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he recent explosion in computing

power has enabled the imple-

mentation of highly sophisti-

cated control architectures

and algorithms. Yet no arti-

ficial control system has
been designed that works as flexibly
and robustly as a biological control
system. This motivates us to study
the mechanisms of biological motor
control.

Although “learning from nature” is an
old concept, what we can actually learn
from a biological system depends very much
on the theories and technologies available. In

the early days of cy-
bernetics, the sta- CONTROL SYSTEMS
IN BIOLOGY

bility theory of
feedback systems
played an essential
role in understanding the function and dysfunction of the
spinal reflex system. Later, the notion of precalculated,
feedforward control led to a better understanding of the role
of the cerebellum in the control of rapid movement in the
face of feedback delays. More recently, the architecture of
reinforcement learning, an online variant of dynamic pro-
gramming, has provided critical insight about the function
of the basal ganglia. These examples suggest that the devel-
opment of novel system theories and gaining an under-
standing of biological systems are highly complementary
endeavors.

It was traditionally believed that the functions of the cer-
ebellum and the basal ganglia are limited to motor control.
Growing evidence suggests, however, that they are involved
in nonmotor, cognitive functions, too. Thus, a new theory

was postulated that the cerebellum, the basal gan-
glia, and the cerebral cortex have evolved to im-
plement different kinds of learning
algorithms: the cerebellum for supervised
learning, the basal ganglia for reinforce-
ment learning, and the cerebral cortex
for unsupervised learning (Fig. 1) [1],
[2]. Here we introduce recent advances
in motor control and learning, namely,
therole of the basal ganglia in acqui-
sition of goal-directed behaviors,
learning of internal models by the
cerebellum, and decomposition of
complex tasks by the competition of
predictive models.

Reward Prediction
and the Basal Ganglia

The behavior of an animal is generally goal directed;

that is, to seek some kind of reward, such as food or wa-
ter, and to avoid punishment, such as pain or death. Predic-
tion of future reward is essential for learning motor behavior
or even making any voluntary movement at all. The theory
of reinforcement learning [3] provides a computational
framework for learning goal-directed behavior through the
interaction of an agent (e.g., an animal or a robot) with the
environment. Here we introduce some basic concepts of re-
inforcement learning and show how they help in under-
standing the function of the basal ganglia in voluntary
movement control.

Temporal Difference Learning

Reinforcement learning is a paradigm in which an agent
learns a policy that maps the sensory state x of the environ-
ment to a motor action u so that a certain reward r is maxi-
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mized (Fig. 2). When there are
no dynamics in the environ-
ment, this is just a simple task
of identifying the expected re-
ward E[r|x,u] and selecting an
action u(¢) that maximizes the
expectation for each given
state x(t). When the reward is
given depending on the dynam-
ics of the environment, consid-
eration of immediate reward
r(t) alone is not a good policy.

The so-called temporal dif-
ference (TD) learning is a
framework for dealing with a
reinforcement learning prob-
lem with delayed reward.
Here we assume a simple

Cerebral Cortex

(Unsupervised Learning
oty [owpet >
. J

(oo ;
Reinforcement Learning

Reward

Markov environment where
the state x(t)evolves with the
choice of an action u(t) and
the transition probability
P(x(t+Dx(D),u(t)). The re-
ward r(t) is given by either a
deterministic function r(x,u)
or a stochastic rule P(r(t)x(t),u(t)). The goal is to find an
action policy, either a deterministic one u(t) = g(x(t))or a
stochastic one P(u(t)|x(t)), that maximizes the cumulative
future reward

properties of the input signal.

V(x(D) = E[r(D)+ (@t + D+ y'r(t+2)+-], e))
where( < y <lis adiscount factor for future rewards. The ba-
sic strategy is to first learn the above expectation for each
starting state x as the state value function V(x) and then to
improve the policy in reference to the value function.

For a given policy, the value functions of temporally adja-
cent states should satisfy

V(x(0) = E[r(t) +yV(x(t+D)],

where r(t) and x(¢ +1) are dependent on the action u(t) and
the environmental dynamics. Based on this constraint, the
criterion for learning the state value function is to bring the
deviation

8(6) =r(D)+yV(x(t+1)-V(x(1) ®)
to zero on average. This is called the TD error because it is
derived from the temporal difference of the predicted future
rewards. With this error signal, the value function is up-
dated as

V(x(6)) :=V(x (1)) +0od(D), &)

where o is a learning rate.
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Figure 1. Learning-oriented specialization of the cerebellum, the basal ganglia, and the cerebral
cortex [1], [2]. The cerebellum is specialized for supervised learning based on the error signal
encoded in the climbing fibers from the inferior olive. The basal ganglia are specialized for
reinforcement learning based on the reward signal encoded in the dopaminergic fibers from the
substantia nigra. The cerebral cortex is specialized for unsupervised learning based on the statistical

Several ways of improving the policy based on the pre-
dicted future reward have been formulated, but the most
popular one is to use the action value function defined as

Q(x(t),u) = E[r(t) +yV(x(t+ 1))\x(t),u].

This gives an estimate of how much cumulative future re-
ward one would get by trying an action u for now and then

Vs

Agent

Value Function Reward r(t)

V=E[r(t)+yr(t+1)+-]

TD Error §t)=r(t)+yV(t+1)-V(1)

Environment —‘

Figure 2. The standard setup of reinforcement learning [3]. The
agent observes the state x of the environment, takes an action u
according to a policy u = g(x)(or P( u‘x) in the stochastic case), and
receives reward r. The goal of learning is to find a policy that
maximizes the amount of reward acquired in the long run. An action
has to be chosen by considering not only the reward immediately
following the action, but also the reward delivered in the future,
depending on the dynamics of the environment. For this reason, the
agent learns a value function V(x), which is a prediction of the
cumulative future rewards. The difference between the predicted

Action u(t)

Policy

~ State x(1)

reward and the actual reward, or the TD error 0, is used both for
learning the value functionV(x) and for improving the policy g(x).
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following the current policy. The action value function is up-
dated by

Q(x(D),u(1)):= Q(x(),u(1)) +od(1). C))
The policy is then updated as a greedy action selection
u(t) =argmax, Q(x(t),u) ®)
or its stochastic variant

_exp(BQ(x(D).u,))
Y expBQ(x(0).u,)) ©)

Prob[u(t) =u;,]

where u, denote the candidates of actions at x(¢) andf§ >0
is a parameter that controls the randomness of action selec-
tion for exploration.

Thus, in the TD learning framework, the TD error 6(t)
plays the dual role of the teaching signal for reward predic-
tion (V) and action selection (Q). TD learning has been suc-
cessfully applied to a variety of control and optimization
problems such as robot navigation and game playing pro-
grams [4].

In the early 1990s, it became clear that the heuristic algo-
rithms of reinforcement learning had good correspondence
with the framework of dynamic programming, which helped
theoretical analyses of the learning algorithms [5]. It has
been shown that the value function updated by (3) con-
verges, under certain conditions, to the optimal value func-
tion that satisfies the Bellman equation

V(x(0) = max, E[r(t) +yV(x(t +1)|x(t),u],

which is the necessary and sufficient condition for the value
function of an optimal policy [3], [5]. Reinforcement learn-
ing was first developed as a heuristic optimization strategy,
but it is now widely recognized as an online, model-free vari-
ant of dynamic programming.

The theory of reinforcement learning was first developed
for discrete-time, discrete-state systems. A critical issue in
applying it to motor control was how to discretize state, ac-
tion, and time. The characterization of reinforcement learn-
ing as an online, model-free variant of dynamic programming
also enabled us to derive new learning algorithms for contin-
uous-time, continuous-state systems [6].

In the continuous-time case, the value function is defined
as the weighted integral

V(x)= E[ ) °°e“‘””r(s)ds], -

where 1is the time constant of reward prediction. The TD er-
ror is then defined as
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5(6) =r()+ 7‘”/(5[(’ ) ]

—V(x(@®)
T

and is used for updating the value function and the policy in
a similar way as in the discrete-time case. One merit of the
continuous formulation is that we can utilize the gradient of
the value function for efficient design of a policy. Suppose
that the dynamics of the environment are given by

ax(t) _
T—f(x(f),u(f))

and the reward is given by

r(t) = r(x(),u().

Then the condition for the optimal value function is given by
the Hamilton-Jacobi-Bellman (HJB) equation [6]

lV(x) =max, E[r(x,u) + Mf(x,u)].
T ox

If the dynamics f(x,u) are linear with respect to the input u
and the reward is convex with respect to each componentu;
of the action variable, i.e.,

r(t) = R(x(1) +Z ;S (u, (1),

then the action that maximizes the right-hand side of the
HJB equation is given by

u,(0=(5)" [af(zif?,U)J (BV(x(r))) ,

; ox

®

where ’ denotes the derivative and 7T denotes the transpose.
The gradient 0V (x(¢))/ dx of the value function represents
the desired direction of movement in the state space. The
action that realizes the movement under the system dynam-
ics and the action cost constraint is calculated by the input
gain matrix of(x,u)/du and a sigmoid function (S’)™ de-
rived from the cost for the action [6].

If the value function V satisfies the HJB equation, (8) gives
an optimal feedback control policy, which generalizes the
popular linear quadratic control to the case of nonlinear dy-
namics and nonquadratic reward. Even if the optimal value
function is unknown, we can use the above greedy policy (8)
with respect to the current estimate of the value function. Fig.
3 shows an example of applying the above continuous rein-
forcement learning method to swing-up control of a cart-pole
system [6]. With the use of the policy (8) while the value func-
tion V and the dynamic model f(x,u) are learned, the task
was learned in significantly fewer trials than with a more con-
ventional approach that does not use the gradient of the
value function and the dynamic model.
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Reward-Predicting Response

of Dopamine Neurons

The neurotransmitter dopamine is known to be involved in
both the processing of reward and the control of movement.
Most addictive drugs are known to increase the activity of
dopamine in the brain. The major cause of Parkinson’s dis-
ease is the loss of dopamine-delivering neurons.

Schultz and colleagues performed systematic experi-
ments on the activities of dopamine neurons in the midbrain
of monkeys while they performed visual response tasks [7].
Dopamine neurons initially responded to the delivery of re-
ward, such as food and water (Fig. 4(a)). As the monkey be-
came proficient in the lever-pressing task, however, the
response to the reward disappeared. Instead, dopamine
neurons responded to the visual stimulus that evoked the
lever-pressing response, which in turn caused the delivery
of reward (Fig. 4(b)). When the reward that usually followed
a successful response was withheld, the activity of dopa-
mine neurons was depressed (Fig. 4(c)). These results
showed that the response of dopamine neurons does not
just encode the reward itself, but the increase or decrease of
the reward compared to what has been predicted.

TD Learning Model of the Basal Ganglia
The findings regarding the response of dopamine neurons in
the course of learning was a big surprise to theoretical
neuroscientists who were familiar with TD learning. The re-
sponse to the reward itself before learning and the response
to the reward predicting sensory state after learning are ex-
actly how the TD error (2) should behave in the course of
learning (Fig. 4).

A major target of dopamine neurons is the basal ganglia,
which are located between the brain stem and the cerebral
cortex. They are known to be involved in motor control be-
cause damage to them results in severe motor deficits such
as Parkinson’s disease and Huntington’s disease. However,
their exact role under normal conditions has been quite an
enigma.

Inspired by Schultz’s findings, a number of models of the
basal ganglia based on the TD learning paradigm have been
proposed (Fig. 5) [8], [9]. The input part of the basal ganglia,
called the striatum, receives strong dopaminergic input from
the compact part of the substantia nigra (SNc). The striatum
comprises two compartments: the striosome and the matrix.
The striosome projects to the dopaminergic neurons in SNc.
The matrix projects to the reticular part of the substantia
nigra (SNr) and the globus pallidus (GP), whose outputs are
sent to motor nuclei in the brain stem and through the
thalamus to the cerebral cortex. This two-part architecture
is reminiscent of the architecture of TD learning (Fig. 2): one
for reward prediction and another for action selection [8].

The circuit of the basal ganglia could implement TD learn-
ing as follows (Fig. 5). The state of the environment and the
context of the task are represented in the cerebral cortex, de-
noted by x. The state value function V(x) is learned in the

August 2001

LRI

TN

1 [ IIINRANIN
(//////
“7) //\

7 JW"\V/A

[ |

\\\\\
&) \&\\\\

—

Figure 3. An example application of continuous reinforcement
learning for the task of swinging up a cart-pole system [6]. The state
variables were the angle and the angular velocity of the pole (1 m,
0.1 kg) and the position and the velocity of the cart (1.0 kg) on the
track (4.8 m). The action was the driving force to the cart (bounded
by £10 N). The reward was given by the height of the tip of the pole.
The value function and the policy were learned on the
four-dimensional state space using radial basis function networks.
Appropriate swing-up behaviors were learned after about 2,700
trials using a model-free learning algorithm and after 800 trials
using a model-based learning algorithm.

(a) Before Learning
Reward: r

Reward Prediction: V

TD Error: &

(b) After Learning '/?\' @') A
Reward: r ; ;

Reward Prediction: V /

TD Error: & ‘

N | ’
(c) Reward Omitted '/?\' @\)
Reward: r :

Reward Prediction: V /

TD Error: & ‘

)

Figure 4. The response of midbrain dopamine neurons during a
visual response task [7] and its interpretation by a TD learning
model. (a) Initially, the dopamine neurons respond to the reward
itself. Since the reward is not predicted (i.e., V(t) = 0), the TD error
(2) is the same as the reward, i.e., 8(t) = r(1). (b) After learning, the
visual stimulus elicits the response of dopamine neurons. Since the
correct response is well established, the presentation of the stimulus
lets the animal predict the delivery of reward. Thus, the increase in
the value function V makes a positive TD error 8(t) = V(1 +1) = V(?).
(c) If the promised reward is withheld, the downturn in the predicted
reward is observed as a dip in the TD error, which is usually
cancelled with the actual delivery of reward.
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many small spines in the dendrites. Each spine re-
ceives synaptic input from both cortical neurons
and dopamine neurons, which suggests a tight in-
teraction between the two inputs. Indeed, it has

State x(t) ((1(2 @ @ g}) been shown that the change in the efficacy of the
\ & synapses from the cerebral cortex to the striatal

Striatum Thalamus | neurons is modulated by the dopaminergic input
Striosome Matrix O [10]. This is consistent with the TD learning model
State Value|V(x) Altion| Value Q(x,u) where learning is based on the TD error 9, as in (3)
TD Error 3(1) and (4). It has also been demonstrated in simula-
SN¢ SNr, GP tion that the TD model of the basal ganglia can rep-

licate reward-based learning behaviors [11], [12].

Reward r(t) Action u(t) Thus, by combining the experimental data

from the basal ganglia and the theory of reinforce-

Figure 5. A schematic diagram of the circuit of the basal ganglia and their loop
connection with the cerebral cortex. The labels in italics show the hypothetical

roles of the anatomical areas in the reinforcement learning model.

striosome, while the action value function Q(x,u)is learned in
the matrix. One of the candidate actions u is selected in the
output pathway of the basal ganglia by the competition of the
action values, as in (5) or (6). Based on the resulting reward
signal r and the value function of the new state, the TD error &
is represented as the firing of dopamine neurons in the sub-
stantia nigra. Their output is fed back to the striatum and used
as the learning signal for both the state value function V(x)
and the action value function Q(x,u) in the striatum.

Several lines of evidence support the TD learning models of
the basal ganglia. Projection neurons in the striatum have

Figure 6. A top view of the manipulandum (PFM: parallel link
direct-drive air and magnet floating manipulandum) for measuring
the mechanical impedance of the human arm [14]. The ellipses
represent the stiffness of the arm in different directions.
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ment learning, the role of the basal ganglia has be-
come much clearer in the last several years.
Further, the reinforcement learning model of the
basal ganglia ignited a flood of new experiments
on the activity of the basal ganglia and related
brain areas in learning and decision making based
on the prediction of reward. It should be noted, however, that
there are unresolved issues in the TD learning model of the
basal ganglia. One is how the temporal difference of the value
function V is actually calculated in the circuit linking the
striatum and the dopamine neurons in SNc. Some other mod-
els have been proposed that explain the reward predictive re-
sponse of the dopamine neurons [13].

Internal Models and the Cerebellum

When a subject is asked to reach toward a target with an
arm, the trajectory of the hand is roughly straight and its ve-
locity has a smooth, bell-shaped profile. The mechanism un-
derlying such a smooth arm trajectory has been a subject of
much debate. One idea is that the viscoelastic property of
the muscle plays a major role. In the virtual trajectory hy-
pothesis, even if the brain sends a simple motor command
in a step or ramp profile, a smooth trajectory is realized due
to the physical properties of the muscle and the spinal feed-
back loop. For this mechanism to work, however, the arm
should have rather high stiffness and damping.

Recently, Gomi and Kawato [14] measured the mechani-
cal impedance of the human arm using a high-performance
manipulandum, a robot manipulator that perturbs and mon-
itors the movement of the subject’s arm (Fig. 6). The results
indicated that the arm has low stiffness and viscosity during
movement. From a simulation with the measured mechani-
cal impedance of the arm, it was concluded that the trajec-
tory of the equilibrium point should have quite a complex
shape to reproduce the smooth movement trajectory with a
bell-shaped velocity profile. This result suggests that a con-
trol strategy which takes into account the dynamic property
of the arm should be used, even for a simple arm-reaching
movement. This motivated studies on how the internal mod-
els of the body and the environment are acquired by learn-
ing and used for control [15], [16].
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Internal Models in the Cerebellum

An obvious question is where in the brain are internal models
of the body and the environment stored. Several lines of evi-
dence suggest the cerebellum as a good candidate [15]. First,
damage to the cerebellum often leads to a motor deficit, espe-
cially in quick, ballistic movements and coordination of mul-
tiple-joint movements. In such cases, subjects must rely on
preprogrammed motor command rather
than feedback control. Second, the anat-
omy and physiology of the cerebellum is
well suited to the learning of internal mod-
els.

There are two major inputs to the cere-
bellar cortex: the mossy fiberinputs and the
climbing fiber inputs (Fig. 7). The mossy fi-
ber inputs are relayed by an enormous
number of granule cells, larger than the
number of all the neurons in the cerebral
cortex, and their output, the parallel fibers,
converge with the climbing fiber input at
the Purkinje cells, the output neurons of the cerebellar cortex.
A marked feature is that a single Purkinje cell receives inputs
from about 200,000 parallel fibers, whereas it receives input
from only a single climbing fiber.

This peculiar structure inspired Marr [17] and Albus
[18] to propose a hypothesis that the cerebellum works as
a pattern-classifier perceptron where the massive number
of granule neurons work as a signal multiplexer and the
climbing fiber input provides the teaching signal for
Purkinje cells. As predicted by this hypothesis, lto showed
that the synaptic strength from the parallel fiber

fiber input, is transformed into an intermediate
representation b,(x(#)) of a massive number of granule
cells. The output of the Purkinje cell is given by the summa-
tion of the granule cell outputs b,(x(¢#)) multiplied by the
synaptic weights w;, namely,

Y =%, w, b,(x(1)).

Our brain implements the most
efficient and robust control system
available to date. How it really works

cannot be understood just by

watching its activity or by breaking it

down piece by piece.

The basic learning algorithm is to update the weights by
the product of the output error and the input, i.e.,

w;=w; —ot(jl(t)—y(t))b/.(x(t)),

where o is the learning rate. This learning can be imple-
mented by the synaptic plasticity of the Purkinje cell if the
appropriate error signal y(t) — y(t) is provided as the climb-
ing fiber input.

to the Purkinje cell is modified when the parallel
fiber input coincides with the climbing fiber in-
put [19].

Whereas the dopaminergic fibers to the
striatum carry global, scalar information, climb-
ing fibers to the cerebellum carry more specific
information. Kobayashi and colleagues ana-
lyzed the complex spike response of Purkinje
cells, which follows each climbing fiber spike in-
put, during an eye movement task [20]. The re-
sult showed that each climbing fiber represents
the direction and amplitude of error in eye
movement. It was also shown in an arm-reach-
ing task that climbing fiber input contains infor-
mation about the direction in which the hand
deviated from the target at the end of the move-
ment [21].

These anatomical and physiological data sug-
gest the following learning mechanism for the
cerebellum. The object to be modeled, such as
the dynamics or kinematics of the arm, deter-
mines the target mapping x — y. For example, x

Cerebral Cortex (

Pontine Nucleus

Parallel Fibers

Purkinje Cells
Climbing Fibers
Error Signal

Inferior Olive

Cerebellar
Cortex

Thalamus

Cerebellar
Nucleus

Cerebral Cortex
Red Nucleus

is the motor command and y is the sensory out-
come. The input signal x, provided as the mossy
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Figure 7. A schematic diagram of the circuit of the cerebellum and its loop
connection with the cerebral cortex.
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Feedback Error Learning

of Inverse Models

The above learning mechanism of the cerebellum potentially
can be used for building an adaptive controller. However, a
basic problem in building a controller is how to derive an ap-
propriate error signal for the controller. In the case of point-
ing or tracking control, the role of the controller is to provide
an inverse model of the controlled system. If the mapping
from the motor command u to the sensory outcome y is given
by F:u — y, for a given sensory target y?, the ideal motor
command is given by the inverse u(t) = F~'(y‘(t)).

Findings suggest that the internal
model in the cerebellum is involved
in cancellation of ticklishness when
a subject tickles him- or herself.

Anaive method for realizing an inverse model is to train a
network with the sensory output y(¢) as the input and the
motor input u(t) as the target output. Although this method
could work in simple problems where the inverse is
uniquely determined, it is not applicable to systems with re-
dundancy and strong nonlinearity, which is usually the case
with biological control systems.

One way of circumventing this problem was found by
considering the circuit of the cerebellum. The cerebellum
often serves as a side path to another control system, such
as the brain stem circuit in the case of eye movement and
the spinal reflexloop in the case of limb movement. The infe-
rior olive, which sends climbing fibers to the cerebellum, re-
ceives inputs from these lower-level feedback loops.

Based on this notion, Kawato proposed the feedback er-
ror learning scheme, as shown in Fig. 8 [22]. This architec-
ture comprises a fixed feedback controller that ensures the
stability of the system and an adaptive feedforward control-
ler that improves control performance. The output of the
feedback controller is given by

u® () =K(y"(H-y(D),

where y(t)is the actual output of the system. The key idea in
feedback error learning is to use the output of the feedback
controller u” as the error signal for the adaptive
feedforward controller

u" (D) =G(y"(D).
The control output is given by the sum of both controllers

u() =u"(O+u" (O =G(y'(O) +K(y'(O-y(D).

If the learning is complete, i.e., y(t) = y*(t),
then the feedforward controller G should be
serving as the inverse F' of the system
y = F(u). One may wonder why the output of a
simple, linear feedback controller can serve as
the teaching signal for a more complex, nonlin-
ear feedforward controller. This is possible un-
der the assumption that the feedback gain
matrix K provides an approximate Jacobian of
the nonlinear system [23].

The feedback error learning architecture has been suc-
cessfully applied to a variety of control tasks, such as the
control of a robot arm with pneumatic actuators, for which
standard linear feedback control does not work due to large
time delays and nonlinearities. This architecture has also
successfully replicated the experimental data of eye move-
ment adaptation under realistic assumptions.

These successes motivated a rigorous analysis of the
properties of the feedback error learning scheme from a
control theoretic viewpoint. In [24] and [25], the feedback
error learning method is treated as a new type of two-de-
gree-of-freedom control scheme. A rigorous proof of its
convergence is given in the case of linear invertible
plants. Extensions to systems with delay are also dis-
cussed in [25].

Model-Based Reinforcement Learning

Reinforcement learning can be considered an online,

model-free version of dynamic programming, which is an
offline, model-based optimal control

Feedforward Controller |

A 4

method. Although a model-free strategy
has the merits of simplicity and direct-
ness, learning tends to require a large
number of trials. Incorporation of envi-
ronmental models, either given in ad-
vance or learned online, has been

u"=G(y?)
Desired Feedback Error u®
Trajectory
ya(t) N Feedback Controller

- u™=K(y®-y)

Motor Output

Body+Environment
y=F(u)

considered to make reinforcement
learning control more practical. We

v

u(ty=u(t)+u(t)

Sensory Feedback y(t)

showed in the continuous-time case,
using the example of cart-pole swing-up
(Fig. 3), that an environmental model

can considerably accelerate acquisi-

Figure 8. The feedback error learning architecture.
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tion of an appropriate policy [6].
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In the discrete-time, deterministic case, if a forward
model of the system dynamics

x(t+1) =F(x(t),u(t))

and a model of reward condition r(x,u) are available, a
greedy action can be found by

u(t) =arg max, [r(x(t),u) + YV (F(x(),u)]. ©)
This enables a focused search in relevant actions and accord-
ingly facilitates learning of the value function. This action se-
lection scheme requires predicting the next state
x(t+1)=F(x(t),u) if an action u is taken at state x(¢) and
then evaluating the predicted state by the value function
V(x). If the internal model of the system dynamics F(x,u) is
acquired in the cerebellum and the value function V(x) is
learned in the basal ganglia, the above action selection mech-
anism can be realized by the collaboration of the cerebellum
and the basal ganglia. Although there is no di-
rect anatomical connection between the cere-
bellum and the basal ganglia, they both have
loop connections with the cerebral cortex
(Figs. 5 and 7). Thus interaction between the
cerebellum and the basal ganglia can be real-
ized by way of the cerebral cortex [1].

Brain imaging studies have shown that
some parts of the cerebellum and the cortical
areas that receive inputs from the cerebellum
are activated during imagined movement [26].
Furthermore, the frontal part of the basal gan-
glia, which receives the inputs from the frontal cortex, is in-
volved early in the acquisition of novel movements [27].
These findings are in agreement with the serial,
model-based action selection scheme, which could be par-
ticularly useful before a stereotypical sensory-motor map-
ping is established.

Internal Models for Perception,
Simulation, and Encapsulation

The phylogenetically old, medial part of the cerebellum re-
ceives major inputs from and sends outputs to the spinal
cord (spinocerebellum); the phylogenetically newer, lateral
part of the cerebellum receives major inputs from the cere-
bral cortex and sends the outputs back to the cerebral cor-
tex (cerebrocerebellum). Although inverse models, whose
outputs are motor commands, are likely to be located
mainly in the medial cerebellum, forward models may re-
side in the lateral cerebellum for more versatile use by way
of the cerebral cortex. The above model-based action selec-
tion (9) is one example, but there are many other ways of us-
ing forward models for learning and control [15], [16].
Forward models are also important in sensory perception.
Sensory inputs are often affected by the subject’s own motor
outputs. Information about the external world could be pre-
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cisely extracted by subtracting the sensory signal that is pre-
dicted from the motor output. A brain imaging study showed
that the cerebellum is activated in a tactile object discrimina-
tion task using finger movement [28]. Findings in another
study suggested that the internal model in the cerebellum is in-
volved in cancellation of ticklishness when a subject tickles
him- or herself [29].

Sensing of the state of the outside world is often delayed,
corrupted by noise, or cannot be done directly. In such cases,
it is useful to predict the current state using the internal
model of the system dynamics, such as in the form of a Smith
predictor or a Kalman filter. In the model-based action selec-
tion scheme (9), we considered only one-step prediction of
the sensory outcome of an imaginary action. However, if
there is enough working memory capacity, it is possible to
perform a multistep simulation of a sensory-motor loop. Acti-
vation of the cerebellum, as well as the premotor and parietal
cortex, have been reported in brain imaging studies that in-
volve mental simulation of movement.

Reinforcement learning can be

considered an online, model-free
version of dynamic programming,
which is an offline, model-based

optimal control method.

The target of learning by the cerebellum may not be lim-
ited to the body parts and the external world. It can be use-
ful to learn a model of some other parts of the brain. For
example, learning a new task by trial and error using the
model-based action selection (9) involves global communi-
cation among different brain areas. However, once a task is
learned, what is required is just to reproduce the appropri-
ate sensory-motor mapping. A complex input-output map-
ping that was learned elsewhere in the brain could be used
as the teaching signal for the cerebellum. This would allow a
set of sensory-motor mapping functions, or a procedure, to
be memorized in the cerebellum for rapid execution without
widespread brain activation [30].

Although the circuit of the cerebellum is highly suitable
for learning of internal models, this does not exclude the
possibility that other parts of the nervous system also pro-
vide internal models of the body and the environment. For
example, the storage and use of internal models in the cir-
cuit of the spinal cord has been suggested [31].

Modular Representation
and the Cerebral Cortex
In the above discussion, we considered the role of the cere-
bral cortex simply as a buffer or a patch board for the cerebel-
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lum and the basal ganglia to work together. However, the
cerebral cortex presumably performs a more sophisticated
function. Essential roles of the cerebral cortex may be to ex-
tract important components from high-dimensional sen-
sory inputs, to combine inputs from different sensory
modalities, and to supplement missing information based
on the context.

Multimodal Representations

for Sequence Learning

In studies of arm-reaching movement, a much debated issue
has been the space in which movement trajectories are
planned. Trajectory planning in the extrinsic, Cartesian co-
ordinate system has the virtue of simplicity. However, the

experimental data of arm movement are better explained by
taking into account the nonlinear dynamics of the arm [32].
In real life, we may be employing both: extrinsic visual coor-
dinates for easy planning and intrinsic motor coordinates
for efficient execution.

In a series of sequence learning experiments, Hikosaka
and colleagues found that sequence learning has at least
two components: short-term learning of the correct order of
component movements and long-term learning for fluently
executing a series of movements [27]. Interestingly, they
also found through pharmacological blockade experi-
ments, as well as functional brain imaging studies, that dif-
ferent parts of the basal ganglia and the associated cortical
areas are differentially involved in short-term and long-term

learning of sequences. The anterior

r

_(a) - — '(b) :

(front) part of the basal ganglia and the
cortical area it projects to are primarily
involved in the acquisition of novel se-
quences, whereas the posterior (rear)
part of the basal ganglia and the recipi-
ent cortical area are mainly involved in
the execution of well-learned se-
quences. A question then is why the in-
formation about a sequence once
acquired in one part of the control
basal ganglia loop has to be sent to an-
other part for skilled execution.

A computationally reasonable ex-
planation is that there should be some
change of information coding between
different brain areas. In visually guided
motor sequence learning, there can be
at least two ways of defining a se-
quence. One is to describe the se-
quence of target positions in the
extrinsic visual coordinates. Another is
to describe the sequence of movement
commands, such as arm postures or
muscle commands, in intrinsic,
body-specific coordinates. Visual coor-
dinates are useful in learning a new se-
quence because the candidates of
action targets are explicitly given. With
motor coordinates, the same target can
be reached with multiple postures and
in various trajectories, but once this
ill-posed problem is solved, quick, effi-
cient movement can be realized. Ana-

Figure 9. An example of stand-up behavior learned by a hierarchical reinforcement
learning scheme [34]. The two-joint, three-link robot (70 cm in body length and 5 kg in
mass) learned a nonlinear feedback policy in the six-dimensional state space (the head
pitch angle, the two joint angles, and their temporal derivatives). Reward was based on the
height of the head, and punishment was given when the robot tumbled. Successful stand-up
was achieved after about 750 learning trials in simulation and then an additional 150

trials using real hardware.
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tomical and physiological data support
the possibility that visual coordinates
are used in the anterior basal ganglia
loop and motor coordinates are used in
the posterior basal ganglia loop.

We have built a network model that
simulates the dual architecture with dif-
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ferent state representations [11]. The model replicated many
of the experimental findings, including the differential effects
of blockade experiments.

The hypothesis that different coordinate frames are used
in different stages of sequence learning was tested in a hu-
man sequence learning experiment [33]. Once the subjects
learned a button press sequence, their generalization per-
formance was tested in two conditions: one in which the tar-
gets in the same spatial location were pressed with different
finger movements and another in which different spatial tar-
gets were pressed with the same finger movements. Analy-
sis of response times showed significantly better
performance in the latter case (i.e., sequences in the same
motor coordinates) after extended training. This supports
our hypothesis that sequence representation in motor coor-
dinates takes time to be developed, but, once developed, al-
lows quick execution.

Learning to Stand with

Hierarchical Representations
The application of reinforcement learning to a high-dimen-
sional dynamical system is quite difficult because of the
complexity of learning the value function in a high-dimen-
sional space, known as the curse of
dimensionality. Thus, we developed a hierarchi-

Emergence of Modular Organization

A remarkable feature of the biological motor control system
is its realization of both flexibility and robustness. For exam-
ple, in amotor adaptation experiment of reaching to a target
while wearing prism glasses, if a subject is well adapted to
an altered condition and then returns to a normal condition,
there is an after-effect (i.e., an error in the opposite direc-
tion). However, de-adaptation to a normal condition is usu-
ally much faster than adaptation to a novel condition.
Further, if a subject is trained alternately in normal and al-
tered conditions, she will adapt to either condition very
quickly. Such results suggest that a subject does not simply
modify the parameters of a single controller, but retains
multiple controllers for different conditions and can switch
between them easily. Evidence from arm reaching experi-
ments suggests that the outputs of controllers for similar
conditions can be smoothly interpolated for a novel, inter-
mediate condition [15].

The idea of switching among multiple controllers is quite
common; however, a difficult problem in designing an adap-
tive modular control system is how to select an appropriate
module for a given situation. To evaluate a set of controllers,
we basically have to test the performance of each controller

cal reinforcement learning architecture [34]. In

the upper level, coarsely discretized states in a
reduced-dimensional space are used to make
global exploration feasible. In the lower level, lo-

cal dynamics in a continuous, high-dimensional
state space are considered for smooth control

éwf)

performance.

We applied this hierarchical reinforcement
learning architecture to the task of learning to
vertically balance a three-link robot (Fig. 9). The

goal was to find the dynamic movement se-
quence for standing. The reward was given by

> Predictor 1
Y

> Controller 1 =®—><+> .

A Ai(D)

X1 t—
Li(D)
AN
u(d) x{#)

> Predictor i . >

the height of the head and a punishment was
given when the robot tumbled. Within several
hundred trials, a successful pattern of standing
up was achieved by the hierarchical reinforce-
ment learning system. The learning was several

x(t ug(t)
0 > Controller i : >®—><+>
4

times quicker than with simple reinforcement
learning [34].

—
> Predictor n >
X
» Controller n >Q</

The reason for this quick learning was the se-
lection of the upper-level state representation,
which included kinematic, task-oriented vari-
ables such as the relative center of mass position
measured from the foot. Although the hierarchi-

cal architecture was developed simply to let the u(f)

robot learn the task quickly (before the hardware
broke down), it is interesting that the
multimodal representation resembles the archi-

J
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=
4>(Softmax @—»@

Environment

tecture of the multiple cortico-basal ganglia

loops [11], [27].
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Figure 10. The MOSAIC architecture.
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one by one, which takes a lot of time. On the other hand, a
set of predictors can be evaluated simultaneously by run-
ning them in parallel and comparing their prediction out-
puts with the output of the real system. This simple fact
motivated a modular control architecture in which each
controller is paired with a predictor [35].

Fig. 10 shows the module selection and identification con-
trol (MOSAIC) architecture, based on the prediction error of
each module

2
)

Ei(t)z

£,(0-x(D)

where x,(t)is the output of the ith predictor. The responsibil-
ity signal is given by the soft-max function

Before Learning
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Figure 11. A result of learning to swing up an underpowered
pendulum using a reinforcement learning version of the MOSAIC
architecture [36]. (a) The sinusoidal nonlinearity of the gravity term
in the angular acceleration was approximated by two linear models,
shown in different colors. In each module, a local quadratic reward
model was also learned and a linear feedback policy was derived by
solving a Riccati equation. (b) The resulting policy for the first
module made the downward position unstable. As the pendulum
moved upward, based on the relative prediction errors of the two
prediction models, the second module was selected and stabilized
the upward position.
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exp(E,(t)/c”)
z / exp(Ej(t) / 62).

}\‘i(t) =

This is used for weighting the outputs of multiple control-
lers, i.e.,

u(t) = zi}\‘i(t)ui(t)

whereu,(t) is the output of the ith controller. The responsi-
bility signal is also used to weight the learning rates of the
predictors and the controllers of the modules, which causes
modules to be specialized for different situations. The pa-
rameter ¢, which controls the sharpness of module selec-
tion, is initially set large to avoid suboptimal specialization
of modules.

Fig. 11 shows an example of using this scheme in a simple
nonlinear control task of swinging up a pendulum [36]. Each
module learns a locally linear dynamic model and a locally
quadratic reward model. Based on these models, the value
function and the corresponding control policy for each
module are derived by solving a Riccati equation, which
makes learning much faster than by iterative estimation of
the value function. After about 100 trials, each module suc-
cessfully approximated the sinusoidal nonlinearity in the
dynamics in either the bottom or top half of the state space.
Accordingly, a controller that destabilizes the stable equi-
librium at the bottom and another controller that stabilizes
the unstable equilibrium at the top were derived. They were
successfully switched based on the responsibility signal.

The scheme has also been shown to be applicable to a
nonstationary control task. The results suggest the useful-
ness of this biologically motivated modular control archi-
tecture in decomposing nonlinear and/or nonstationary
control tasks in space and time based on the predictability
of the system dynamics. A careful theoretical study assess-
ing the conditions in which modular learning and control
methods work reliably is still required.

Imamizu and colleagues performed a series of visuo-
motor adaptation experiments using a computer mouse
with rotated pointing direction (e.g., the cursor moves to
the right when the mouse is moved upward). Initially in
learning, a large part of the cerebellum was activated. How-
ever, as the subject became proficient in the rotated mouse
movement, small spots of activation were found in the lat-
eral cerebellum, which can be interpreted as the neural cor-
relate of the internal model of the new tool [37].
Furthermore, when the subject was asked to use two differ-
ent kinds of an unusual computer mouse, two different sets
of activation spots were found in the lateral cerebellum (Fig.
12) [38].

Experiments of multiple sequential movement in monkeys
have shown that neurons in the supplementary motor area
(SMA) are selectively activated during movements in particu-
lar sequences. Furthermore, in an adjacent area called
pre-SMA, some neurons were activated when the monkey
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was instructed to change the movement sequence [39].
These results suggest the possibility that modular organiza-
tion of internal models like MOSAIC is realized in a circuit in-
cluding the cerebellum and the cerebral cortex.

Conclusion

We reviewed three topics in motor control and learning: pre-
diction of future rewards, the use of internal models, and
modular decomposition of a complex task using multiple
models. We have seen that these three aspects of motor con-
trol are related to the functions of the basal ganglia, the cere-
bellum, and the cerebral cortex, which are specialized for
reinforcement, supervised, and unsupervised learning, re-
spectively [1], [2].

Our brain undoubtedly implements the most efficient
and robust control system available to date. However, how
it really works cannot be understood just by watching its ac-
tivity or by breaking it down piece by piece. It was not until
the development of reinforcement learning theory that a
clear light was shed on the function of the basal ganglia.
Theories of adaptive control and studies of artificial neural
networks were essential in understanding the function of
the cerebellum. Such understanding provided new insights
for the design of efficient learning and control systems. The
theory of adaptive systems and the understanding of brain
function are highly complementary developments.

Rotating Mouse

[ Integrating Mouse

Figure 12. The activity in the cerebellum for two different kinds of
computer mouse: a rotating mouse (red), in which the direction of
the cursor movement is rotated, and an integrating mouse (yellow),
in which the mouse position specifies the velocity of the cursor
movement [38]. The subjects were asked to track a complex cursor
movement trajectory on the screen, alternately using the two
different mouse settings. Large areas in the cerebellum were
activated initially. After several hours of training, activities were
seen in limited spots in the lateral cerebellum, which were different
for different types of mouse.
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