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Practice reduces task relevant 
variance modulation and forms 
nominal trajectory
Rieko Osu1,*, Ken-ichi Morishige2,*, Jun Nakanishi3, Hiroyuki Miyamoto4 & Mitsuo Kawato1

Humans are capable of achieving complex tasks with redundant degrees of freedom. Much attention 
has been paid to task relevant variance modulation as an indication of online feedback control 
strategies to cope with motor variability. Meanwhile, it has been discussed that the brain learns 
internal models of environments to realize feedforward control with nominal trajectories. Here 
we examined trajectory variance in both spatial and temporal domains to elucidate the relative 
contribution of these control schemas. We asked subjects to learn reaching movements with multiple 
via-points, and found that hand trajectories converged to stereotyped trajectories with the reduction 
of task relevant variance modulation as learning proceeded. Furthermore, variance reduction was 
not always associated with task constraints but was highly correlated with the velocity profile. A 
model assuming noise both on the nominal trajectory and motor command was able to reproduce 
the observed variance modulation, supporting an expression of nominal trajectories in the brain. The 
learning-related decrease in task-relevant modulation revealed a reduction in the influence of optimal 
feedback around the task constraints. After practice, the major part of computation seems to be 
taken over by the feedforward controller around the nominal trajectory with feedback added only 
when it becomes necessary.

Biological motor control problems involve considerable redundancy, neural noise, and substantial senso-
rimotor delay. The brain solves these problems with limited resources and time by learning to perform 
given tasks. In particular, the brain has to cope with the variance caused by external perturbation as well 
as internally generated noise. Recent studies suggested that the variance was reduced only around the 
task constraints and remained large at locations irrelevant to the task in complex tasks, which is called 
the minimal intervention principle. At the same time, there is much experimental evidence showing a 
reduction of movement variance after learning and convergence to nominal trajectories in simple reach-
ing tasks.

These two different observations of movement variance are closely related with old and new argu-
ments of whether biological motor systems mainly depend on feedback control or feedforward control. 
In the optimal feedback control approach, the brain does not plan movement beforehand, but solves the 
problems online using all possible feedback information available at that time without the need for feed-
forward control1. This idea originated in traditional psychological theory such as dynamical system the-
ory2,3 and the theory of uncontrolled manifolds4–6, and was formulated in the context of biological motor 
control as the optimal feedback control theory by Todorov and Jordan1. This approach solves all problems 
simultaneously at the feedback level and therefore assumes a heterarchical implementation in the brain. 
There is a large amount of behavioral evidence that humans reduce variability only in the direction rele-
vant to the task4,6,7. Such task-relevant variance modulation is called the minimal intervention principle 
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and has been regarded as evidence of the absence of a plan1,8,9. Feedforward control, on the other hand, 
solves the problem sequentially by dividing a complicated problem into several simple problems (divide 
and conquer). To divide the problem, this approach normally requires an intermediate representation 
between the task and motor commands, e.g, a desired trajectory, that are not directly specified by the task 
constraint. Such a strategy assumes hierarchical implementation in the brain. Complicated problems are 
partly solved at the planning level before the start of movement10–14. This type of approach stems from 
control theory in robotics, and physiological and imaging data suggest hierarchical information process-
ing and modular characteristics of the brain15–17. If the role of feedback control (such as the control of 
impedance) is to reduce the deviation from the planned (desired) trajectory, the actual trajectories are 
likely to be spatially and temporally uniformly distributed around the fixed planned trajectory, rather 
than reducing their variance only around task constraints.

The question we address in this paper is whether task relevant modulation (optimal online feedback 
control) is the major contribution of the trajectory variance, or whether the assumption of nominal 
trajectories (feedforward control) is required for explaining trajectory variance. As a behavioral investi-
gation, we focused on the modulation of variance in reaching tasks with multiple intermediate targets.

We first focused on the learning-related change of task-relevant modulation in variance. An impor-
tant prediction to be tested is if the minimal intervention principle is optimal behavior in the sense 
of the optimal feedback control schema, then task-relevant modulation should be observed in skilled 
movements even after learning. Our behavioral experiments demonstrate that this task-relevant modu-
lation decreases or disappears after practice, suggesting the significance of plan-based control for skilled 
movements.

We then examine the possibility that movement planning is expressed in the form of trajectories (i.e., 
kinematic variables as a function of time) in the brain. In such a case, we suppose that neural noise 
could be added to the time indices (time-jitter noise), which predicts velocity-dependent modulation 
of variability. The observed velocity-dependent modulation of the trajectory variability would support 
the existence of nominal trajectory expression in the brain with the proposed time-jitter noise model.

We finally consider the effect of dynamics of the body (e.g., arm dynamics) on the observed variance 
modulation. The experimental paradigm suggests that trajectory optimization should take into account 
the dynamics of the nonlinear musculoskeletal system, which makes the problem of online optimization 
complex.

Results
Experiment 1: task-relevant variance modulation disappears after learning.  We asked partic-
ipants to perform reaching tasks with multiple targets and examined the practice-related changes in the 
variance structure.

The participants performed four different types of multiple-target movements until 50 successful trials 
were acquired (see Fig. 1 and Methods). To focus on variance modulation in the task space, we computed 
the variance normalized by path length1 (see Eq. 2). This ‘path variance’ evaluates solely spatial variance 
by selecting the nearest points, without taking into account the temporal information1. To quantify the 
variance modulation, we computed the modulation index (MI) from path variance. The MI will be large 
if the variances between targets are larger than the variance at adjacent targets. Therefore, a larger MI 
indicates better modulation of the variance. Figure 2 shows the evolution of the MI over normalized trial 
numbers. In general, the task-relevant modulation of the path variance was observed at the early stage 
of practice, and reduced at the later stage of practice. In all tasks, the MI gradually decreased as practice 
proceeded. In five of six tasks, the MI of the final 5% of total trials was significantly smaller than that 
of the initial 5% (Todorov’s task: t(8) =  7.11, p =  0.00010, parabola task: t(7) =  2.83, p =  0.02544, fast 
zigzag task: t(7) =  2.12, p =  0.07137, slow zigzag task: t(8) =  5.20, p =  0.00082, fast three-via-point task: 
t(6) =  2.53, p =  0.04440, slow three-via-point task: t(8) =  3.14, p =  0.01383). The path variance at each 
target did not change significantly while it significantly decreased after learning (paired t-tests) at some 
midpoints between the targets. Therefore, the observed decrease in the modulation index was due not to 
the increase in variance at the targets but to the decrease in variance at the midpoints.

We then examined whether there was still significant modulation of path variance after learning 
(inset of Fig. 2). Although we observed significant differences among targets and midpoints in Todorov’s 
task, the parabola task, and the three-via-point tasks (ANOVA), the post-hoc comparison revealed that 
there were differences relevant to the minimum intervention principle (i.e., an increase in variance at a 
midpoint in comparison with its neighboring targets) for midpoints 2 and 3 of Todorov’s task and for 
midpoint 2 of the three-via-point task, but not for others. These results show that task-relevant modula-
tion of path variance does not necessarily increase but tends to disappear after practice.

If online correction towards the original task constraints is the major contribution of the variance 
modulation, it is hard to explain why the variance between the targets has reduced, where no task con-
straints were given. Reduced task relevant modulation after learning suggests that the brain may have 
been lead to converge the trajectory between the targets through practice, by learning a nominal trajec-
tory toward which the variance is reduced.

Temporal aspect of variance modulation.  We then computed the ‘trajectory variance’ taking into 
account the spatio-temporal characteristics of the variance. Here the trajectory variance is defined as the 
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spatial variance along normalized time, and the effect of movement duration was removed by resampling 
the position for each trajectory so that the duration was evenly divided into 100 pieces (time normaliza-
tion, as detailed in Methods). This method normalizes the total movement duration without removing 
the local time warp. While the path variance is expressed as a function of path length, the trajectory 
variance is expressed as a function of normalized time. Figure  3a–d show the temporal profiles of the 
trajectory variance and mean squared velocity for representative participants. In all tasks, there was a 

Figure 1.  Allocations of targets and examples of hand paths for each task. In Todorov’s task, three 
intermediate targets were located in the same way as the multiple target condition of Experiment 1 in ref. 14; 
i.e., the first target was located distally, the second proximally, and the third distally. In the parabola task, 
two intermediate targets were located distally. In the zigzag task, the first target was located distally and the 
second proximally. In the three via-point task, the first target was located distally, with the second and the 
third located proximally. The participants were tasked with moving their hand from the start point (a circle 
with a radius of 0.5 cm) to the final target (a circle with a radius of 1.5 cm) by passing through intermediate 
targets (a circle with a radius of 1 cm) within a time limit (Todorov’s task: 1350 ±  150 ms; parabola task: 
800 ±  50 ms; zigzag fast: 1000 ±  50 ms; zigzag slow: 1500 ±  75 ms; three-via-point fast: 1200 ±  50 ms; three-
via-point slow: 1800 ±  75 ms). The filled circles denote the start circle and the open circles denote the target 
circles. The gray curves denote hand paths of participants after learning (last 20% of all trials). Black curves 
are average hand paths.
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Figure 2.  Learning-related decrease in variance modulation. The solid curves show the time course of 
modulation indices ensemble averaged across participants. The error bars denote their standard errors. The 
time course modulation indices for each participant are computed over the moving window of 15 trials and 
normalized by the maximum value. Trial numbers are normalized so that the total numbers are 100. Each 
inset shows the path variance at each intermediate target and midpoints between targets computed from 
the last 15 trials. In the inset, m1, m2, and m3 of the horizontal axis correspond to the midpoints between 
intermediate targets where the significant increase in the path variance relative to the adjacent targets is 
predicted according to the minimal intervention principle. t1, t2 and t3 correspond to the intermediate 
target positions where the significant decrease in the path variance is predicted according to the minimal 
intervention principle. The black horizontal bar denotes significant post-hoc comparisons observed between 
the adjacent target and midpoint that correspond to the minimal intervention principle (a significantly 
smaller variance in the target compared with the adjacent midpoint). Gray horizontal bars denote other 
cases. Significant modulation after learning corresponding to the minimum intervention principle was 
observed only in the early part of the fast multi-target task.
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Figure 3.  Velocity-dependent modulation of trajectory variance and OFC simulation. (a–d) Time course 
of trajectory variance that considers the temporal aspect of the variance for typical participants. Solid curves 
are observed trajectory variance. The black dotted curves show the mean squared tangential velocity. Gray 
dash curves demonstrate trajectory variance reconstructed from the mean squared tangential velocity and 
the signal-dependent noise term from Equation 1. Gray areas denote the duration that the hand stayed 
within via-point circles. (e–h) Results of LQG simulations. Left panels show hand paths. Right panels show 
time courses of trajectory variance and mean squared velocity. Vertical lines denote the time specified in the 
simulation when the hand passes through targets. The simulation parameters (σS =  0.4, σu =  0.7, wv =  0.1, 
wf =  0.01, r =  0.002) were set so that the path variance appears similar. The times when the hand passed 
through targets were obtained from the data.
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general tendency that the trajectory variance increased with an increase in velocity and vice versa. When 
the minima of the velocity and target did not match (e.g., targets 1 and 2 in the parabola task, targets 2 
and 3 in the multi-target task), the minima of the trajectory variances were located not around the targets 
(blue arrows) but around the midpoints where the velocity minima were observed (red arrows). These 
results suggest that the trajectory variance did not follow the minimal intervention principle but changed 
in parallel with the velocity profile. As expected, the linear quadratic Gaussian (LQG) framework1,18 that 
computes optimal feedback controllers predicted the minimal intervention principle even for the parab-
ola task and the multi-target task, in which the variance increased at the mid-point of the two via-points 
where the velocity was minimal (red arrows in Fig. 3f and h, in comparison with those in Fig. 3b,d).

Experiment 2: noise in the nominal trajectory explains movement variance.  Because the tra-
jectory variance tends to be more affected by the movement velocity than by the task constraints as seen 
in the above experiments, we investigated the temporal aspects of the variance in more detail. If a rep-
resentation of a nominal trajectory exists in the brain for skilled and rapid movements, we hypothesize 
that noise can be added to that trajectory representation in a manner similar to noise added to the con-
trol command. If we assume that the motor command is computed sequentially via a nominal trajectory 
(Fig. 4a), the motor noise at the level of a nominal trajectory affects the actual trajectory without time 
delay because it does not yield to the integration effect of dynamics (Fig. 4b). In contrast, motor noise 
added to the motor command, known as signal dependent noise, plays through dynamics, resulting in 
an incremental increase of variability in the actual trajectory (Fig. 4c). Therefore, we may be able to dis-
tinguish the source of noise by analyzing the temporal aspect of variability in the actual trajectory either 
at the planning level or at the motor command level.

We propose a novel noise model assuming the time jitter noise in a desired trajectory expressed as 
a position sequence as a function of time as well as signal-dependent noise. The time jitter noise here 
means local advance or delay of time in reading out a desired trajectory owing to speed changes of 
planner dynamics. Employing the proposed model, we separated the variability caused by noise at the 
planning level from that caused by noise at the motor command level. Specifically, we succeeded in pre-
dicting the time course of the trajectory variability T_Var(t) during reaching movements using a linear 
summation of incremental variability coming from the signal-dependent noise and velocity-dependent 
variability coming from the planning noise (see Methods):

β β τ_ ( ) =





 + ( ) +

( )∬T Var t dx
dt

t dt E
11

2

1
2

here, the trajectory variance T_Var(t) corresponds to the variability of the actual hand position at time t 
from the desired hand position at the same time t assuming the representation of a desired trajectory in 
the brain. Because information of the actual desired trajectory in the experiments with human subjects 
is not available, we used the mean trajectory as its approximation. In Eq. 1, the first term represents 
the effect of time-jitter noise on the desired trajectory and the second term represents the effect of 
signal-dependent noise playing through the dynamics, which is proportional to the double integral of 
the sum of square of the motor command τ. For simplicity, τ(t)2 was approximated by the summation 
of the square of the shoulder torque and the square of the elbow torque. E includes both the spatial 
noise of the planned trajectory and the modeling error. Thus, the hierarchical schema predicts that the 
trajectory variance T_Var(t) can be reproduced by the linear summation of terms proportional to 1) the 
square of velocity, 2) the incremental term that is proportional to the integrated motor commands, and 
3) the error term.

The proposed model predicts that the trajectory variance normal to the movement direction has less 
contribution from the velocity-dependent term because there is a small component of velocity in the 
normal direction. The trajectory variance tangential to the movement direction, however, should have a 
significant velocity-dependent term because there is a substantial increase in velocity in the tangential 
direction. Therefore, β1 should be different when reconstructing either a normal or tangential variance. 
To confirm this, we tested simple point-to-point reaching movements with nearly straight trajectories 
(Fig. 5a).

We computed the trajectory variances normal to and tangential to the mean trajectory from 40 move-
ments after enough practice (Methods). For each variance, the parameters β1 and β2 in Eq. 1 were 
estimated using the least square error method. Figure 5b,c show the time courses of the observed var-
iance (solid curves) and mean square velocity weighted by the parameter β1 (dotted curves) as well as 
the reconstructed variance (dashed curves) for forward movements. Both the tangential and normal 
variances were well reconstructed (Table 1). The contribution of the velocity-dependent term was signif-
icantly smaller for the normal than for the tangential variance (ANOVA F(3, 8) =  169.25, p <  0.000001 
[forward], ANOVA F(3, 8) =  75.50, p <  0.00001 [rightward]). The normal variance was mainly explained 
by the incremental term relating to the signal-dependent noise while the tangential variance required 
both incremental and velocity-dependent terms. The LQG simulation (see Methods) predicted a 
bell-shaped trajectory variance in both the normal and tangential directions (Fig. 5d). To reproduce the 
observed dissociation between the normal and tangential trajectory variance in the LQG simulation, 
signal-dependent noise has to be larger in the tangential direction than in the normal direction, and 
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at the same time, the task constraint has to be smaller in the tangential direction than in the normal 
direction (Fig. 5e).

Our noise model assumes that the time at each position on the movement path across many trials 
has a Gaussian distribution with a mean of zero, and that the standard deviation of this distribution is 
constant throughout the movement duration (Methods). Independent of the model fittings, we computed 
the actual distribution of time at each position in the trajectories produced in Experiment 2 to examine 
the properties of the time-jitter noise. Although the movement paths are nearly identical to each other, 
the time when the hand reached the same position on the path is slightly different (Fig.  6a,b). For 
example, the time at the 50% point of one path shown in (b) (dashed curve) was advanced of that of 
the mean path (solid curve). In contrast, the time at the 50% point of another path (dash-dotted curve) 
was delayed compared with that of the mean path. The time-jitter noise in the produced trajectories 
was approximated by the Gaussian distribution with a mean of zero, which is consistent with the model 
assumption (Fig. 6c,d). From this, we computed the standard deviation of the time-jitter noise for each 
task, and compared it with the standard deviation of the time-jitter noise predicted from the model (the 
square root of the parameter β1). The standard deviation of the time-jitter noise computed from the data 
of Experiments 1, 2 and 3 (see below for the data of Experiment 3) correlated with that estimated from 

Figure 4.  Time-jitter noise versus signal-dependent noise. (a) Motor noise can be added both at the level 
of intermediate representation of the plan (i.e., the output of the planner) and at the level of the motor 
command (i.e., the output of the controller). (b) Effects of time-jitter noise in the desired trajectory on the 
variance of the produced trajectory. Time-jitter noise is added as a temporal shift (blue) on the position 
sequence (green). The motor command sequence is then computed from this skewed position sequence, 
resulting in velocity-dependent increases of variance in the produced trajectory. (c) Effects of signal-
dependent noise on the variance of the produced trajectory. Because signal-dependent noise is added to the 
motor command sequence, the effect of the noise is integrated and appears as incremental variance in the 
produced trajectory.
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Figure 5.  Trajectory variance and model fitting in point-to-point movements and LQG simulation. The 
participants’ task was to move their hand from the start point (a circle with a radius of 1 cm) to the final 
target (a circle with a radius of 3.5 cm) within a time limit (350 ±  35 ms). (a) Allocations of start and end 
circles for forward and left-to-right movement tasks, and hand paths of a typical participant. Trajectory 
variance along the movement direction (tangential variance) (b) and trajectory variance perpendicular to 
the movement direction (normal variance) (c) are demonstrated. Solid curves are the observed trajectory 
variance. The black dotted curves show the mean squared tangential velocity. Gray dashed curves are 
the trajectory variance reconstructed using Equation 1. (d) LQG simulation results obtained using basic 
parameter settings (σS =  0.4, σu =  0.6, wv =  0.1, wf =  0.01, r =  0.00002). (e) LQG simulation results obtained 
using biased parameter settings regarding motor noise ([0.9, 0; 0, 0.5], [0, 0.9; − 0.5, 0]) and task constraints 
at the final target position (3.0 for the tangential direction, 0.2 for the normal direction).
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the model fitting (r =  0.79, Fig. 6e). The results show that temporal fluctuations in the trajectory had a 
Gaussian distribution with an approximately constant standard deviation throughout the movement.

Experiment 3: effect of dynamics on trajectory variance.  It is known that human hand trajec-
tories are affected by the dynamics of the muscle skeletal system of the body11. For example, when the 
location of an intermediate target (via-point) is closer to the body than the horizontal start–end line, 
the hand velocity tends to exhibit a double-peaked profile12. In contrast, it has a single-peaked profile 
when an intermediate target is located away from the body (Fig. 7a,b). The minimal intervention prin-
ciple in the Cartesian task space with linear dynamics would predict a symmetric variance modulation 
with respect to the location of the target around the horizontal line as predicted by the LQG simulation 
(Fig. 7e,f) where the nonlinear dynamics of the body were not taken into account. However, we observed 
asymmetric modulation of the trajectory variance similar to the velocity profile (Fig. 7c).

The proposed noise model in Eq. 1 successfully reconstructed the trajectory variance, and the con-
tribution of the velocity-dependent term was significantly positive for all participants (p <  0.00001) and 
sufficiently large (Fig. 7d, Table 1).

Discussion
Characteristics of variance modulation.  The present study focused on variance modulation during 
human reaching movements in both spatial and temporal domains. We demonstrated (1) learning-re-
lated reduction of variance modulation and (2) velocity-dependent variance modulation. These results 
demonstrate convergence towards nominal trajectory after learning and suggest an expression of nomi-
nal trajectories in the brain. We identified two different noise sources that could contribute to the time 
course of movement variability: time-jitter noise in the desired trajectory and signal-dependent noise 
in the motor commands. This simple model was able to reproduce the variance modulation observed 
in behavioral experiments. The observed learning-related decrease in task-relevant modulation revealed 
that movement became more stereotyped, suggesting a reduction in the weight on online optimal feed-
back in movement. After practice, the feedforward controller around nominal trajectory seems to take 
over the major part of computation for these movements19.

Explanation of the reduction in variance modulation.  It has been argued that the task-relevant 
modulation of variability (the ‘minimal intervention principle’) is compatible with the optimal feedback 
control hypothesis but incompatible with the plan-based control hypothesis. However, it is in fact com-
patible with the plan-based control hypothesis, particularly when considering the process of practice 
and trajectory optimization. Especially for complex and inexperienced movements, computation of the 
desired trajectory may not have converged yet at first. Task-relevant modulation observed at the begin-
ning of learning could be partly explained by the exploration of a desired trajectory in addition to the 
results of optimal feedback control. Suppose that participants encounter a new reaching task with con-
straints (e.g., the novel allocation of intermediate targets) and practice it several tens of times to meet the 
constraints. In the plan-based control strategy, the brain first produces a desired trajectory by offline opti-
mization computation. In simulations, a number of iterations in the computation are typically required 
to determine the optimal trajectory from sub-optimal trajectories, especially when the cost function is 
complex. It is also probable for a biological system that sufficiently long duration is needed to converge 
to the optimal trajectory20. In such a case, a participant may start reaching with sub-optimally planned 
trajectories that satisfy the target constraints while exploring the trajectory between targets21. Given the 
intermediate targets as hard constraints, the optimal trajectory planner may try to solve redundancy 
problems that lie between the targets by optimizing soft constraints such as jerk or energy. Then, at the 

Task R2 β1 β2

Todorov 0.61 ±  0.15 0.82 ±  0.12 0.40 ±  0.18

Parabola 0.53 ±  0.23 0.78 ±  0.17 0.47 ±  0.24

Zigzag (fast) 0.53 ±  0.21 0.70 ±  0.17 0.05 ±  0.24

Zigzag (slow) 0.54 ±  0.18 0.70 ±  0.09 0.10 ±  0.24

Three via-points (fast) 0.54 ±  0.26 0.70 ±  0.24 0.33 ±  0.15

Three via-points (slow) 0.41 ±  0.22 0.60 ±  0.19 0.26 ±  0.25

Forward normal 0.97 ±  0.04 0.19 ±  0.13 1.00 ±  0.03

   tangential 0.97 ±  0.02 0.99 ±  0.03 0.38 ±  0.10

Rightward normal 0.98 ±  0.02 0.20 ±  0.21 0.96 ±  0.06

   tangential 0.98 ±  0.02 0.95 ±  0.05 0.36 ±  0.11

Mirror placement 0.81 ±  0.10 0.93 ±  0.03 0.34 ±  0.10

Table 1.   Results of multiple regression. standardized coefficients ±  SD.
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Figure 6.  Observed time-jitter noise. The actual distribution of the time-jitter noise was computed from the 
data as follows. First, the trajectory of each participant was time normalized to remove the effect of the movement 
duration. This is done because the extension and contraction of the whole movement duration could otherwise 
possibly be explained by the integrative effect of signal-dependent noise. All trajectories of each participant were 
then resampled at 100 equally spaced points along the path, and the time at each resampled position on the 
path was computed for each trajectory. In this way, we removed the effect of global lengthening, shortening, and 
positional shift of the path, which again can be explained by SDN and/or spatial noise. If we are successful in 
removing SDN and spatial noise, the resampled position sequence should represent the planned trajectory without 
spatial noise; i.e., xk

planned(t) – w. Here, the resampled positions that have the same order (percentage) along the 
path length correspond to the positions at the same time step on the planned trajectory. The mean trajectory of 
the participant was computed from the resampled trajectories and approximated as the desired trajectory of that 
task xdesired(t). Examples of the hand path (a) and its arrival time at each position (b) were taken from Experiment 
2. The difference between the time at each resampled position and the time at the corresponding position of the 
mean trajectory represents time-jitter noise δ(t). Assuming that the mean trajectory of one particular task of one 
participant is the desired trajectory of that task, we computed the mean and standard deviation of time-jitter noise 
at each position along path (c) and its distribution (d). (e) Square root of β1 plotted against the standard deviation 
of the time-jitter noise computed from the data of experiments 1, 2 and 3.
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beginning of practice, the path variance should be smaller at the task constraints and larger between 
them. After the brain obtains the optimal solution, the trajectory should become a more stereotyped 
pattern with less modulation around the task constraints. Therefore, the plan-based control hypothesis 
predicts a practice-related decrease in task-relevant variance modulation.

Optimal feedback control may also be able to explain stereotyped movement after learning if we 
consider changes of the weights in the criteria in the brain. For example, after learning, the brain might 
have had smaller weights with respect to the constraint and larger weights on, for example, the effort 
leading to convergence of the trajectory between targets.

Feedback control or not.  Many attempts have already been made to investigate whether the exclu-
sive use of feedback control is sufficient to explain human arm movements. Theoretical work has demon-
strated that rapid and coordinated arm movements cannot be executed solely under feedback control 

Figure 7.  Trajectory variance modulation in mirror-placement tasks and LQG simulation. The 
participants’ task was to move their arm from the initial position to the final position by passing through a 
via-point within a time limit (650 ±  50 ms). The start and final target positions were decided according to 
the participants’ arm joint angles (start point: shoulder 59°, elbow 99°; end point: shoulder 14°, elbow 91°). 
The different start and target positions were due to the different arm lengths of each participant.  
(a) Allocation of start, via-point and end circles. When the via-point was located farther from the body than 
the line connecting the start and end points, the mean square velocity profile had a single peak. Conversely, 
when the via-point was located closer to the body, the profile had two peaks (b). The time course of variance 
had the same features, which can be explained by our model (c). The gray areas show the time when the 
hand passed through the via-point. Magnitudes for each mean squared velocity and variance profile were 
weighted by the following values for display purposes: (b), 1.0, 0.8, 0.5, 0.3, − 0.3, − 0.5, − 0.7 and − 1.0; 
(c), 5.0, 4.0, 1.5, 0.5, − 0.15, − 0.5, − 0.55 and − 1.50. (d) Time course of variances (black solid curves) and 
variance reproduced by the time-jitter noise model (gray dashed curves) for the most distal and proximal 
via-point allocation. (e,f) Results of LQG simulations using parameters σS =  0.4, σu =  0.7, wv =  0.2, wf =  0.02, 
r =  0.002. Upper panels show hand paths. Lower panels show time courses of trajectory variance and mean 
squared velocity. Vertical lines denote the time specified in the simulation when the hand passes through 
targets.
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because biological feedback loops are slow and have small gains22. Miall et al. suggested an idea of 
combining the forward model and feedback controller as an inverse model to compensate time delay23. 
However, Mehta and Schaal showed that this strategy could not stabilize an unstable system24. Therefore, 
the exclusive use of a feedback control law does not seem to be practically useful in a biological system 
with time delay, whereas a feedforward impedance controller can stabilize unstable dynamics by learn-
ing appropriate impedance25. In addition, as illustrated in Experiment 3, optimal feedback control with 
linear dynamics was not able to predict asymmetric trajectory and variance profiles, and it is non-trivial 
to derive a general optimal feedback controller for nonlinear plant dynamics26. To our knowledge, there 
is still no effective demonstration of dealing with nonlinear dynamics or unstable dynamics through 
the exclusive use of optimal feedback control in the literature on biological motor control. The iterative 
linear quadratic Gaussian (iLQG) scheme, as one solution for the nonlinear dynamics, includes both 
feedforward commands and local optimal feedback around the optimal trajectory27. In this case, the 
feedforward motor command is computed without hierarchical computation, as a result of optimization 
using an internal model.

Several recent studies reported physiological and behavioral results supporting optimal feedback con-
trol28–32. For example, representations of MI neurons do not always remain constant across behavioral 
contexts but change their sensitivity according to the task33. There exists a flexible and sophisticated long 
latency reflex that is similar to the later voluntary response34 and has an internal model of limb dynamics35.  
Diedrichsen successfully demonstrated that both feedback control and the adaptation of two hands 
change optimally according to the current bimanual task requirements36.

The feedback controller itself is consistent with the desired trajectory hypothesis. Some recent models 
have progressively incorporated the feedback controller into the feedforward controller with a trajectory 
planner37,38. These models can deal with interactive movements with objects as well as target shifts dur-
ing the movements. Much evidence suggests the existence of sophisticated long-latency feedback, and 
it is possible that such high-level feedback systems are dedicated to an optimal feedback control law. 
However, it is still unclear whether the feedback gain is in fact effectively modified online so that it can 
optimize the performance. The gain may be sophisticated but sub-optimal39 and it may be already pre-
planned and executed in a feedforward manner25. By controlling stiffness (i.e., the feedback gain using 
a feedforward mechanism), the effect of signal-dependent noise can be reduced without complicated 
online computation of feedback gains40. This schema (i.e., desired trajectories combined with feedfor-
ward impedance control) allows us to explain the decrease in variance at task constraints5,41. The variance 
at the targets can be decreased because the trajectories are corrected towards the desired trajectory with 
a preplanned gain that is higher than that at midpoints. Thus, even if the path variance were to decrease 
near via-points, we could not conclude that the motor control system employed the optimal feedback 
control law. Further investigations will be performed to demonstrate the existence of real-time and opti-
mal modulation of feedback gain.

There is also recent physiological evidence for feedforward control. Subcortical structures can contrib-
ute to prepared motor responses in humans through reticulospinal tract, although its fundamental role 
is limited to coordinated movement of the whole hand, rather than dexterous individual finger move-
ments42,43. Subcortical structure of rat, without motor cortex, has recently been shown to execute skilled, 
but not dexterous motor tasks, although motor cortex was necessary during the process of learning the 
tasks44. These results demonstrate that subcortical structures may play an important role in feedforward 
control of fundamental motor repertories. Better understanding of these interactions between cortical 
and subcortical structures may help elucidate conditions and tasks for which feedforward and feedback 
control strategies are most relevant.

Noise in the nominal trajectory.  Previously, Gordon et al. measured variability at the end of a 
movement to determine the nature and origin of the coordinate system in which the movements were 
planned45. McIntyre et al. further examined different types of errors to identify properties of the internal 
representation and coordinate transformations in the brain46. Churchland et al. showed that at least 30% 
of behavioral variability can be accounted for by the variability of preparatory neural activity in the dor-
sal premotor cortex20. While these studies assume that observed variability mainly or partly arises in the 
planning process, van Beers et al. successfully explained the variability at the end of movement by noise 
in movement execution (i.e., noise in the motor commands (signal-dependent noise47)) rather than by 
noise in the desired trajectories48.

In our noise model, we hypothesized that time-jitter noise exists at the planning level but not at the 
motor command level. If the time series of motor commands were temporally stored before being issued, 
or expressed in such a way as a table lookup method, time-jitter noise can also appear when the stored 
motor commands are read out at each moment. However, because the effect of noise on the motor com-
mands plays through the integrating effect of arm dynamics, it will also result in the incremental increase 
of path variance, mainly expressed as the global extension and contraction of movement duration and 
overshoot/undershoot at the end of the movement. Therefore, time jitter noise on the motor command 
will not correlate with velocity and should be removed by time normalization and/or be included in the 
second incremental term of Eq. 1.
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Combination of the preplanned trajectory and local optimal feedback.  Our overall results sug-
gest that online feedback control around task constraints is not the exclusive strategy of motor control 
and, at least for rapid skilled movements, desired trajectories are planned in the brain. The most pos-
sible and feasible solution would be the combination of a desired trajectory and local optimal feedback 
control. Using a preplanned trajectory, the brain can solve complex problems with nonlinear dynamics 
before starting the movement through the learned internal model. The brain makes the best use of offline 
computation to reduce the cost of online computation while online computation concentrates on further 
fine tuning and dealing with unpredictable perturbations using redundant degrees of freedom19,32. The 
principles of biological motor control will be further investigated in future work.

Methods
Participants and experimental setting.  Twenty-four male and one female participants, aged 21–32 
years, who were right-handed except for one, participated in at least one of the three experiments. 
Seventeen participated in the multi-via-point tasks (Exp. 1), nine in the point-to-point movement tasks 
(Exp. 2), and seven in the mirror-placement single-via-point tasks (Exp. 3). Seven participated in both 
Experiments 1 and 3, and another four participated in both Experiments 1 and 2. All experiments were 
conducted in accordance with the principles and the guidelines in the Declaration of Helsinki and were 
approved by the ATR Human Subject Review Committee. The participants provided informed consent 
before participation.

Participants were seated on a chair and their shoulders fixed to the back of the chair with a harness. 
The height of the table was adjusted to lift the participant’s arm to shoulder level. The participant’s right 
wrist was braced so that movement was constrained to allow only two degrees of freedom of the elbow 
and shoulder. To reduce friction between the arm and table, the arm was attached to a board that was 
levitated above the table by an air sled. The participants performed all tasks with their right hand. An 
OPTOTRAK 3020 device (Northern Digital Inc., Canada) was used to measure the position of a marker 
placed on the end of a 9-cm vertical bar that was grasped by the participant. The marker position was 
sampled at 500 Hz (Experiment 2) and 400 Hz (Experiment 1 and 3) and projected as a cross mark on a 
high-resolution monitor placed in front of the participants to represent the current hand position. The 
participants participated in the experiment while looking only at the monitor. The room was darkened to 
eliminate visual information, and the participant wore noise-canceling headphones (Bose QuietComfort 
Acoustic Noise Canceling headphones, Bose Corporation, USA) to eliminate auditory noise and to allow 
him/her to concentrate on the individual experiment. We used a beep sound to indicate the beginning 
and the end of the movement task.

Experiment 1: multiple target tasks.  Nine participants preformed Todorov’s task (three intermediate 
target conditions of Experiment 1 in1), the slow zigzag task, and the slow three via-point task while the 
other eight participants performed the parabola task, the fast zigzag task, and the fast three via-point task 
(Fig. 1). The participants performed each task until there were 50 successful trials. One participant could 
not complete the fast three-via-point task, which was excluded from the analysis (while other tasks of this 
participant were included in the analysis). The average numbers of trials were 345 ±  85 for Todorov’s task, 
132 ±  31 for the parabola task, 109 ±  24 and 106 ±  20 for the fast and slow zigzag tasks, and 133 ±  34 
and 148 ±  35 for the fast and slow three-via-point tasks. The peak velocity after learning (average of 
the last 20% of the total trials) averaged across participants was 43.67 ±  4.66 cm/s for Todorov’s task, 
57.71 ±  9.26 cm/s for the parabola task, 49.87 ±  7.66 and 30.38 ±  2.01 cm/s for the fast and slow zigzag 
tasks, and 61.51 ±  13.89 and 36.65 ±  3.04 cm/s for the fast and slow three via-point tasks respectively.

Experiment 2: point-to-point reaching task.  Experiment 2 consists of two sessions of point-to-point 
reaching tasks along different directions. In one session, participants performed movements in the for-
ward direction, and in the other session, they moved in the rightward direction (Fig.  5). Movements 
ending in the target circle within the specified duration were regarded as successful trials. The partici-
pants were randomly placed into one of the two groups. On the first day, one group practiced forward 
movements until they reached 50 successful trials followed by rightward movements. The second group 
started with rightward movements followed by forward movements. On the second day, the first group 
performed forward movements until they reached 40 successful trials followed by rightward movements. 
The second group started with rightward movements. The average success rates on the second day were 
78.72 ±  12.37% for forward movements and 79.65 ±  5.52% for rightward movements.

Experiment 3: single via-point tasks (mirror-placement tasks).  Eight intermediate targets were selected 
and equally arranged on the perpendicular bisector of the start–goal straight line (Fig. 7). The combina-
tion of the start point, end point and via point was regarded as a set. One of the eight sets was randomly 
presented for each task. First, the participants performed eight sets of 20 tasks for a total of 160 tasks 
(training). Second, the participants were trained for four via-points that were selected on the basis of the 
failure rate. Forty trials were performed for each via-point, amounting to 160 tasks (training). Finally, 
the participants performed the same task as in the first step. Equation 1 was applied to the trajectories 
in the last step.
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Data analysis.  Position data were digitally filtered using a third-order Butterworth low-pass filter with 
a cutoff frequency of 12 Hz. The velocity was computed by applying a three-point derivative of the meas-
ured position data. The start and end points of each movement were determined using a curvature 
threshold of 100 m−1 49. Trials that did not stop within the final target circle and trials whose movement 
duration or path length was more than 3 standard deviations from the mean were excluded from further 
analyses.

For the purpose of examining the task-relevant variance, we applied the methods used by Todorov 
and Jordan1 where data were normalized on the basis of path length. This method removes the temporal 
effects. First, all trajectories for one participant and condition were resampled at 100 equally spaced 
points along the path. Second, the average trajectory was computed from the resampled data. Third, for 
each average point, the nearest point from each trial was found and the path variance was calculated 
from that point. To avoid artifacts of realignment, 5% of the path at each end was eliminated from the 
analysis.

The modulation index was computed from the path variance as follows.
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here, P_Vartgt(i) denotes the variance at the i-th target and P_Varmid(i) denotes the variance at the 
mid-point between the (i-1)-th and i-th targets. N denotes the number of intermediate targets. The vari-
ance at a certain target was defined as the minimum value observed within 5% in front of and behind the 
target along the path. The variance at a certain mid-point was defined as the maximum value observed 
within 5% in front of and behind the mid-point along the path.

For the purpose of examining the temporal characteristics of the variance and the effect of time-jitter 
noise, the trajectory variance of each participant was computed for a set of trajectories as follows. First, 
the data were resampled between the start and end times so that the duration was evenly divided into 
100 pieces to remove the effect of movement duration (time normalization). Therefore, each trajectory 
has 100 data points with different sampling intervals depending on the movement duration. Second, 
the resampled position was ensemble averaged to compute the mean position for each 100 time steps. 
Trajectories whose movement duration and path length were within 2 standard deviations of the mean 
were included in the regression analysis.

We assume that a trajectory pattern (i.e., a position sequence as a function of time) of the k-th trial 
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Here xdesired denotes the desired trajectory of that task; i.e., a position sequence as a function of time 
in the absence of noise. Each planned trajectory spatiotemporally deviates from the desired trajectory 
because of the noise in planner dynamics and computational limitations. δ(t) represents the local advance 
or delay of time (time jitter noise) and ω(t) represents spatial noise.

This time series of the planned position x planned
k  is read out at each moment. The motor command at 

each time step is computed using an inverse model of the controlled object such as the arm. For nota-
tional simplicity, we use G to denote the dynamics of the controlled object (i.e., the arm) and G−1 to 
denote its inverse model. Assuming that signal-dependent noise ε ( )tk  is added to motor commands 
when they are issued to the controlled object, the actual produced trajectory ( )x trealized

k  can be approxi-
mately expressed as

ε

ε

δ ε ω

+

( ) ≅ ( ( ( )) + ( ))

≅ ( ) ( ( ))

≅ ( + ( )) + ( ( )) + ( ) ( )

−x t x t t

x t G t

x t t t t

G G

G 4

realised
k

planned
k k

planned
k k

desired
k k k

1

here, δ(t), G(ε(t)), ω(t) are assumed to have a normal distribution with zero mean and standard deviation 
a(t), b(t), c(t), respectively (see below). The produced trajectory is approximated by the Taylor expansion 
to the second degree:
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Assuming that δ ε ω( )/ , ( ), ( ( )), ( )dx t dt t t tGdesired
k k k  are mutually uncorrelated, the mean and vari-

ance of the produced trajectory are
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Because b(t) is the effect of signal-dependent noise playing through the dynamics, it should be propor-
tional to the double integral of the sum of the square of the motor command τ. Here we used the joint 
torque to approximately estimate the magnitude of the motor commands. a(t) and c(t) are the time jitter 
and spatial noise of the planned trajectory, both of which are independent of the signal and dynamics. 
Assuming that a(t) is constant throughout the movement, the trajectory variance is modeled as in Eq. 1.

The total trajectory variance is defined as the sum of the x and y variances:
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The trajectory variances in tangential and normal directions are computed from the variance in the 
direction tangential and normal to the mean trajectory respectively:
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where y′  and x′  denote the tangential and normal components of position with respect to the mean 
trajectory, respectively.

For the purpose of regression analysis of Eq. 1, dynamic torques were calculated using the dynamics 
equations of a two-link arm model and the position data and link parameters estimated from the link 
length for each participant (with the data of an adult male arm measured with a three-dimensional scan-
ner to provide a standard). The mass of links was adjusted for each participant by making the standard 
value proportional to the link length of the participant. The moment of inertia of the links was adjusted 
by making the standard value proportional to the third power of the link length of the participant. 
Viscosity coefficients were estimated from the absolute average torque for each movement using the 
equation (6) in ref. 3.

Optimal feedback control simulation.  In the comparative LQG simulations for the reaching tasks in 
Experiments, the LQG formulation described in the supplementary information in1 was used (refer 
to Section 2 for details). The same parameters for the point mass (m =  1 kg), the time constant for 
the filters (τ =  40 ms) and the sampling time for discretization (Δ t =  10 ms) were used as in1. The sen-
sory noise parameter σS and the control noise parameter σu were adjusted so that simulated variability 
approximately matched the experimental data. The weight parameters in the cost defining the relative 
importance of stopping for the velocity and force terms respectively (wv, wf) were also adjusted for the 
experimental data. The weight for the effort penalty r was adjusted for each task (either r =  0.002 or 
r =  0.00002 similarly as in1). See the figure legend for the parameter settings for each simulation.
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