites accurately reflects neuronal activity
related to hand/finger sensory-motor events (Ikeda et al., 1992). Thus,
although the spatial resolution and recording modality differ among
these neuroimaging techniques, the locations of the majority of the
selected channels can be assumed to correspond to the hand/finger
sections of the primary sensory-motor cortices in the present study.

In order to confirm the importance of sensory-motor channels for
force reconstruction, we conducted a preliminary experiment (not
laid out in this study), where NIRS signals from the prefrontal regions
(12 channels, the center of NIRS holder was located in the center point
of a triangle formed by Fz, Fp1, and Fp2) and from the contralateral
sensory-motor regions (12 channels, centered on C3 or C4) were
measured simultaneously. One participant performed the same task
as in the present study. Both right and left hands were tested. By
applying exactly the same reconstruction approach using the SPARSE
method, the channels most frequently selected by cross-validation
were located indeed on the contralateral sensory-motor region
around C3/C4 for both the right and left hand. The GOF values
computed from the channels selected in the contralateral sensory-
motor areas were significantly greater than that obtained from those
in the prefrontal region. These data suggest a stronger contribution of
the contralateral sensory-motor channels to the force reconstruction
compared with other brain regions such as the prefrontal cortex that
are less relevant to the task.

Although the contralateral primary sensory-motor cortex plays
a primary role in the force generation task, other areas, including
neighboring secondary sensory-motor areas, also play important roles
in controlling and grading the hand/finger forces (Ehrsson et al. 2000;
Dettmers et al., 1995, 1996; Cramer et al., 2002; Dai et al., 2001).
Indeed, in the present study, the channels contributing to the force
reconstruction were not only located in the contralateral primary
sensory-motor cortex, but also in other neighboring cortical regions,
including the pre-motor region. In particular, for two of the
participants the best channels for the reconstruction (i.e., the most
frequently selected channels) were selected from the neighboring
regions in the contralateral hemisphere. Potentially, this may relate to
individual differences in the relative location of the NIRS optodes to
their cortices, a variability of channel sensitivity, or a strategic dif-
ference in controlling the force.

The averaged time lag that provided the highest weight values
across participants (averaged uhighest) was approximately four
seconds after the time point the force was to be reconstructed
(Fig. 5). However, when we examined uhighest individually across all
hands, the values ranged from 2 to 5 s in six out of eight hands, while
the other two hands showed out-of-range values. When we selected
the channel based on its GOF value (i.e., GOF-based selection) for one
of those two hands (P3 right hand), the value peaked at 3 s, while for
the other hand (P5 right hand) the secondary peak for the weight
value in the channel (CH 3) selected both by the frequency- and the
GOF-based selections was observed at 5 s after the time to be
reconstructed. Thus, taken together, these data suggest that the
primary peaks in themajority of tested hands, and the secondary peak
of one hand, was in the range of the hemodynamic delay of the BOLD
signal (several seconds after movement onset; Aguirre et al., 1998;
Miezin et al., 2000; Handwerker et al., 2004). Indeed, fMRI–NIRS
simultaneous measurement suggests that the oxy-Hb measured by
NIRS reaches its peak at around 3 to 6 s after movement onset, which
closely equals the hemodynamic delay of the BOLD signal measured

by fMRI (Huppert et al., 2006). This suggests that we indeed
reconstructed the finger-pinch forces based on the NIRS signals
(oxy-Hb) that reflected the sensory-motor cortical activation related
to the force generation.

Single-trial reconstruction from multi-channel NIRS data

We consider that the reconstruction/prediction approach has an
advantage in terms of extracting cortical activation from NIRS. Many
NIRS studies have used the technique of averaging event-related NIRS
data across trials and sessions to identify task-specific activation
individually for each channel. Our approach conceptually distinguishes
itself from that method, and was designed to identify the cortical
activation essentially related to a task in a trial-based manner from
multiple-channel data. In general, the NIRS signal likely contains
background physiological signals including cardiac pulsations, respira-
tion, and blood pressure variations (Obrig et al., 2000; Boas et al., 2004).
In simultaneous measurements of these systemic signals and NIRS
(Leung et al., 2003; Tachtsidis et al., 2008a,b), the changes of the
systemic signals accompanied by the task were correlated with NIRS
activation in brain areas which are unlikely related to a task (e.g.,
prefrontal area in the motor task). Under these measurement condi-
tions, the conventional averaging technique may identify activation
reflecting highly reproducible background physiological changes coin-
ciding with a task as a task-related activation reflecting its brain
computation. In addition, as optical permeability varies over the scalp,
due to local differences in bone thickness for instance, the absolute
amplitude of cortical activation does not necessarily completely reflect a
purely task-related brain process.

In contrast, for our reconstruction/prediction approach using the
SPARSE method, only channels whose signals essentially contributed
to the force reconstruction may be selected, without any bias by the
experimenter. Although those selected channels could incidentally
become identical to those having larger amplitudes of activation, the
level of activation at a single channel is not the main criterion and
larger amplitude is not a prerequisite. Furthermore, principal
component analysis (Boas et al., 2004, Zhang et al., 2005) and
independent component analysis (Kohno et al., 2007) are also suitable
for extracting components of brain signals. However, as these those
methods are not capable of examining the task-relevance of the
components, then the reconstruction approach would be also
applicable to those methods for essentially identifying task-relevant
brain activation from NIRS data.

The results from the present study suggest that the linear regression
method is generally valid for the reconstruction/prediction of contin-
uous force changes over time, at least within the current range of
generated force (Cramer et al., 2002), which is attributed to the
following two reasons. First, both increasing as well as decreasing
phases of force changes can be traced continuously by linear regression,
which allowed us to reconstruct the generated forces regardless of their
magnitudes. This is advantageous compared with binary classification
methods. Second, due to its simplicity, linear regressionwas commonly
used in previous studies where motor output was successfully
reconstructed from neuronal activity (Carmena et al., 2003; Morrow
and Miller, 2003; Koike et al., 2006; Townsend et al., 2006; Ting et al.,
2005, 2008; Ganesh et al., 2008). In the future, once themeasurementof
a fast optical signal is established (Wolf et al., 2002), then quick
reconstruction within a few hundred milliseconds will be available for
NIRS applications using the quantitative feedback of brain activities
(Ward et al., 2007; Birbaumer and Cohen, 2007) by taking advantage of
the linear regression method for time-series data.

Conclusion

We demonstrated the potential for reconstructing temporal
changes of multiple finger-pinch force levels, including resting state,
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from human sensory-motor cortical activation measured by NIRS, and
showed that the sparse linear regression was the most suitable
method for single-trial reconstruction. As the best reconstruction was
achieved when using the contralateral sensory-motor activation and
when incorporating hemodynamic delay for majority of hands, the
NIRS (oxy-Hb) channels that contribute to the regression likely
include the information that reflects physiological changes in the
cortices related to the neuronal processing for force generation with
the hand/fingers. To our knowledge, this is the first NIRS study to
demonstrate that the continuous levels of external loads (forces) can
be reconstructed from their corresponding internal loads (activation)
in restricted regions of the human brain. Thus, sparse linear regression
may be applicable to the reconstruction of externally measurable
loads from human brain activity in a wide range of tasks.
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Appendix A. Linear regression methods (ALL and BRUTE-FORCE)

A.1 Ordinary linear regression with all channels (ALL)

As a benchmarkmethod, we employed common least square linear
regression using all NIRS channels. We refer to this procedure as the
ALL method. This is the simplest regression method since no selection
of channels has to be conducted. The weight Ŵ for the linear
regression to reconstruct force Y from NIRS signals X is estimated as,

Ŵ = YXT ðXXT Þ−1
; ð5Þ

where superscript T is the transpose operator. We recall that in the ALL
method, the number of input M is 505 (24 channels×21 time-lags+
bias), and thus ŴALL has 505 dimensions (=24×21+1).

A.2 Ordinary linear regression with brute-force channel selection
(BRUTE-FORCE)

In the BRUTE-FORCE method channels were pre-selected before
applying regression. As a search for all of the possible channel-
combinations (approximately sixteen million sets) is exhausting and
requires huge computational cost, the BRUTE-FORCEmethod takes the
more efficient approach of searching for the best combination. In
detail, we exclude some channel-combinations from candidates, and
select a limited number of channel-combinations that provide better
GOF values as the candidates for the next search step. The best channel
combination is determined among the selected candidate channel-
combinations by again looking at the GOF values. A parameter nCH
indicates the number of channels in one combination. The linear
weight was estimated from training datasets as follows:

1. nCH=1: Calculate the GOF value for each channel as a 1-channel
combination.

2. Repeat from nCH=2–24.
2.1 Select the top 20 (nCH−1) channel-combinations as candi-

dates based on the GOF value computed at 2.3 in the
previous step (e.g., in nCH=2, we select 20 one-channel
combinations (CH1st–CH20th) and exclude remaining four sets
(CH21th–CH24th)). Here, CHith denotes the channel combina-
tion with the ith highest GOF value.

2.2 Define the candidate nCH-channel-combinations. New possible
candidate combinations are constructed fromeachof the (nCH−1)

channel combinations selected in 2.1 by adding one of the
remaining channels to it. For example, in nCH=2, we construct
combinations of one of the candidate 20 channel combinations
(e.g., CH1) and one of the remaining 23 channels (from CH2–
CH24). This results in 270 pair of 2-channel combinations, i.e.,
[CH1, CH2], [CH1, CH3],… [CH20, CH24]).

2.3 Calculate the GOF value for each selected nCH-channel-
combinations. The ordinary least square method (Eq. (5)) is
used to determine the linearweight. TheGOFvalue is estimated
a leave-one-out cross-validation using the training datasets.

3. After evaluating the step 2 for nCH=1–24, we determine the
channel combination with the highest GOF value as the optimal
channel-combination set, CBRUTE.

4. Estimate linear weight for CBRUTE. The linear weight ŴBRUTE the
dimension of which equals the channel dimension of CBRUTE is
estimated from X and Y in all of the training datasets using Eq. (5).

The above procedure describes the BRUTE-FORCE channel selec-
tion with a forward search (by adding channels). We confirmed that
the optimal set found by the forward search was consistent with that
of a backward search (by eliminating channels).

Appendix B. Regression with sparse channel selection (SPARSE)

A brief explanation of the present sparse channel selection is given
below (see previous literature for more details (Sato, 2001; Sato et al.,
2004b; Ting et al., 2005, 2008)).

In a probabilistic model of linear regression (Eq. (2)), the
likelihood function can be described as a probabilistic model,

P Y jX;W;σð Þ =
1

2πð ÞT =2
σT =2 exp −1

2
σ ‖ Y−WX ‖

2
! "# $

; ð6Þ

where T is the number of samples and X is a M×T matrix. M is the
number of inputs, which includes the channels (NCH=24) and time-
lag dimensions (NL=21), i.e., M=NCH×NL (24×21=504). For
simplicity, we consider the case in which X and Y are normalized to
have a zero-mean (i.e., the term b in Eq. (1) is set to 0).

Here, we introduce automatic relevance determination (ARD)
priors (Neal, 1996). As ARD priors, we assume that the precision
parameter α and the noise variance σ. In the general case, a precision
parameter α would be introduced for each of M inputs (see previous
literature). However, in the present study we intended to select
channels while keeping the temporal dimension constant. Thus, we
assume that α is embedded for each channel i, but not for time-lag
dimension j, i.e., αij=αi for all j. We assume a normal distribution
prior of W, and the hierarchical ARD priors α and σ are described as,

P0 W jαð Þ =
YNL

j=1

YNCH

i=1

1
2πð Þ1=2

α1 = 2
i exp −1

2
αiw

2
ij

# $
;

P0 αð Þ =
YNCH

i=1

α−1
i

P0 σð Þ = σ −1
:

ð7Þ

The subscript 0 indicates fixed parameters. α is the NCH vector.w is
the component of W. Note that the time-lag index j=1 here,
corresponds to u=−5 in the text.

Next, we consider the weight parameter W given the training
datasets (X and Y). The weight can be estimated by evaluating the
following posterior joint probability of W,

P W;α;σ jX;Yð Þ = P Y;W;α;σ jXð Þ
P Y jXð Þ

=
P Y jX;W;σð ÞP0 W jαð ÞP0 αð ÞP0 σð Þ

P Y jXð Þ
;

P Y jXð Þ =
R
dWdαdσP Y;W;α;σ jXð Þ:

ð8Þ
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Since analytical solution is difficult to find, we applied the
variational Bayesian method (Attias, 1999; Sato, 2001) to obtain the
posterior distribution P(W, α, σ| X, Y). In the variational Bayesian
approximation, P(W, α, σ| X, Y) is calculated by approximating a trial
distribution Q(W, α, σ). This approximation can be performed by the
maximization of the variational free energy F(Q),

F Qð Þ =
Z

dWdαdσQ W;α;σð Þlog P Y;W;α;σ jXð Þ
Q W;α;σð Þ

: ð9Þ

Thus, estimating the weight W is equivalent to finding the
parameters that maximize F(Q).

To obtain the maximum F(Q), we assume that the distributions Q
(W, α, σ) can be factorized into distributions which restricts the
solution space,

Q W;α;σð Þ = Qw Wð ÞQα α;σð Þ: ð10Þ

By means of this factorization, the maximum F(Q) is obtained by
two iterative steps. One is refereed to as W-step, and maximizes F(Q)
with respect to Qw. The other, α-step maximizes F(Q) with respect to
Qα. These two steps are alternatively repeated until the free energy F
(Q) converges.

bW-stepN

In the W-step, we maximize F(Q) with respect to Qw while Qα is
fixed. We can determine the update equations for the linear weightW
and regularized input covariance ΣW as,

W = σðYXT Þ # Σ−1
W ;

ΣW = σðXXT Þ + A; ð11Þ
where σ are the expectation values estimated in the α-step, and A is
a diagonal matrix whose (NCH(j−1)+ i)th diagonal elements for all
j are the ith component of the precision parameter α (i.e.,
ANCH j−1ð Þ + i; NCH j−1ð Þ + i = αi).

bα-stepN

Likewise, F(Q) is maximized with respect to Qα while Qw is fixed.
The precision vector α, and noise variance σ are updated as follows,

σ −1 =
1
T

‖ Y−WX ‖
2

! "
+ Tr Σ−1

W XXT
! "

;

α−1
i =

1
2

XNL

j=1

w2
NCH j − 1ð Þ + i + Σ−1

W

! "

NCH j−1ð Þ + i

% &
; ð12Þ

where Tr indicates the trace, and (ΣW
−1)k is the kth diagonal

component of the inverse covariance matrix ΣW
−1.

After the convergence of the free energy F(Q) is achieved, the
weight of irrelevant input dimensions are pruned (the corresponding
weight is eliminated). We define the linear weight W after con-
vergence as ŴSPARSE. Using ŴSPARSE, the GOFwas evaluated for the test
datasets.

We remark, that the sparse linear regression laid out above, differs
from regression that recently applied in an fMRI study (Ganesh et al.,
2008). In the latter a Bayesian version of Least Absolute Shrinkage and
Selection Operator (LASSO) was used, where an open parameter that
determines complexity (i.e., the number of the fMRI voxels) is initially
estimated by manual tuning or cross-validation. In the method above
(SPARSE), such parameter is determined automatically.
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