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Abstract 
Ten years have passed since the Japanese “Century of the Brain” was 
promoted, and its most notable objective, the unique “Creating the Brain” 
approach, has led us to apply a humanoid robot as a neuroscience tool. Here, 
we aim to understand the brain to the extent that we can make humanoid 
robots solve tasks typically solved by the human brain by using essentially 
the same principles. I postulate that this “Understanding the Brain by 
Creating the Brain” approach is the only way to fully understand neural 
mechanisms in a rigorous sense. Several humanoid robots and their 
demonstrations are introduced. A theory of cerebellar internal models and a 
systems-biology model of cerebellar synaptic plasticity are discussed. Both 
models are experimentally supported, but the latter is more easily verifiable 
while the former is still controversial. I argue that the major reason for this 
difference is that essential information can be experimentally manipulated 
in molecular and cellular neuroscience while it cannot be manipulated at the 
system level. I propose a new experimental paradigm, manipulative 
neuroscience, to overcome this difficulty and allow us to prove 
cause-and-effect relationships even at the system level. 
 
(main text 8123 words) 
 
1. “Creating the Brain” in the Japanese Century of the 
Brain 
 
In April 1996, an ad hoc committee on brain science of the Science Council of 



Japan, the nation’s most prestigious association of scientists, issued an 
advisory called “Promotion of Brain Science” to the Japanese government. In 
August of the same year, a committee for brain science promotion in the 
Science and Technology Agency of the Japanese government proposed a huge 
national brain research project funded at two trillion yen (~$20 billion) for 
twenty years within a blueprint for the “Century of the Brain”. In May 1997, 
a brain science committee of the prime minister’s Council of Science and 
Technology, the nation’s highest science advisory body, established three 
major research areas for its long-term plan: Understanding the Brain, 
Protecting the Brain, and Creating the Brain. The Brain Science Institute of 
RIKEN (the Institute of Physical and Chemical Research) was started in 
1997, closely following this long-term plan (Normile 1997). Ten years have 
passed since the Japanese Century of Brain was launched, but, surprisingly, 
according to Shun-ichi Amari, president of RIKEN’s Brain Science Institute, 
the 2005 budget for Japanese brain science was only 18 billion yen, and it 
has been decreasing over the past 7 years after peaking in 2000 (Amari 2006), 
in sharp contrast to the magnitude of the original proposal.  
 
Among the three ways of exploring the brain, Creating the Brain is unique to 
Japan. Computers and robots have improved dramatically, but they are still 
greatly inferior to humans in most brain functions such as natural language 
processing, visual scene understanding, smooth and dexterous manipulation 
of objects, and common-sense reasoning, all of which can be executed almost 
effortlessly by humans, at least at the conscious level. This situation 
indicates that computer science and robotics did not make as much progress 
as expected 50 years ago and that neuroscience has not provided sufficient 
information on these areas. The “Creating the Brain” was motivated by this 
reflection, with the aim to develop brain-style information processing and 
communication technologies. In Particular, the development of “brain-style” 
computer systems, with human-like intellectual and emotional capabilities, 
was set as this work’s long-term goal.  
 
Over the past 10 years, millions of artificial retinal chips were sold for 



several billion yen per year, and many kinds of “neuro-” electric home 
appliances with learning capabilities based on artificial neural networks 
have been popular in the Japanese market. However, the current status of 
research is still far from the development of “brain-style” computer systems. 
The main difficulty is that conventional medical and biological approaches in 
neuroscience do not provide the type of knowledge that is essential for 
computer development. The accumulation of a vast amount of data on brain 
locations (which function is lost when a specific brain region is destroyed), on 
substances (a specific molecule is critical for some brain functions), and on 
correlations (firing rates of neurons in a specific brain area correlated to a 
hypothetical element in cognition) is unfortunately nearly useless in 
unraveling neural mechanisms, at least to the extent that principles of 
information processing can be learnt from the brain. On the other hand, 
these kinds of knowledge are useful for Protecting the Brain (e.g. avoiding 
the speech area in neurosurgical ablation) or at some levels of 
Understanding the Brain. 
 
We cannot state that we fully understand brain functions by simply 
accumulating the above types of data on locations, substances and 
correlations. In the deepest sense of “Understanding the Brain”, we should 
reveal the secrets of neural mechanisms of brain functions to the extent that 
we can “Create the Brain”. Furthermore, definitions of computational 
neuroscience vary depending on the researchers involved in this area. For 
some, approaches that depend on computers, mathematics, physics, 
engineering or David Marr’s computational theory could be called 
“Computational Neuroscience”. From the mid-80s, we initiated our own 
approach to computational neuroscience with the following definition: “We 
elucidate information processing of the brain to the extent that artificial 
machines, either computer programs or robots, can be built to solve the same 
computational problems that are solved by the human brain, using 
essentially the same principles”. Many researchers, including our group, 
started to believe that the only possible methodology to fully understand how 
the brain works is to build or reconstruct artificial systems that can realize 



brain functions. We call this approach “Understanding the Brain by Creating 
the Brain”, and it is currently the major approach taken in the Japanese 
“Creating the Brain” area; furthermore, this might be regarded as the 
Japanese definition of computational neuroscience. Generally speaking, this 
is the new direction of “analysis by synthesis” in biological disciplines, and it 
has common ground with synthetic biology in systems biology or 
bioinformatics of molecular and cellular biology, where the goal is to create 
artificial organisms in silico or in wet biology. 
 

 
2. Humanoid Robots as a Neuroscience Tool 
 
Even if we could create an artificial brain, we could not investigate its 
functions, such as vision or motor control, if we just let it float in incubation 
fluid in a jar. The brain must be connected to sensors and a motor apparatus 
so that it can interact with its environment. A humanoid robot controlled by 
an artificial brain, which is implemented as software based on computational 
models of brain functions, seems to be the most plausible candidate for this 
purpose, given currently available technology. With the slogan of 
“Understanding the Brain by Creating the Brain”, in the mid-80s we started 
to use robots for brain research (Miyamoto & Kawato 1988), and about 10 
different kinds of robots have been used by our group at Osaka University’s 
Department of Biophysical Engineering, ATR Laboratories, ERATO Kawato 
Dynamic Brain Project (ERATO 1996-2001), and ICORP Kawato 
Computational Brain Project (ICOPR 2004-2009). 
 
An optimal computational theory for one type of body may not be optimal for 
other types of bodies. Thus, if a humanoid robot is used for exploring and 
examining neuroscience theories rather than for engineering, it should be as 
close as possible to a human body. Within the ERATO project, in 
collaboration with the SARCOS research company led by Professor Stephen 
C. Jacobsen of the University of Utah, Dr. Stefan Schaal as a robot group 
leader and his colleagues developed a humanoid robot called DB (Dynamic 



Brain) (Figure 1) with the aim of most closely replicating a human body, 
given the robotics technology of 1996. DB possessed 30 degrees-of-freedom 
and human-like size and weight. DB is mechanically compliant like a human 
body, and unlike most electric-motor-driven and highly-geared humanoid 
robots, because the SARCOS’ hydraulic actuators are powerful enough to 
avoid the necessity of using reduction mechanisms at the joints. Within its 
head, DB is equipped with an artificial vestibular organ (gyro sensor), which 
measures head velocity, and four cameras with vertical and horizontal 
degrees-of-freedom. Two of the cameras have telescopic lenses corresponding 
to foveal vision, while the other two have wide-angle lenses corresponding to 
peripheral vision. SARCOS developed the hardware and low-level analog 
feedback-loops, while the ERATO project developed high-level digital 
feedback-loops and all of the sensory-motor coordination software. 
 
The photographs in Fig. 1 introduce 14 of the more than 30 different tasks 
that can be performed by DB (Atkeson et al. 2000). Most of the algorithms 
used for these task demonstrations are based roughly on principles of 
information processing in the brain, and many of them contain some or all of 
the three learning elements: imitation learning (Miyamoto et al. 1996; 
Schaal 1999; Ude & Atkeson 2003; Ude et al. 2004; Nakanishi et al. 2004), 
reinforcement learning, and supervised learning. Imitation learning 
(“Learning by Watching”, “Learning by Mimicking” or “Teaching by 
Demonstration”) was involved in Okinawan folk dance “Katya-shi” (Riley et 
al. 2000) (A), three-ball juggling (Atkeson et al. 2000) (B), devil-sticking (C), 
air-hockey (Bentivegna et al. 2004a; Bentivegna et al. 2004b) (D), pole 
balancing (E), sticky-hands interaction with a human (Hale & Pollick 2005) 
(L), tumbling a box (Pollard et al. 2002) (M), and a tennis swing (Ijspeert et 
al. 2002) (N). The air-hockey demonstration (Bentivegna et al. 2004a; 
Bentivegna et al 2004b) (D) utilizes not only imitation learning but also a 
reinforcement-learning algorithm with reward (a puck enters the opponent’s 
goal) and penalty (a puck enters the robot’s goal) and skill learning (a kind of 
supervised learning). Demonstrations of pole-balancing (E) and visually 
guided arm reaching toward a target (F) utilized a supervised learning 



scheme (Schaal & Atkeson 1998), which was motivated by our approach to 
cerebellar internal model learning, introduced in the next section. 
Demonstrations of adaptation of the vestibulo-ocular reflex (Shibata & 
Schaal 2001) (G), adaptation of smooth pursuit eye movement (H), and 
simultaneous realization of these two kinds of eye movements together with 
saccadic eye movements (I) were based on computational models of eye 
movements and their learning (Shibata et al. 2005). Demonstrations of 
drumming (J), paddling a ball (K), and a tennis swing (N) were based on 
central pattern generators. 
 
The ICORP Computational Brain Project (2004-2009), which is an 
international collaboration project with Prof. Chris Atkeson of the Carnegie 
Mellon University, follows the ERATO Dynamic Brain Project in its slogan 
“Understanding the Brain by Creating the Brain” and “Humanoid Robots as 
a Tool for Neuroscience”. Again in collaboration with SARCOS, at the 
beginning of 2007 Dr. Gordon Cheng as a group leader with his colleagues 
developed a new humanoid robot called CB (Computational Brain), shown in 
Fig. 2. CB is even closer to a human body than DB. To improve the 
mechanical compliance of the body, CB also used hydraulic actuators rather 
than electric motors. The biggest improvement of CB over DB is its 
autonomy. DB was mounted at the pelvis because it needs to be powered by 
an external hydraulic pump, through oil hoses arranged around the mount. 
A computer system for DB was also connected to DB by wires. Thus, DB 
could not function autonomously. In contrast, CB carries both onboard power 
supplies (electric and hydraulic) and a computing system on its back, and 
thus it can function fully autonomously. CB was designed for full-body 
autonomous interaction, for walking and simple manipulations. It is 
equipped with a total of 51 degrees-of-freedom (DOF): 2x7 DOF legs, 2x7 
DOF arms, 2x2 DOF eyes, 3 DOF neck/head, 1 DOF mouth, 3 DOF torso, and 
2x6 DOF hands. CB is designed to have similar configurations, range of 
motion, power, and strength to a human body, allowing it to better reproduce 
natural human-like movements, in particular for locomotion and object 
manipulation. 



 
Locomotion and posture control are the most challenging research topics for 
a human-like and autonomous humanoid robot such as CB, because of its 
mechanically compliant and 51-DOF body. Within the ICORP CB Project, 
biologically inspired control algorithms for locomotion have been studied 
using the three different humanoid robots shown in Fig. 3 (a: DB-chan 
(Nakanishi et al. 2004), b: Fujitsu Automation HOAP-2 (Matsubara et al. 
2006), c: CB (Morimoto et al. 2006)) as well as the SONY small-size 
humanoid robot QRIO (Endo et al. 2005) as test beds. Successful locomotion 
algorithms utilize various aspects of biological control systems, such as 
neural networks for central pattern generators, phase resetting by various 
sensory feedbacks including adaptive gains, and hierarchical reinforcement 
learning algorithms. In the demonstration of robust locomotion shown in Fig. 
3a, three biologically important aspects of control algorithms are utilized: 
imitation learning, a nonlinear dynamical system as a central pattern 
generator, and phase resetting by a foot-ground contact signal (Nakanishi et 
al. 2004). First, a neural network model developed by Schaal et al. (2003) 
quickly learns correctly demonstrated locomotion trajectories by humans or 
other robots. In order to synchronize this limit-cycle oscillator (central 
pattern generator) with a mechanical oscillator functioning through the 
robot body and the environment, the neural oscillator is phase-reset by 
foot-ground contact. This guarantees stable synchronization of neural and 
mechanical oscillators with respect to phase and frequency. The achieved 
locomotion is quite robust against different surfaces with various frictions 
and slopes, and it is human-like in the sense that the robot body’s center of 
gravity is high while the knee is nearly fully extended at foot contact. This is 
in sharp contrast to locomotion engineered by zero-moment point control, 
which usually induces a low center of gravity and bent knees. 
 
 
3. Cerebellar Internal Models 
 
Many of the DB demonstrations mentioned in the previous section are based 



on the cerebellar internal model theory, which we have been developing over 
the past 25 years (Kawato et al. 1987; Kawato & Gomi 1992; Kawato 1999): 
each micro-zone of the cerebellar cortex learns to acquire an internal model 
of some specific object in the external world, such as an arm or eye of one’s 
own body, manipulative tools, or another person’s brain. In this section, we 
briefly describe the background of this theory, the theory itself and some 
experimental support of this theory. 
 
Among the many different models of the cerebellum, learning models have 
always been the most attractive, versatile and influential. The learning 
models are based on unique structures of the cerebellar cortex. The Purkinje 
cell, the only output neuron in the cerebellar cortex, receives two major 
excitatory inputs from climbing fibers and parallel fibers. A single climbing 
fiber axon makes multiple synapses on a single Purkinje cell and induces 
very strong excitatory postsynaptic potentials, which lead to complex spikes 
that consist of a few Ca2+ spikes. By contrast, 200,000 synapses from parallel 
fibers, which are the axons of 1010~11 granule cells, generate simple spikes, 
each of which is a single Na+ spike. Although early cerebellar learning 
models (Marr 1969; Ito 1970; Albus 1971) proposed that the cerebellum 
performs pattern recognition, probably influenced by a “perceptron”, they are 
not consistent with physiological data showing that simple spike firing rates 
of Purkinje cells temporally change and encode dynamic and kinematic 
features of movements. Recent studies suggest that the human cerebellum is 
important for sensory and cognitive functions as well as for motor control. 
Might there be a general computation realized by the cerebellar cortex that 
covers the sensory, cognitive and motor domains and also conforms to 
existing hypotheses on such matters as timing, coordination, and error 
correction? Internal models seem to provide the most versatile and 
hypothesis-compatible computational entity satisfying these requirements. 
Internal models are neural networks inside the brain (“internal”) that can 
mimic (“model”) the input-output characteristics of some dynamical process 
outside the brain. In a motor control context, a forward model of a body can 
predict sensory consequences of movement from the efference copy of a motor 



command. This is because the controlled objects in movements generate a 
trajectory from the motor commands. By contrast, an inverse model of a body 
and the external world can compute the necessary motor commands from a 
desired movement pattern. Internal models are useful for predictive 
computations in sensory, cognitive and motor functions. If an inverse 
dynamics model for a controlled object possessing dynamics and kinematics 
with multiple degrees of freedom is destroyed, the movement becomes 
clumsy, slow and not well corrected. This is because neither feedforward 
control (which is dependent on the inverse model) nor sophisticated feedback 
control (which is dependent on the forward model) is available. Thus, control 
must rely on poor and crude feedback control alone.  
 
About 25 years ago, my colleagues and I proposed that different parts of the 
cerebellum contain either forward or inverse models (Tsukahara & Kawato 
1982; Kawato et al. 1987) and also that a computational scheme called 
feedback-error-learning is used to acquire an inverse model in the supervised 
learning scheme as shown in Fig. 4 (Kawato et al. 1987, Kawato 1990, 
Kawato & Gomi 1992). If supervised learning takes place in the brain for 
motor control, the following difficult computational problem called “distal 
teacher”, formulated by Jordan & Rumelhart (1992), should be resolved. The 
error between desired and actual movement patterns can be measured by 
sensory organs, but these movement errors could be very different in spatial 
coordinates as well as in temporal dynamics from the necessary error signal 
for the motor command. Furthermore, it should be emphasized that there 
exists no teaching signal for motor commands in supervised motor learning, 
since if it did exist, it would be directly utilized for motor control and there 
would be no need for learning.  
 
In the feedback-error-learning model depicted in Figure 4, the inverse model 
first transforms a desired trajectory into a feedforward motor command. 
Second, a crude feedback controller generates a feedback motor command 
from the sensory error. Third, the summation of the feedforward and 
feedback motor commands is sent to the controlled object. Finally, and most 



importantly, the feedback motor command is used as the error signal for 
motor commands in the supervised learning to acquire the inverse model. 
Stability and convergence of the feedback-error-learning algorithm have 
been mathematically proven (Nakanishi & Schaal 2004) as well as 
successfully applied to several robotic demonstrations (e.g. Miyamoto et al. 
1988). Here, simple spikes represent feedforward motor commands and the 
parallel fiber inputs represent the desired trajectory as well as the sensory 
feedback of the current status of the controlled object. A microzone of the 
cerebellar cortex constitutes part of an inverse model of a specific controlled 
object, such as the eye or arm. Most importantly, climbing fiber inputs are 
assumed to carry a copy of the feedback motor commands generated by the 
feedback control circuit. Thus, the complex spikes are assumed to be 
trajectory error signals already expressed in motor command coordinates. 
Climbing fiber inputs are delayed by 100 msec with respect to the 
responsible parallel fiber inputs that caused the movement and the resulting 
error, but the spike-timing dependency of parallel-fiber Purkinje-cell long 
term depression (LTD) selectively decreases the efficacy of only the 
responsible parallel fiber synapses, explained in the next section. 
 
Kenji Kawano and his colleagues supported the cerebellar 
feedback-error-learning model with neurophysiological studies in the ventral 
paraflocculus of the monkey cerebellum during ocular-following responses 
(Kawano 1999; Kawato 1999; Shidara et al. 1993; Gomi et al. 1998; 
Kobayashi et al. 1998; Takemura et al. 2001; Yamamoto et al. 2002). 
Ocular-following responses are tracking movements of the eyes evoked by 
movements in a large visual scene that are thought to be important for 
visual stabilization of gaze. In the neural circuit controlling this response, 
the phylogenetically older and cruder feedback circuit is comprised of the 
retina, the accessory optic system and the brain stem. The phylogenetically 
newer and more sophisticated feedforward pathway and the inverse 
dynamics model correspond to the cerebral and cerebellar cortical pathway 
and the cerebellum, respectively. The sensory error signal is computed as the 
image motion on the retina (retinal slip). This is different from the scheme of 



Fig. 4, where some neural mechanisms explicitly compute the difference 
(error) between the desired and actual states. However, in the case of eye 
movement control such as ocular-following responses or vestibulo-ocular 
reflexes, the desired state is eye movement in which the retinal image does 
not move, and thus the optical computation (retinal slip detection) can 
replace subtraction of the desired and actual states. On the other hand, the 
desired trajectory information transmitted to the flocculus for the 
vestibulo-ocular reflex is the head motion signal detected by semi-circular 
canals, whereas for the ocular following responses this is the image motion 
signal conveyed by the visual areas in the cerebral cortex. 
 
During ocular following responses, the time-courses of simple spike-firing 
frequency show complicated patterns. However, they were quite accurately 
reconstructed by using an inverse-dynamics representation of eye movement 
(Shidara et al. 1993; Gomi et al. 1998). The model fit was good for the 
majority of the neurons studied under a wide range of visual stimulus 
conditions, different eye movements, and different firing patterns. The same 
inverse dynamics analysis for the medial superior temporal area (MST) of 
the cerebral cortex and dorsolateral pontine nucleus, which provide visual 
mossy fiber inputs, revealed that their firing time-courses were not well 
reconstructed from motor commands but were well reconstructed from visual 
retinal slip (Takemura et al. 2001). Taken together, these data suggest that 
the ventral paraflocculus is the major site of the inverse dynamics model of 
the eye for ocular-following responses. 
 
Motor commands, conveyed by simple spikes, should be directly modified 
and acquired by LTD while guided by motor-command errors, which are 
conveyed by climbing fiber inputs. For this to work, the climbing fiber inputs 
need to convey comparable details of temporal and spatial information to the 
motor commands, but the ultra-low discharge rates of the latter would 
appear to rule this out. This apparently discrete and sporadic nature of 
climbing fiber inputs was characterized as an unexpected event detector, and 
it suggested a reinforcement-learning-type theory. However, if thousands of 



trials are averaged, the firing rates actually conveyed very accurate and 
reliable time-courses of motor command error within a few hundreds of 
milliseconds (Kobayashi et al. 1998). More specifically, complex spike 
time-courses are better reconstructed by retinal slip than eye movements, 
but in the motor command coordinates rather than in visual coordinates as 
detailed below. Because LTD has recently been shown to temporally 
leaky-integrate a postsynaptic Ca2+ signal (Tanaka et al. 2007) as introduced 
in the next section, it can perform temporal averaging. Consequently, the 
firing probability of climbing fiber inputs can convey high-frequency 
temporal information that matches information of the dynamic command 
signal. 
 
The preferred directions of MST and pontine neurons were evenly 
distributed over 360 degrees. Thus, the visual coordinates are uniformly 
distributed over all possible directions. On the other hand, projections of the 
3-D spatial coordinates of the extraocular muscles were in either a horizontal 
or vertical direction, and they were entirely different from the visual 
coordinates. Preferred directions of simple spikes were either downward or 
ipsiversive (i.e. toward the same side), and at the site of each recording, 
electrical stimulation of a Purkinje cell elicited eye movement toward the 
preferred direction of the simple spike (Kawano 1999). These data indicate 
that the simple spike coordinate framework is already that of the motor 
commands. Thus, at the parallel fiber-Purkinje cell synapse, a drastic 
visuomotor coordinate transformation occurs. The neural representation 
dramatically changes from population coding in the MST and pontine 
nucleus to firing-rate coding of Purkinje cells at the parallel fiber-Purkinje 
cell synapse. What, then, is the origin of this drastic transformation? The 
theory proposes that the complex spikes, and ultimately the accessory optic 
system, are the source of this motor command spatial framework. The 
preferred directions of pretectum neurons are upward, and those of the 
contralateral nucleus of optic tract neurons are ipsiversive (thus 
contraversive for the cerebellum). Their signals are conveyed to the inferior 
olive and further to the cerebellum to produce the complex spikes. In 



summary, the coordinate frame of the climbing fibers was vertical and 
horizontal, forming the motor coordinates, not the visual coordinates of MST 
or pontine nucleus. A realistic neural network model successfully simulated 
all of these experimental findings (Yamamoto et al. 2002). The coordinates of 
semicircular canals and the extraocular muscles are very similar, and it is 
rather difficult to evaluate coordinate transformation in the vestibulo-ocular 
reflex and flocculus compared with ocular following responses. However, 
recent physiological studies indicate that climbing fiber inputs encode motor 
error rather than sensory error (Winkelman & Frens 2006). This argues 
against a class of model that assumes sensorimotor transformation 
downstream of the Purkinje cells, including de-correlation models (Dean et 
al. 2002). 
 
For arm movements under multiple force fields, firings of many Purkinje 
cells correlate with dynamics (Yamamoto et al. 2007). fMRI studies mapped 
forward and inverse models of tools and manipulated objects in the 
cerebellar cortex (Imamizu et al. 2000; Kawato et al. 2003). Thus, we have 
been accumulating experimental support for the cerebellar internal model 
theory for arm movements, the human cerebellum for tool use, and forward 
models in addition to inverse models. Having said this, I must admit that 
experimental support outside the inverse dynamics model for the ocular 
following responses in the ventral paraflocculus is rather indirect and 
circumstantial, and these issues are still controversial (for example, compare 
Yamamoto et al. 2007 and Pasalar et al. 2006). However, because the neural 
circuit of the cerebellar cortex is so uniform for different regions and 
different functions, unlike the cerebral cortex, I predict that a theory fully 
supported even for only a single function in a small region of the cerebellum 
should possess some computational principles that can be generalized to all 
functions and regions of the cerebellum. 
 
 
4. Systems-Biology Models of Cerebellar LTD 
 



If the long-term depression (LTD) of parallel fiber-Purkinje cell synapses is 
the elementary cellular process of supervised learning, as postulated in 
cerebellar learning theory, it must satisfy the following three requirements. 
First, LTD should be associative. That is, LTD should be induced only when 
both parallel fiber inputs and climbing fiber inputs are conjunctively 
activated. Second, LTD should be maximally induced when climbing fiber 
activation is delayed by 50 to 200 msec with respect to parallel fiber 
activation. This is because the time window of LTD should compensate for 
the delay of the reafferent climbing fiber inputs to feed back the 
consequences of the parallel-fiber-simple-spike-induced movements. Third, 
LTD should be synapse-specific; only a parallel fiber synapse that is 
conjointly activated with a climbing fiber input should be depressed and not 
other synapses. However, a considerable number of studies have reported 
violations of these three requirements under some experimental conditions; 
consequently, LTD has been questioned several times as the elementary 
process of cerebellar supervised learning (Llinas et al. 1997) and has been 
postulated for other functions, such as the normalization of total synaptic 
efficacies on a single Purkinje cell (de Schutter 1995). The kinetic simulation 
model of LTD signal-transduction pathways in a Purkinje-cell dendritic 
spine (Fig. 5), which has been developed in a series of publications from our 
group (Kuroda et al. 2001; Doi et al. 2005; Ogasawara et al. 2007) and was 
recently supported experimentally (Tanaka et al. 2007), provided a coherent 
perspective on these confusing experimental data and competing theoretical 
hypotheses, and it is introduced in this section.  
 
Climbing fiber inputs activate AMPA receptors (AMPA-Rs) on dendritic 
shafts and induce depolarization, which opens the voltage-gated calcium 
channels (VGCCs) on a spine as indicated by the broken line in Fig. 5, 
leading to Ca2+ influx from the extracellular space into the spine head, 
reaching a concentration of about 1 
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µM . Parallel fiber inputs also induce 
AMPA-R activation on dendritic spines, just as a climbing fiber input does 
but with a smaller depolarization and Ca2+ influx. In addition, they 
simultaneously activate metabotropic glutamate receptors (mGluRs). 



Furthermore, they presynaptically synthesize nitric oxide (NO), which 
diffuses into the spine. In the metabotropic pathway, activated mGluRs 
induce production of inositol 1,4,5-triphosphate (IP3) and diacylglycerol 
(DAG) via G-proteins (Gq) and phospholipase C
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postsynaptic density. IP3 then diffuses into the cytosol and binds to IP3 
receptors (IP3Rs), which are IP3-gated Ca2+ channels on the intracellular 
Ca2+ stores, such as the endoplasmic reticulum (ER). Cytosolic Ca2+ above 
some threshold triggers a regenerative cycle of IP3-dependent and 
Ca2+-induced Ca2+ release (depicted as a red positive feedback loop between 
Ca2+ and IP3Rs in Fig. 5) from the ER via IP3Rs opened by binding of both IP3 
and Ca2+. This means that the open probability of IP3Rs increases with Ca2+ 
concentration and the Ca2+ threshold of this regenerative cycle decreases 
with IP3 concentration. An increase in cytosolic IP3 concentration was 
simulated to be maximal at 3 
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µM  about 100 msec after the parallel fiber 
input. This slow rate of increase in IP3 concentration is due to the slow 
dynamics of the metabotropic pathway. Because Ca2+ influx via VGCCs due 
to climbing fiber activation is an immediate event, when the climbing fiber 
input is delayed about 100 msec with respect to the parallel fiber input, Ca2+ 
increase coincides with IP3 increase, and together they trigger the 
Ca2+-induced Ca2+ release of 10 
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µM. If either climbing fiber input or parallel 
fiber input alone is activated, this large Ca2+ release does not occur because 
either IP3 or Ca2+, respectively, does not reach the threshold for the 
regenerative cycle. Consequently, the Ca2+ nonlinear excitable dynamics 
model of Doi et al. (2005) (right 1/3 of Fig. 5) reproduced the associative 
nature and the spike-timing-dependent plasticity (STDP) of cerebellar LTD. 
 
In the model proposed by Kuroda et al. (2001), the large Ca2+ increase, which 
is caused by the conjunctive parallel fiber input and the delayed climbing 
fiber input, induces the activation of linear cascades of phosphorylation of 
protein kinase C (PKC) followed by phosphorylation and then internalization 
of AMPA-R, which explains the early phase of LTD up to about 10 minutes. 
On the other hand, the intermediate phase of LTD up to several tens of 
minutes is mediated by a mitogen-activated protein (MAP) kinase-dependent 



positive feedback loop, which consists of PKC, Raf, MAP/extracellular 
signal-regulated kinase (MEK), MAP kinase, cytosolic phosopholipase A2 
(PLA2), arachidonic acid (AA), and back to PKC (the magenta loop in the 
middle of Fig. 5). This positive feedback loop has two stable equilibrium 
points separated by a saddle point that determines the threshold of LTD. At 
the low equilibrium point, the MAP-kinase positive feedback loop is not 
activated, but if strong or long-lasting Ca2+ elevation occurs, the state jumps 
to the higher equilibrium over the saddle point and AMPA-Rs continue to be 
phosphorylated and internalized during this prolonged activation of the 
positive feedback loop. Consequently, this MAP-kinase positive feedback 
model (middle 1/3 of Fig. 5) explains the long-term nature of LTD. 
 
In the NO model (left 1/3 of Fig. 5), which was first proposed by Kuroda et al. 
(2001) and then extensively studied in combination with electrical properties 
of dendrites by Ogasawara et al. (2007), NO activates soluble guanylyl 
cyclase (sGC), and the activated sGC catalyzes the conversion of GTP into 
cGMP, which activates cGMP-dependent protein kinase (PKG). PKG 
phosphorylates its substrate, G-substrate, and the phosphorylated 
G-substrate preferentially inhibits protein phosphatase 2A (PP2A).  
Activated PP2A dephosphorylates MEK and AMPA-R. Inhibition of the 
dephosphorylation of MEK was required for the activation of the 
MAP-kinase positive feedback loop. Therefore, by ultimately inhibiting PP2A 
and activating the positive feedback loop, NO plays a permissive role in the 
induction of LTD. 
 
The Ca2+ dynamics model coherently reproduced both the associative and 
non-associative natures of LTD, and the spike-timing dependency of 
associative LTD, as follows. Within the physiological ranges of input 
strength, the conjunctive stimulation of the parallel fiber input and the 
delayed climbing fiber input is essential to induce a large, regenerative Ca2+ 
increase, which is necessary for crossing the MAP-kinase 
positive-feedback-loop threshold and inducing LTD. However, if stimulation 
of parallel fiber bundles is strong enough, or if uncaged Ca2+ or IP3 is large 



enough, these stimuli alone can increase the Ca2+ concentration so that it 
crosses the Ca2+ dynamics threshold, resulting in a large enough 
Ca2+-induced Ca2+ release from the ER to reproduce non-associative LTD. In 
the hippocampal and cerebral pyramidal neurons, backpropagation of 
somatic action potentials removes the maganesium block of NMDA receptors, 
and when coincided with glutamate-release by pre-spiking, NMDA receptors 
are fully activated and lead to supralinear Ca2+ influx, resulting in the 
induction of LTP. The coincidence of glutamate-release with 
backpropagation in this order within a ten-millisecond order is essential for 
NMDA receptor-dependent STDP there. Backpropagation of somatic action 
potentials require firing of postsynaptic cells, which is the essential condition 
of Hebbian learning. Neither backpropagation nor the functional NMDA 
receptors exist in Purkinje cells, suggesting completely different cellular 
mechanisms of Purkinje-cell supervised learning with 100-msec STDP from 
cerebral Hebbian learning with STDP of tens of msec. These systems-biology 
models explain diverse LTD experiments and clearly demonstrate that LTD 
is a supervised learning rule, and not anti-Hebbian as characterized 
elsewhere (Dayan & Abbott 1999). 
 
The excitable dynamics of the Ca2+ model and bistable dynamics of the 
MAP-kinase positive feedback loop model may provide a possible molecular 
mechanism to resolve the “plasticity-stability” dilemma, maintaining 
memory stably while still being sensitive to delicate environmental changes. 
Each spine is equipped with a surprisingly small number of molecules (e.g. 
only 40 AMPA-Rs). With a cascade of excitable and bistable dynamics 
starting from Ca2+ dynamics, followed by the MAP-kinase positive feedback 
loop, internalization of AMPA receptors, a possible change in cytoskeleton 
and membrane proteins, and finally a morphological change in the spine, 
LTD could be induced by very delicate and low-energy inputs but still 
maintain acquired memory over a prolonged period of days, even under 
stochasticity due to the small numbers of molecules. 
 
The synapse-specificity of LTD is also well explained by the NO model 



combined with an electrical cable model of Purkinje-cell dendrite and spines, 
the Ca2+ dynamics model, and the MAP-kinase positive feedback loop model 
(Ogasawara et al. 2007). When no nearby parallel fiber is activated and NO 
is low, not even a conjunction of the parallel fiber and climbing fiber inputs 
can induce LTD. If too many surrounding parallel fibers are stimulated and 
NO is very high, even the synapse, which is not stimulated, exhibits LTD 
only by climbing fiber stimulation. In this case, a spread of LTD occurs and 
the synapse-specificity of LTD is lost. Only when a modest number of 
parallel fibers are activated and NO is within an intermediate range can 
synapse-specific LTD occur; the contextual information for storing different 
motor skills might be conveyed by this gating mechanism. This strongly 
predicts the sparseness of parallel fiber coding in vivo, which has recently 
gained much experimental support (e.g. Chadderton et al. 2004). 
 
Taken together, the LTD kinetic simulation models provide a comprehensive 
account of several seemingly diverse, conflicting and unrelated experimental 
data within the framework of complicated nonlinear dynamics regulated by 
Ca2+, IP3, and NO concentrations. We must note that because of the 
nonlinear summation effects of these signaling molecules, non-physiological 
stimuli in vitro, such as parallel fiber bundle stimulation and uncaging (i.e. 
direct and instant application of interested molecules by photolysis of its 
caged-compounds) of Ca2+ or IP3, might induce qualitatively different 
characteristics from in vivo LTD in terms of its associative nature, 
spike-timing dependency, and synapse-specificity. 
 

The systems-biology models of LTD recently gained strong experimental 
support. First, in the same Journal of Neuroscience that published our paper 
on the Ca2+ dynamics model (Doi et al. 2005), IP3 was found to increase 
slowly with a 100-msec time scale in Purkinje cell dendrites after parallel 
fiber stimulation (Okubo et al. 2004). Slow IP3 increase, the key prediction of 
our model, was thus confirmed. Yet, we must note that the measurement 
was not for a single spine because of technical difficulties, and future 
high-spatial resolution experiments are expected to examine this prediction 



more precisely. Second, very recently, George Augustine and his colleagues 
examined with us Ca2+ dose-response curves of Purkinje-cell LTD in a slice 
by systematically varying magnitudes and durations of the Ca2+ elevation, 
which was controlled by uncaging and simultaneously measuring Ca2+ 
(Tanaka et al. 2007). They demonstrated that LTD is a highly cooperative 
phenomena with large Hill coefficients, and suggested that the MAPK 
positive feedback loop leaky-integrates the incoming Ca2+ time course and 
determines whether to trigger the entire process of LTD in an all-or-nothing 
manner by comparing the leaky-integrated Ca2+ with its threshold for the 
bistable dynamics. Because the measurements of the postsynaptic currents 
were summed over roughly 30 spines and not shown for a single spine, the 
above suggestion is not yet conclusive, but one enigma regarding the 
stability of our memory might be nearly resolved in the following scenario. 
Bistability of nonlinear dynamics within the MAPK positive feedback loop 
guarantees memory maintenance in the first place, and cerebellar memory is 
discrete in its nature at the single-spine level. 
 
 
5. Toward Manipulative Neuroscience 
 
Ten years have not yet elapsed since the cerebellar-LTD MAPK 
positive-feedback-loop model was first published (Kuroda et al. 2001), before 
experiments firmly supported its essential proposition that the bistability of 
nonlinear dynamics is the elementary process of memory (Tanaka et al. 
2007) (see section 4). This is in sharp contrast to the cerebellar internal 
model theory, for which two completely opposing experimental papers were 
published (Pasalar et al. 2006; Yamamoto et al. 2007), although 25 years 
have passed since its first proposal in a preliminary form (Tsukahara & 
Kawato 1982) (see section 3). One possible reason for this marked difference 
could be that LTD within a single spine is a much more small-scale and 
simpler phenomenon than learning of internal models in sensory-motor 
coordination as well as in cognitive function, which utilizes not only the 
cerebellum but also all of its loops with the cerebral cortex and other brain 



regions. Or, some might even argue that the former theory is correct but the 
latter theory is wrong. I of course do not agree with this view but believe that 
the biggest difference between the two concepts is in the availability of 
experimental methodology that permits manipulation of essential 
information within a given system. In the LTD example within the molecular 
cellular biology domain, the time-course of Ca2+ concentration, the most 
important intracellular signal, can be directly manipulated by uncaging and 
directly measured by bioimaging techniques. In contrast, systems 
neuroscience does not possess any experimental technique for direct 
manipulation or control of information at the system level; information such 
as an error signal in motor command coordinates is carried by climbing 
fibers, or feedforward motor commands represented by simple spikes, in the 
case of cerebellar internal model theory. Anatomical ablation or 
electrocoagulation can destroy neural substrates but cannot manipulate 
information. Electrical stimulation may excite or suppress neurons 
indefinitely but cannot manipulate information such as the error signal or 
motor commands. Furthermore, in most cases at the system level, we do not 
even know how neural firing and its coherence represent information. 
Consequently, computational theories are essential to make the initial 
assumptions about what is represented in the brain and how it is neuronally 
represented.  
 
Several decades ago, systems neuroscientists could get excited by finding a 
mere temporal correlation between neural firing rates or an fMRI signal, 
with some experimental parameters (e.g. attributes of sensory stimuli, 
movement parameters), or with some hypothetical cognitive aspects of the 
task performed by subjects. However, as explained in section 1, mere 
accumulation of this kind of correlation data does not lead to understanding 
the neural mechanism of any brain function, in other words, it does not lead 
to a rigorous science that explains cause and effect relationships. I recently 
heard the criticism from scientists in other disciplines that systems 
neuroscientists do not know what should be revealed before they can state 
that they ultimately understand the brain. Answering this criticism, I define 



the ultimate goal of system neuroscience as follows. We can simultaneously 
measure the activities of all neurons in the brain, and we can freely change 
these activities experimentally. Thereby we can control the arbitrary 
information in the brain based on computational theories that explain how 
information is represented by neural activities, and the theories can predict 
the resulting changes in the organisms regarding their sensation, 
movements, emotions and thoughts. The current status of systems 
neuroscience is far from reaching this ultimate goal in all aspects of 
measurement, control, manipulation of information, and theory. However, 
regarding measurement of neuron and brain activities, much progress has 
been made, such as optical imaging of Ca2+ or voltage and many non-invasive 
brain activity measurement techniques. Regarding control of neuron 
activities, promising work in development includes the juxta-cellular clamp, 
the voltage clamp for simulating synaptic currents (dynamic clamp), and 
genetic engineering methods of using channelrhodopsin-2 and its 
photostimulation (Boyden et al. 2005). For simpler organisms such as 
C-elegans, simultaneous measurement and control of all neural activities 
might be achieved within ten years. However, at least for several decades, it 
will be very difficult for mammals in vivo, and it seems almost impossible for 
humans unless new physical principles for observation and control are 
invented. 
 
Much progress has been made with respect to close interactions between 
computational theories and neurophysiological and neuroimaging 
experiments. Many experiments are nowadays designed for proving or 
disproving predictions of computational models, or at least motivated by 
them. In the new experimental paradigms, which are named 
“computational-model-based neurophysiology and 
computational-model-based neuroimaging”, interactions between theories 
and experimental designs are even more intimate. Here, animal or human 
subjects are given sensory stimuli and a series of reward/penalty signals and 
asked to execute some tasks and conduct movements. Computational models 
such as the cerebellar internal model theory or basal-ganglia reinforcement 



learning theory are employed to quantitatively simulate subjects’ behaviors 
while the models are given exactly the same sensory stimuli and series of 
reward/penalty signals for the subjects. First of all, we expect that 
computational models fairly well reproduce subjects’ behaviors. Then, within 
each computational model, there exist some hypothetical computational 
variables such as the error signal or the feedforward motor command in the 
case of the cerebellar internal model theory, or the reward prediction error or 
value functions in the basal-ganglia reinforcement learning theory example. 
Each of these hypothetical variables can be used as an explanatory variable 
in correlation analysis with an fMRI signal or firing frequency of neurons. By 
using this correlation analysis, researchers can make statements such as 
“climbing fiber inputs may represent error signals in motor command 
coordinates” (Kobayashi et al. 1998) or “putamen neurons may encode action 
and state dependent reward prediction…” (Samejima et al. 2005, Haruno & 
Kawato 2006a) “while the caudate nucleus may encode reward-prediction 
error” (Haruno & Kawato 2006b). Our group as well as other groups have 
recently published a fair amount along this experimental paradigm 
(Imamizu et al. 2000; Imamizu et al. 2003; Haruno et al. 2004; Tanaka et al. 
2004; Samejima et al. 2005; Haruno & Kawato 2006a, 2006b). 
Computational-model-based neuroscience is a major advance over the 
classical approach of simply correlating neural or brain activities with 
stimulus attributes, movement parameters or some conceptual aspects of the 
task. If only the former two had been utilized as explanatory variables, 
cognitive functions remote from sensory and motor interfaces of the brain 
would never have been directly studied. An ad hoc conceptual aspect of the 
task could be informative in giving some clues to brain mechanisms, but this 
is far from quantitative understanding or revealing cause and effect 
relationships. A computational-model-based approach is attractive first 
because it is a quantitative theory, which can be disproved because it makes 
testable predictions. Second, it tries to reproduce behaviors as well as neural 
or brain activities. Third, computational models try to explain the whole 
sequence of information processing necessary for some task, while ad hoc 
cognitive hypotheses tend to explain just a fragmentary aspect within the 



whole processing sequence. However, we tend to be frustrated by the 
difficulties of computational models and this approach’s weakness in 
demonstrating cause and effect relationships, even after advocating this 
approach for 10 years. 
 
The first difficulty is in computational models. We still have not yet 
developed a powerful enough computational model to simultaneously explain 
a large variety of behaviors and whole-brain activities. Thus, in many cases, 
only a small part of the behavioral data can be reproduced by a single model. 
In this case, many models could equally well reproduce experimental data, 
and thus it is difficult to select one best model. The second difficulty is the 
likely complicated relationship between information and its carrier, such as 
neural firing rates and coherence or fMRI signals, due to possible population 
coding, sparse coding, or temporal coding. The third and most critical 
difficulty is that what we can demonstrate in computational-model-based 
neuroscience is still just the temporal correlation between hypothetical 
computational variables and neural/brain activities. We can never prove 
cause and effect relationships, no matter how high the correlation coefficient 
is, how much of the behavioral data the model explains, or how deeply the 
theory goes into the core of cognition. 
 
Consequently, among the four key factors necessary for ultimate systems 
neuroscience—(1) measurement and (2) control of neural/brain activity, (3) 
manipulation of information, and (4) computational theories—we have made 
significant progress or are about to make major improvements on all the 
factors except the manipulation of information. The manipulation of 
information is theoretically and technically the most difficult first because 
we do not know how information is represented, second because there exist 
complicated relationships between neural/brain activities and represented 
information, and third because simultaneous control of neural/brain 
activities from many neurons and in many areas is necessary but extremely 
difficult. However, without the manipulation of information, we can never 
prove cause and effect relationships at the system level. 



 
Based on these reflections on the computational-model-based approach, we 
have started to advocate and promote a new approach named “manipulative 
neuroscience”, where we aim to manipulate the information even for human 
subjects. Technically, this is based on computational theories, a 
brain-network interface, and non-invasive decoding algorithms. Masa-aki 
Sato and his colleagues at ATR Computational Neuroscience Laboratories 
(ATR-CNS) have been developing a “brain-network interface” based on a 
hierarchical, variational Bayesian technique to combine information from 
fMRI and magnetoencephalography (Sato et al. 2004). They succeeded in 
estimating brain activities with spatial resolution of a few millimeters and 
millisecond-level temporal resolution for various domains such as visual 
perception, visual feature attention, and voluntary finger movements. In 
collaboration with the Shimazu company, we aim to develop within 10 years 
a portable and wireless combined EEG/NIRS (electroencephalography/near 
infrared spectroscopy)-based Bayesian estimator for millimeter and 
millisecond accuracy. “Brain-network interface” is a term we have created 
for this project, and it is like a brain-machine interface or a brain-computer 
interface. A brain-network interface non-invasively estimates brain activity 
by solving the inverse problem, and it also estimates neural activities and 
reconstructs represented information. Accordingly, it is not a brain-machine 
interface because it is non-invasive, and it is not a brain-computer interface 
because it does not require extensive user training since it decodes 
information. Researchers at ATR-CNS have already succeeded, for example, 
in estimating the velocity of wrist movements from single-trial data without 
subject training. Furthermore, Honda Research Institute of Japan in 
collaboration with ATR-CNS demonstrated real-time control of a robot hand 
by decoding three motor primitives (rock-paper-scissors, as in the children’s 
game) from the fMRI data of a subject’s primary motor cortex activity (Press 
Release 2006). This was based on the machine learning algorithms 
previously developed by Kamitani and Tong (2005, 2006) for decoding the 
attributes of visual stimuli from fMRI data. 
 



Manipulative neuroscience can be achieved by combining computational 
theories, brain-network interfaces, and non-invasive decoding algorithms as 
follows. Human subjects execute a task. We assume that we have already 
developed a computational theory that postulates that specified neural 
networks solve necessary computational problems and that some 
information is represented in a specified way by brain activities within a 
certain area. During task execution, this information is reconstructed by a 
brain-network interface and decoding algorithm in real time, and it is then 
fed back to the subject in any sensory modality or even by transcranial 
magnetic or electrical stimulation. Then, based on a prediction by the 
computational model, some manipulation is applied to the extracted 
information. Predicted changes in brain activities and behaviors are 
examined experimentally. Although we discussed a human example with 
non-invasive measurements, the same idea can be applied to animals with 
neural recordings. In that case, information is decoded from multiple neural 
activities and then manipulated and fed back to the animal by any available 
method. 
 
Having defined manipulative neuroscience in this way, it becomes apparent 
that almost all systems-neuroscience experiments try to change or at least 
influence information representations in the brain by giving sensory stimuli, 
assigning reward/penalty, imposing tasks, requiring movements, and so on, 
and then they examine changes in behavior and cognition as well as 
neural/brain activities. Computational-model-based neuroscience further 
employs a computational model to reproduce behaviors and correlate its 
hypothetical variable with neural/brain activity, which should somehow 
represent the relevant information. The new approach also utilizes a 
computational model but in prediction rather than correlation, and it 
directly manipulates information rather than attempts to indirectly 
influence information. If subjects’ behavior and neural/brain activity change 
as predicted by a computational model when the extracted information is 
manipulated while guided by the computational theory, we are in a much 
better position to state that the model is experimentally supported and that 



the hypothetical information has a causal relationship with the altered 
behavior and neural/brain activity. This is because the information and the 
neural/brain activities that carry it are directly manipulated in the new 
paradigm, and this manipulation’s effects are compared with model 
predictions. This level of understanding has been very rare in traditional 
systems neuroscience or computational-model-based neuroscience. We are 
very aware of the difficulty and risks of the new approach but at the same 
time believe that this is probably the only persuasive way to fully 
understand brain functions.
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Figure Legends 
 
Figure 1 
Demonstrations of 14 different tasks by the ERATO humanoid robot DB 
 
Figure 2 
New humanoid robot called CB (Computational Brain) 
 
Figure 3 
Biologically motivated biped locomotion of three humanoid robots 
(a) DB-chan with learning from demonstration and a nonlinear dynamical 
system for motor primitives (Nakanishi et al. 2004) 
(b) HOAP2 with central pattern generators and reinforcement learning 
algorithms (Matsubara et al. 2006) 
(c) CB with coupled oscillators that are phase regulated by reaction forces 
from the floor (Morimoto et al. 2006) 
 
Figure 4 
(a) General feedback-error-learning model.  
(b) Cerebellar feedback-error-learning model (Kawato 1999). The ‘controlled 
object’ is a physical entity that needs to be controlled by the central nervous 
system, such as the eyes, hands, legs or torso.   
 
Figure 5 
Signal transduction model of cerebellar LTD 
(AA: arachidonic acid; CF: climbing fibers; ER: endoplasmic reticulum; Glu: 
glutamate; Gq: G-proteins; IP3: inositol 1,4,5-triphosphate; IP3Rs: IP3 
receptors; MAP: mitogen-activated protein; MEK: MAP/extracellular 
signal-regulated kinase; mGluRs: metabotropic glutamate receptors; NO: 
nitric oxide; PF: parallel fibers; PKC: protein kinase C; PKG: 
cGMP-dependent protein kinase; PP2A: protein phosphatase 2A; PLA2: 
cytosolic phosopholipase A2; PLC

! 

" : phospholipase C

! 

" ; sGC: soluble 
guanylyl cyclase; VGCCs: voltage-gated calcium channels)
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