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The learning process of reaching movements was examined
under novel environments whose kinematic and dynamic prop-
erties were altered. We used a kinematic transformation (visuo-
motor rotation), a dynamic transformation (viscous curl field),
and a combination of these transformations. When the subjects
learned the combined transformation, reaching errors were
smaller if the subject first learned the separate kinematic and
dynamic transformations. Reaching errors under the kinematic

(but not the dynamic) transformation were smaller if subjects
first learned the combined transformation. These results sug-
gest that the brain learns multiple internal models to compen-
sate for each transformation and has some ability to combine
and decompose these internal models as called for by the
occasion.
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Most purposeful actions, including tool use, involve significant
interactions with the environment. The motor commands re-
quired to perform such actions depend not only on the kinematics
(Lacquaniti et al., 1995) and dynamics (Kalaska et al., 1989) of
the musculoskeletal system but also on the kinematics and dy-
namics of manipulated tools and the environment. The ability of
humans to adapt to a range of environments and to easily switch
between familiar environments indicates that the CNS learns and
maintains internal models of the kinematics and dynamics of
different environments.

A fundamental question related to internal models concerns
their granularity. Here the issue is whether CNS uses a small
number of global internal models or whether it maintains a large
number of internal models or modules for different contexts. For
a global internal model to adapt to different sensorimotor con-
texts, it must learn the properties of tools and environments
whenever they are altered—even if these properties have been
learned previously. On the other hand, if the CNS uses multiple
internal models, each model could learn the properties of a
particular environment or tool, and there would be less relearning
involved. Moreover, initial learning of tools and environments
may be facilitated by combining stored modules (Ghahramani and
Wolpert, 1997). The recently proposed multiple internal model
hypothesis (Kawato and Wolpert, 1998; Wolpert and Kawato,
1998; Wolpert et al., 1998) argues for motor control and learning
based on such a modular strategy. This model assumes that
separate internal models are learned for different environments
and also permits mixtures of internal models to cope with a single
environment or task.

Several lines of evidence support the multiple internal model

hypothesis. Brashers-Krug et al. (1996) and Shadmehr and
Brashers-Krug (1997) examined adaptations to unusual force
fields in reaching movements. They have shown that subjects are
able to learn internal models of multiple force fields, and that
these models can be successfully recalled, with little decrement in
performance, for up to 5 months and probably longer. Previous
work on learning in reaching tasks has demonstrated that humans
are able to adapt to a wide range of visuomotor (MacGonigle and
Flook, 1978; Welch, 1986; Welch et al., 1993; Flanagan and Rao,
1995; Imamizu and Shimojo, 1995; Imamizu et al., 1995; Ghahra-
mani and Wolpert, 1997) and dynamic (Shadmehr and Mussa-
Ivaldi, 1994; Brashers-Krug et al., 1996; Conditt et al., 1997;
Flanagan and Wing, 1997; Sheidt et al., 1997) transformations.
However, little is known about how the CNS deals with novel
environments in which the kinematic and dynamic properties are
altered simultaneously.

The first goal of the current study was to test the hypothesis
that the CNS can effectively combine previously learned internal
models when encountering a novel environment in which the
previously learned sensorimotor transformations are simulta-
neously presented (combined transformation). The second goal
was to test the related hypothesis that the CNS can decompose
the previously learned combined transformation when encounter-
ing the separate (and novel) component transformations. To
evaluate these hypotheses, we used visuomotor (660° rotation)
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and dynamic (viscous curl fields of opposite sign) transformations
either separately or in combination. In the composition experi-
ment, subjects first learned separate visuomotor and dynamic
transformations and then the combined transformation. In the
decomposition experiment, the same subjects first learned the
combined transformation and then the separate transformations.
Transformations of opposite sign were used in the two experi-
ments to guard against transfer of learning, and the two experi-
ments were separated by at least 1 week to guard against inter-
ference effects (Shadmehr and Brashers-Krug, 1997).

We hypothesized that performance under the combined trans-
formation would be facilitated by previous learning of the sepa-
rate transformations. This would indicate that subjects are able to
effectively combine the previously learned visuomotor and dy-
namic internal models. We also hypothesized that performance
under the separate transformations would be facilitated by previ-
ous learning of the combined transformation. This would suggest
that the CNS is able to decompose the combined transformation
(or an internal model of the combined transformation) into
separate internal models.

MATERIALS AND METHODS
Subjects. Six males and two females, 21–35 years old, participated in
these experiments after giving informed consent. None of the subjects
reported sensorimotor or neurological problems, and all had correct-for-
normal vision. All of the subjects were naive with respect to the hypoth-
eses under study, and none had previously experienced the sensorimotor
transformations examined.

Apparatus. Subjects sat on a chair, held the tip of a force-reflecting
manipulandum (Gomi and Kawato, 1996) with the right hand and exe-
cuted reaching movements in the horizontal plane to visually presented
targets. The arm was supported by either a strap from the ceiling or a
brace fixed to the manipulandum. The current hand position (a cursor 0.4
cm in diameter) measured by the manipulandum and the target circle (1
cm in diameter) were indicated on a large cathode ray tube (CRT) screen
located 1.6 m in front of the subject. The scales of the CRT coordinates
and hand coordinates were the same. The position of the hand and the
forces applied by the hand to the manipulandum were sampled at 500 Hz.
The subject performed the task only by looking at the CRT screen; a
board occluded vision of the arm.

Procedure. Subjects were asked to move the cursor quickly and accu-
rately to a series of targets that appeared in succession on the screen.
Each target served as the start position for the next movement. Targets
were randomly positioned within the work space (14 cm in radius) but
were constrained to be 10 cm from the start position. Each new target was
presented for 600 msec and then extinguished. After a short delay, the
next target appeared. Targets were presented in sets of 10. At the start of
each set the subject positioned the cursor in the center of the work space.

Each subject completed the composition and decomposition experi-
ments at least 1 week apart with the order counterbalanced across
subjects. Both experiments consisted of four transformation conditions:
normal, visuomotor, dynamic, and combined (visuomotor and dynamic).
The normal condition was included to familiarize subjects with the
manipulandum.

In both experiments, subjects first completed 30 sets of 10 trials in the
normal condition. In the composition experiment they then completed 50
sets of trials in the visuomotor and dynamic conditions (counterbalanced
across subjects) followed by 50 sets of trials in the combined condition. In
the decomposition experiment, subjects completed 50 sets of trials in the
combined condition followed by 50 sets in the visuomotor and dynamic
conditions (again counterbalanced across subjects). The subjects took
brief rests between transformation conditions.

The normal, rotational, and viscous transformations are coded N, R,
and B, respectively and the combined transformation is coded R1B.
Superscripts are used to indicate the perturbation direction (see below).
To guard against practice effects across experiments (i.e., weeks), the
directions of the transformations were reversed for each subject. R9 and
B9 denote transformations with signs opposite R and B respectively.
Previous work on adaptation to viscous force fields (Shadmehr and
Brashers-Krug, 1997) and visuomotor rotations (E. Nakano, unpublished
data) has revealed that there are no positive or negative transfer effects

when the direction of the perturbation is reversed and the perturbations
are delivered .24 hr apart. We assumed that R and R9, B and B9, and
R1B and R91B9 were equivalent in terms of difficulty.

Transformation rules. In the rotational transformation, the subjects
controlled the position of the cursor (x, y) which corresponded to the
position of the actual hand ( p, q) rotated about the center of the work
space:

S x
yD 5 RS p

qD 5 S cosu 2sinu
sinu cosu DS p

qD .

Two rotation matrices were used: R 1 where u 5 60° and R 2 where
u 5 260°.

For the viscous transformation, we used the same type of viscous curl
force fields used by Shadmehr and Mussa-Ivaldi (1994). The manipulan-
dum produced forces ( fx, fy) on the subject’s hand that were proportion
to the velocity of the hand (ṗ, ṗ):

S fx

fy
D 5 BS ṗ

q̇D 5 S a x
x 2a DS ṗ

q̇D .

Two viscosity matrices we used: B 1 where a 5 13 N z m 21 z sec 21 and
B 2 where a 5 213 N z m 21 z sec 21. x was always 213 N z m 21 z sec 21.

Data analysis. The position data were digitally filtered using a fourth-
order low-pass Butterworth filter with a cutoff frequency of 20 Hz.
Velocities were computed with a three-point local polynomial approxi-
mation. The start and end of each movement were defined as the points
at which the curvature of the two-dimensional path of the hand first
exceeded and then subsequently dropped below 3 mm 21, respectively
(Imamizu et al., 1995). Defined in this way, the end of the movement
occurs before small corrective movements often observed near the target.

To quantify trajectory learning, we computed two measures of perfor-
mance. The target error was defined as the distance between the target
and end positions. This error has previously been used to study adapta-
tion under rotational transformations (Imamizu et al., 1995). The path
distance was defined as the length or distance traveled by the hand.
Shadmehr and Mussa-Ivaldi (1994) demonstrated that during adaptation
to viscous force fields, hand paths become less and less curved and
eventually become approximately straight. Thus, the path distance de-
creases with learning. The target errors and path distances were averaged
across the 10 trials within each set. Thus, for each measure, we obtained
30 values in the normal condition and 50 values in the rotational, viscous,
and combined conditions. In this paper, we focus on the first 30 sets of
trials in each condition.

Repeated measures ANOVAs were used to assess various experimen-
tal effects on the two trajectory measures. A significance level of 5% was
considered statistically reliable.

RESULTS
We first provide a brief qualitative description of the results using
single-trial data from a single subject and then present the results,
in quantitative form, using data averaged across subjects.

Single-trial data
Hand paths
Examples of hand paths in early ( gray traces) and later (black
traces) stages of learning are shown in Figure 1 for both the
composition experiment and the decomposition experiment (data
from subject R.B.). Under the normal transformation, the hand
paths were almost straight, and the target errors were small both
in early and late trial sets. In the early stage of learning in the
composition experiment, large directional errors in the hand path
were observed under the rotational transformation (R1), and
curved and misdirected hand paths were also seen under viscous
transformation (B2). Under the combined transformation (R1 1
B2), deviations in the hand paths early in learning were generally
small in comparison with the deviations observed in early learn-
ing under the previously encountered rotational and viscous trans-
formations. In the early stage of learning in the decomposition
experiment, large deviations in the hand paths were observed
under the combined transformation (R2 1 B1). However, the
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deviations under the rotational (R2) and viscous (B1) transfor-
mations, encountered after learning the combined transforma-
tion, were relatively small. Under all transformations, nearly
straight hand paths were eventually observed after adaptation.

Learning curves
Figure 2 shows, for subject R.B., target errors and path distances
as a function of trial set for each transformation condition. The
lef t and right sides of each panel show the errors or distances
obtained without and with previous learning of the complemen-
tary transformation(s), respectively. Thus, this subject experi-
enced R and B before R1B (composition experiment) but expe-
rienced R9 and B9 after R91B9 (decomposition experiment). For
the normal transformation, the lef t and right sides of the panels
show data obtained in the composition and decomposition exper-
iments, respectively. For illustrative purposes, exponentials of the
form k0 1 k1 * exp (2k2 * n), where n denotes the set number and
ki denotes a constant coefficient, were fit to each set of data.

For this subject, performance under the separate rotational
(R9) and viscous (B9) transformations was clearly facilitated by
previous learning of the combined (R91B9) transformation. Sim-

ilarly, performance under the combined transformation (R1B)
was facilitated by previous learning of the two separate transfor-
mations (R and B). However, transfer of learning was not perfect.
Whereas the initial target errors and path distances were smaller
after previous learning of the complementary transformation(s),
they also tended to be greater than the errors and distances
observed at the end of the previous learning.

Averaged data
To characterize performance under each transformation condi-
tion, we first computed subject averages, for both target error and
path distance, over the first 10 sets of trials and over sets 21–30.
Thus, we characterized the initial performance under each trans-
formation as well as later performance. We then computed means
and SDs based on the subject averages. Figure 3 shows, for each
transformation, the mean target errors and path distances during
both early learning (circles) and later performance (squares). The
errors observed with ( filled symbols) and without (open symbols)
previous learning of the complementary transformation(s) are
joined by lines. The stars indicate a reliable difference ( p , 0.05)

Figure 1. Single hand paths measured under each transforma-
tion in the composition (top) and decomposition (bottom) exper-
iments. Hand paths are shown for trials performed in the early
stage of learning (1st set; gray traces) and in the late stage of
learning (30th set; black traces). N, R, B, and R1B denote the
normal, rotational, viscous, and combined transformations with
superscripts indicating the direction of the transformation. The
initial ( x) hand position and target position ( o) are indicated for
each trial. Data are from subject R.B.

Figure 2. Changes in target error and path dis-
tance across trial sets under each transformation
for subject R.B. For the normal (N), rotational
(R), and viscous (B) transformations, the lef t
sides show data from the composition experiment
(Comp.) in which R and B were tested before the
combined transformation (R1B). The right sides
show data from the decomposition (Dec.) exper-
iment in which R9 and B9 were tested after learn-
ing R91B9. For the combined transformation, the
lef t and right sides show performance without and
with previous learning of the separate transfor-
mations, respectively. Exponential functions
have been fit to each set of data (see Results for
details).
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between pairs of transformations (with and without previous
learning), and the error bars represent SDs.

Figure 3 reveals that hand trajectories were clearly altered
during initial learning by the visuomotor, dynamic, and combined
transformations. Without previous learning of the complemen-
tary transformations (open circles), both targets errors (F(1,7) 5
39.1; p , 0.001) and path distances (F(1,7) 5 60.2; p , 0.001) were
reliably greater under the rotational, viscous, and combined
transformations (grouped together) than under the normal trans-
formation. Even with previous learning of the complementary
transformations ( filled circles), initial target errors (F(1,7) 5 28.9;
p 5 0.001) and path distances (F(1,7) 5 16.4; p 5 0.005) were
reliably greater under the rotational, viscous, and combined
transformations than under the normal transformation. Overall,
initial performance under the non-normal transformations was
better with previous learning (open circles) than without ( filled
circles) both in terms of target error (F(1,7) 5 17.4; p 5 0.004) and
path distance (F(1,7) 5 17.0; p 5 0.004).

Transfer of learning in composition
To assess the composition hypothesis, we compared initial per-
formance under the combined transformation with and without
previous learning of the separate transformations. If previous
learning of the separate transformations facilitates performance
under the combined condition, then the initial performance
should be better than that observed without previous learning.
Repeated measures ANOVA revealed that the mean target error
was significantly smaller (F(1,7) 5 9.05; p 5 0.02) with previous

learning than without (see Fig. 3, Composition benefit). However,
the mean path distances with and without previous learning were
not reliably different (F(1,7) 5 0.81; p 5 0.40). These results
indicate that performance in the combined transformation con-
dition was facilitated by previous learning of the separate visuo-
motor and viscous transformations. This improvement in perfor-
mance was reliably observed in the target error.

Transfer of learning in decomposition
To test the decomposition hypothesis, we compared initial per-
formance under the separate transformations with and without
previous learning of the combined transformation. We will first
consider the rotation transformation. The mean path distance was
significantly smaller with previous learning than without (F(1,7) 5
8.67; p 5 0.02). Similarly, the mean target error with previous
learning was reliably smaller than without previous learning
(F(1,7) 5 6.24; p 5 0.04). Thus, for the visuomotor transformation
condition, the results clearly indicate that previous learning of the
combined transformation facilitated performance (see Fig. 3,
Decomposition benefit). In contrast, such transfer of learning was
not observed under the viscous transformation. Reliable effects of
previous learning of the combined transformation were not ob-
served on mean initial path distance (F(1,7) 5 1.22; p 5 0.31) or
mean initial target error (F(1,7) 5 0.15; p 5 0.71).

Order effects
We used viscous force fields and visuomotor rotations of opposite
signs to guard against practice effects across experiments (i.e.,
weeks). Nevertheless, to assess possible effects of practice, we
compared the performance between the second and third trans-
formations in the composition experiment and between the third
and fourth transformations in the decomposition experiment.
Thus, only the rotation and viscous transformations were consid-
ered. In both experiments, half the subjects received the rotation
transformation followed by the viscous transformation, and the
other half received the transformations in the opposite order.
Therefore, we were able to assess the effects of order while
counterbalancing across the two types of transformation. Re-
peated measures ANOVAs were used to assess the effects of
order on target error and path distance in both experiments. Thus
four separate ANOVAs were performed, two for each experi-
ment. No reliable effects of order were observed ( p . 0.20 in all
cases). Thus, performance under the second transformation
(third or fourth) was not reliably different from performance
under the first (second or third).

DISCUSSION
The present study tested two general hypotheses concerning
internal models of sensorimotor transformations. The composi-
tion hypothesis holds that the CNS can effectively combine in-
ternal models of two previously learned sensorimotor transfor-
mations when dealing with a novel environment in which both
transformations are present. The decomposition hypothesis holds
that, when encountering a complex environment featuring more
than one sensorimotor transformation, the CNS can effectively
decompose the environment into separate internal models appro-
priate for the separate transformations.

We found clear support for the composition hypothesis. Move-
ment performance in the combined transformation was superior
if subjects had previously learned the separate transformations. In
particular, target errors were smaller under the combined trans-
formation after exposure to the separate rotational and viscous

Figure 3. Mean target errors (top) and path distances (bottom) during
initial learning (circles) and later performance (squares) under each of the
four transformation conditions. For the rotational and viscous transfor-
mations, the closed and open symbols represent performance with and
without prior learning of the combined transformation. For the combined
transformation, the filled and open symbols represent performance with
and without prior learning of the separate rotational and viscous trans-
formations. Error bars represent SDs. Stars indicate a statistically signif-
icant difference between pairs of transformations with and without prior
learning.
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transformations. However, transfer of learning to the combined
transformation was not total. Even if two internal models for the
separate transformations were already perfectly learned in two
anatomically distinct sites in the brain, it is not at all trivial to find
the cascade of these two that can resolve the newly given com-
position task and to establish functional neural connections be-
tween the two. Thus, total transfer of learning should not neces-
sarily be expected.

We also found partial support for the decomposition hypothe-
sis. We observed that performance under the rotational transfor-
mation was clearly facilitated by previous learning of the com-
bined transformation. Both target errors and path distances were
reduced when subjects had previously been exposed to the com-
bined transformation. However, we did not observe a significant
facilitation of performance under the viscous transformation at-
tributable to previous learning of the combined transformation.
Thus, although subjects appeared to be able to learn and then
recall the visuomotor rotation component of the combined trans-
formation, they were not able to learn and/or recall the dynamic
component of the same transformation.

It is not clear to us why learning of the combined transforma-
tion should only have transferred to the visuomotor transforma-
tion. However, one possible explanation is that, when learning the
combined transformation, the subject may have adapted primarily
to the visuomotor rotation because of the large target errors
initially caused by this transformation. Note that when subjects
experienced the separate rotational and viscous transformations
before learning the combined transformation, target errors were
much larger under the rotational transformation. It stands to
reason, therefore, that the best way to reduce target errors under
the combined transformation would be to focus on learning the
visuomotor component. The subjects in our experiment experi-
enced 50 sets of 10 trials under the combined transformation for
a total of 500 movements. By the end of this period, errors levels
flattened out (Fig. 2) and approached baseline levels (Fig. 3).
Thus, it does not seem likely that further training under the
combined transformaton would have led to decreased errors
under the subsequent viscous transformation.

There are two ways in which subjects might acquire internal
models of components of a combined transformation. One possi-
bility is that internal models of the separate transformations (e.g.,
visuomotor and viscous) are acquired simultaneously during adap-
tation to the combined transformation. Ghahramani and Wolpert
(1997) have recently proposed such a mechanism. These authors
argued that a complex visuomotor task can be divided into simpler
subtasks, each learned by a separate module in the brain. Another
possibility is that the CNS learns a single internal model of the
combined transformation and only later decomposes it into its
component parts when required. The present results do not enable
us to distinguish between these two alternatives, and further mod-
eling efforts will be required to assess their relative advantages.

Overall, the results of this study are consistent with the general
hypothesis that the CNS maintains multiple internal models of
different environments or sensorimotor transformations. First,
the lack of interference effects between the visuomotor and
dynamic transformations (i.e., the absence of order effects) sug-
gests that the CNS learned and maintained distinct internal
models for these two transformations. If the CNS used a single or
global internal model for both the visuomotor and dynamic
transformation, learning of one transformation should interfere
with subsequent learning of the other. Further support for this
view comes from the finding that subjects could successfully inte-

grate previously acquired knowledge of the two separate transfor-
mations when faced with a novel, combined transformation.

Support for the multiple internal models hypothesis has re-
cently been provided by imaging studies. Shadmehr and Holcomb
(1997) have shown that consolidation of learned internal models
in memory involves changes in ipsilateral anterior cerebellar
cortex. Imamizu et al. (1998) demonstrated that neural activity
can be observed in different parts of the cerebellum correspond-
ing to different kinematic transformations after learning. The
authors suggested that the different regions of activation corre-
spond to distinct internal models for the different kinematic
transformations. The present results suggest that the notion of
multiple internal models can be extended to different classes of
transformations, namely, dynamic and kinematic transformations.
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