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Abstract
Advances in functional magnetic resonance imaging havemade it possible to provide real-time feedback on brain activity.
Neurofeedback has been applied to therapeutic interventions for psychiatric disorders. Sincemany studies have shown that most
psychiatric disorders exhibit abnormal brain networks, a novel experimental paradigm named connectivity neurofeedback,
which can directly modulate a brain network, has emerged as a promising approach to treat psychiatric disorders. Here, we
investigated the hypothesis that connectivity neurofeedback can induce the aimed direction of change in functional connectivity,
and the differential change in cognitive performance according to the direction of change in connectivity. We selected the
connectivity between the left primarymotor cortex and the left lateral parietal cortex as the target. Subjects were divided into 2
groups, in which only the direction of change (an increase or a decrease in correlation) in the experimentally manipulated
connectivity differed between the groups. As a result, subjects successfully induced the expected connectivity changes in either
of the 2 directions. Furthermore, cognitive performance significantly and differentially changed from preneurofeedback to
postneurofeedback training between the 2 groups. These findings indicate that connectivity neurofeedback can induce the aimed
direction of change in connectivity and also a differential change in cognitive performance.

Key words: cognitive function, connectivity neurofeedback, functional connectivity, functional magnetic resonance imaging
(fMRI)

Introduction
Since real-time functional magnetic resonance imaging (fMRI)
has become available in various research fields (Cox et al. 1995;

deCharms 2008), fMRI-based neurofeedback training has been
widely used for a variety of purposes, from investigating neural
mechanisms (Shibata et al. 2011, 2016; Amano et al. 2016) to
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therapeutic interventions for psychiatric disorders (Enriquez-
Geppert et al. 2013; Niv 2013; Sulzer et al. 2013; Stoeckel et al.
2014). Currently, there are 3 types of neurofeedback training
based on the differences in feedback information. The first, uni-
variate neurofeedback, uses the average blood oxygen level-
dependent (BOLD) signal within a specific brain region of inter-
est to increase or decrease the average activity in that region
(deCharms et al. 2005). The second, decoded neurofeedback,
uses the multivoxel activity pattern in a region to induce a spe-
cific piece of information in that region, such as orientation,
color, and facial preference (LaConte et al. 2007; Shibata et al.
2011, 2016; deBettencourt et al. 2015; Amano et al. 2016). The
third, connectivity neurofeedback, uses the functional connec-
tivity between regions to modulate connectivity (Koush et al.
2013, 2017; Megumi et al. 2015; Liew et al. 2016).

Numerous studies have reported that psychiatric disorders
are related to abnormal brain networks (Broyd et al. 2009; Stam
2014; Fornito et al. 2015), while some cognitive functions are
associated with brain networks (He et al. 2007; Kelly et al. 2008;
Barch et al. 2013; Thompson et al. 2013; Liu et al. 2015). This
indicates that using connectivity neurofeedback is a promising
approach to therapeutic intervention for psychiatric disorders
and to improve cognitive function. To our understanding, there
are 2 mainstream sets of studies on connectivity neurofeed-
back. One uses dynamic causal modeling to modulate the state
of a functional network and cognitive performance (Koush
et al. 2013, 2017). The other uses Pearson’s correlation coeffi-
cients of activity time courses between 2 regions (Megumi et al.
2015; Liew et al. 2016). Megumi et al. (2015) identified changes
in global networks caused by connectivity neurofeedback. Liew
et al. (2016) demonstrated improvement of corticothalamic con-
nectivity in patients with stroke. Furthermore, an integrated
method of univariate and connectivity neurofeedback has been
proposed (Kim et al. 2015).

However, fewer studies have been conducted on connectiv-
ity neurofeedback. In particular, the controllability of connec-
tivity neurofeedback is critical for applications aimed at
psychiatric disorders. That is, it is important to examine
whether connectivity neurofeedback can induce the aimed
direction of change (i.e., an increase or a decrease) in functional
connectivity and a change in cognitive performance. Previous
studies using Pearson’s correlation coefficients tested only the
increases in connectivity. Here, we examined the hypothesis
that connectivity neurofeedback based on Pearson’s correlation
(Megumi et al. 2015) can induce the aimed direction of change
in functional connectivity by flipping the sign of the neurofeed-
back signal, and the differential change in cognitive perfor-
mance according to the induced change in connectivity.

Our connectivity neurofeedback training can control functional
connectivity by rewarding spontaneous changes in functional
connectivity. Subjects underwent training with intermittent feed-
back of the temporal correlation (functional connectivity) between
BOLD signals in 2 brain regions immediately after each trial.
Subjects learned to control connectivity in a trial-and-error man-
ner through training. To investigate our hypothesis, we separated
subjects into 2 groups, in which we aimed to increase or decrease
the functional connectivity, and compared the resulting changes
in cognitive performance from preneurofeedback to postneuro-
feedback training between the 2 groups.

Because our previous study (Megumi et al. 2015) already suc-
cessfully increased the connectivity between the left primary
motor cortex (lM1), which belongs to the motor/visuospatial
network (MVN), and the left lateral parietal (ILP) cortex, which
belongs to the default mode network (DMN) (Raichle 2010), we
selected this connectivity as the target for neurofeedback

training. Furthermore, we conducted a psychomotor vigilance
task (PVT), the Eriksen flanker task (EFT), and the color-word
Stroop task (CWST) before and after the neurofeedback train-
ing, since previous studies have shown that these 3 tasks are
associated with the MVN, the DMN, or both (Kelly et al. 2008;
Hinds et al. 2013; Thompson et al. 2013; Liu et al. 2015). In the
current study, functional connectivity between lM1 and lLP was
normally negative (e.g., r = −0.4). Therefore, we hereafter refer
to a change in functional connectivity from r = −0.4 to −0.1, for
instance, as an “increase,” while we refer to a change such as
that from r = −0.4 to −0.7 as a “decrease.”

Materials and Methods
Participants

Thirty healthy subjects (4 women; mean age [mean ± standard
deviation {SD}], 22.7 ± 1.7 years; age range, 20–27 years) partici-
pated in the neurofeedback experiment. We randomly assigned
subjects to an “increased functional connectivity” group (n = 18:1
woman; mean age, 22.6 ± 1.8 years; age range, 20–27 years) or a
“decreased functional connectivity” group (n = 12:3 women;
mean age, 22.8 ± 1.6 years; age range, 21–26 years). Although
there are fewer female participants, there was no significant dif-
ference in the male–female ratio between the 2 groups (Fisher’s
exact test: P = 0.27). Twenty-five (13 in the “increased functional
connectivity” group and 12 in the “decreased functional connec-
tivity” group) of 30 subjects completed behavioral testing sessions
before and after the neurofeedback training. The other 5 subjects
did not participate in the behavioral testing sessions. We
excluded 1 subject in the “decreased functional connectivity”
group from cognitive performance analysis because that subject
did not follow the instructions. We also excluded another subject
in the “decreased functional connectivity” group from the EFT
analysis because that subject misunderstood the instructions. All
subjects were right-handed according to the Edinburgh inventory
(Oldfield 1971). The Institutional Review Board of Advanced
Telecommunications Research Institute International (ATR)
approved this study, which was performed in accordance with
the tenets of the Declaration of Helsinki. All subjects provided
written informed consent.

Neurofeedback Training

Brain Imaging and Region of Interest Definition
MR images were obtained using a 3-T Siemens MAGNETOM
Verio scanner (Kyoto, Japan). BOLD signals were measured
using an echo planar imaging (EPI) sequence (repetition time
[TR], 2000ms; echo time [TE], 26ms; flip angle, 80°). The entire
brain was covered in 33 axial slices (3.5mm of thickness, no
gap), voxel size was 3 × 3 × 3.5mm, and field of view was 192 ×
192mm. T1-weighted structural images were acquired with a
resolution of 1 × 1 × 1mm. T2-weighted structural images were
acquired with a resolution of 0.75 × 0.75 × 3.5mm.

Following our previous study (Megumi et al. 2015), we
selected the lM1, which is included in the MVN, and the lLP,
which is included in the DMN, as the 2 target region of interests
(ROIs) for calculating a feedback score in the connectivity neu-
rofeedback training. lM1 was defined as Brodmann area 4
according to the anatomical map given in PickAtlas (http://fmri.
wfubmc.edu/software/PickAtlas) (Lancaster et al. 1997; Maldjian
et al. 2003). lLP was defined as a sphere with a 7.5-mm radius
centered at (x, y, z) = (−45, −67, 36) in the Montreal Neurological
Institute standard brain coordinates (MNI; Montreal, QC)
according to a previous study of brain networks (Fox et al.
2005). We adopted the spherical ROI for lLP because we could
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not find an anatomical definition of LP as a part of DMN in the
literature. By contrast, we adopted the anatomical ROI for lM1
because (1) it is well defined in anatomical maps including
PickAtlas and (2) the spherical ROI centered at M1 may include
the somatosensory cortex.

Because these ROIs were defined in the standard brain, we
identified corresponding voxels in the functional images of
each individual subject’s brain using a deformation module in
SPM8 (Wellcome Trust Center for Neuroimaging, London, UK;
www.fil.ion.ucl.ac.uk/spm/). We obtained several volumes of
functional images for this purpose at the beginning of the
experiment on each day and used the identified voxels as ROIs
for calculating scores in the subsequent training blocks.
Furthermore, the position and orientation of scan images on
every training day were carefully matched those on the first
day.

Neurofeedback Training Procedure
Subjects received neurofeedback training to increase or decrease
functional connectivity between the 2 target ROIs. Each subject
received training for 4 days (Fig. 1A: DAY1–DAY4). On each train-
ing day, subjects performed 6 blocks, each of which was com-
posed of 10 trials. Prior to training, subjects underwent 4
baseline-estimation blocks to measure a subject-specific base-
line correlation between the 2 target ROIs (Fig. 1A: BASE). The
baseline-estimation block was identical to the neurofeedback
training block, except that the score was randomly determined
(see Online Calculation of Feedback Score).

Our training procedure in each trial followed our previous
study (Megumi et al. 2015). A trial in each block began with a
rest period of 14 s, during which the “=” cue was presented on
the screen (Fig. 1B: Rest). When the cue changed to “+,” subjects

performed the tapping motor imagery task for 14 s (Fig. 1B:
Motor Imagery). Subjects were instructed to imagine tapping
their thumbs with their fingers randomly as fast as possible.
Furthermore, they were asked to produce kinesthetic imagery,
rather than attempt visual imagery, and to not overtly move
their hands during the task. If no task instruction was provided,
cognitive states during learning were expected to differ largely
among subjects, thereby making data analysis difficult.
Therefore, we administered a motor imagery task to the sub-
jects to constraint the subjects’ cognitive states. After the
motor imagery period, a feedback score calculated by the online
MRI system (see Online Calculation of Feedback Score) was pre-
sented on the screen as a green disc (Fig. 1B: Feedback).
Subjects were instructed that the disc becomes bigger as they
improve at producing tapping imagery; however, the disc size
actually corresponded to the score determined by the temporal
correlation (functional connectivity) between BOLD signals in
lM1 and lLP (see Online Calculation of Feedback Score). Subjects
were instructed to make the disc size as large as possible so
that it would become larger than the red circle (a baseline) and
reach the outer green circle (a target). The calculations of the
baseline and target are described in section Online Calculation
of Feedback Score. Subjects were informed that additional
monetary reward (up to JPY 3000) would be paid in proportion
to their total score, and they received this at the end of the
experiments on each day.

Online Calculation of Feedback Score
We used in-house MATLAB software (Mathworks Inc.), includ-
ing realignment modules of SPM8, for online processing. This
software ran on a connected computer and accessed data files

Figure 1. Neurofeedback training procedures. (A) Neurofeedback (NFB) training schedule. Experiments lasted for 5 days, including baseline estimation of temporal cor-

relation between BOLD signals in the target regions (BASE). Resting-state activity (rsfMRI) was measured daily before NFB training from BASE to DAY3. On DAY4,

rsfMRI was measured after NFB training. Subjects performed a cognitive task on BASE and DAY 4. (B) Timeline and displays for subjects in a training trial. After a rest

period while the “=” cue was presented on the screen, subjects were instructed to imagine finger tapping during the motor imagery period while the “+” cue was pre-

sented. A solid green disc was presented to the subjects in the feedback period: the disc size was proportional to the correlation between BOLD signals in 2 target

regions (left primary motor area [lM1] and left lateral parietal region [lLP]) during the motor imagery period. (C) Display for subjects in rsfMRI. Subjects were instructed

to keep looking at a fixation point at the screen center, to keep still, to stay awake, and to not think about specific things.
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in the MRI system. Each volume of the functional image was
realigned in real time to the first volume obtained on each day.

Seven volumes were obtained during the motor imagery
period in each trial, but the first volume was discarded and 1
volume from the feedback period was added as compensation
for hemodynamic delay. One may argue that a one-volume shift
(2 s) is not enough to fully compensate for the hemodynamic
delay (4–8 s); however, we followed 2 previous neurofeedback
studies (Bray et al. 2007; Megumi et al. 2015) that used a 2-s shift
and succeeded in changing brain activity. We followed these
studies to minimize the delay of feedback to participants.

BOLD signal time courses were extracted from the lM1 and
lLP ROIs (averaged across voxels) in these volumes. To remove
several sources of spurious artifacts in BOLD signals, we con-
ducted an online linear regression, including (1) 6 motion para-
meters, in addition to averaged signals over (2) gray matter, (3)
white matter, and (4) cerebrospinal fluid (Fox et al. 2005). To
completely remove global signals that may be related to instru-
mental, motion-related, and physiological fluctuations
(Caballero-Gaudes and Reynolds 2016), we included signals
averaged over the gray matter in the regression model.
However, this may have removed neuronal signals in the ROIs
if their activity strongly affected the average signal. In our post
hoc analysis, we calculated signals averaged over the gray mat-
ter excluding the ROIs, but they were similar to those including
the ROIs (temporal correlation: r > 0.999), suggesting that the
activity of the ROI unlikely affected the average signal.

We estimated coefficients for these parameters from the
preceding 180 volumes (a moving window), which corre-
sponded to 1 neurofeedback block, and regressed out the sig-
nals correlated with the parameters from a newly acquired
volume. To maintain a constant number of moving volumes
(180), we used the volumes acquired in the preceding block for
the online regression in the early part of each block. Because
there was no preceding block for the first block in the neuro-
feedback training, we conducted the 6-min resting condition
block just before the training, which was not included in the
offline analysis. Furthermore, to remove low-frequency trends
from BOLD signals, a high-pass temporal filter (cutoff frequency
of 0.0075Hz) was applied to the time courses within each block
(using only volumes from the same block).

Using the time courses after the noise reduction, the feed-
back score of the ith trial was calculated as
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Here, Correlationi represents the correlation between the
BOLD signals averaged in each of the 2 ROIs. We developed this
score for an intuitive feedback to participants: their baseline per-
formance corresponded to 50 while their better performance was
rewarded by the increase in the score from 50. Specifically,
CorrelationBase was the median correlation in the baseline-
estimation block (40 trials) on the first day (BASE). SD was also
calculated in the baseline-estimation block. CorrelationTarget was
determined to restrict the appearance of a score of 100 to one
time per block on average: CorrelationTarget was (CorrelationBase

+ 1.28 SD) in the “increased functional connectivity” group and
(CorrelationBase – 1.28 SD) in the “decreased functional connectiv-
ity” group. Therefore, if Correlationi is equal to CorrelationBase,
the score is 50 in both groups. If Correlationi increases in the

“increased functional connectivity” group (or decreases in the
“decreased functional connectivity” group) from CorrelationBase

to CorrelationTarget, the score rises from 50 to 100. If Correlationi

decreases in the “increased functional connectivity” group from
CorrelationBase to CorrelationBase – 1.28 SD (or if Correlationi

increases in the “decreased functional connectivity” group from
CorrelationBase to CorrelationBase + 1.28 SD), the score decreases
from 50 to 0. Any score below 0 or above 100 was maintained at
0 or 100, respectively. The score was calculated immediately
after the acquisition of the first volume in the feedback period
(2 s). Preprocessing and score calculation were completed within
2 s. Thus, subjects received the score within 4 s after the end of
the imagery periods.

To prevent learning in the baseline-estimation block, we
gave the subjects a pseudorandom score, which was generated
from a normal distribution having a mean of 50 and SD of 30.3.
The SD was determined to restrict the appearance of a score of
0 or 100 to one time per block. At the beginning of the first
training day (DAY1), we told subjects that the feedback score
had been randomly determined on the previous day (BASE).

Change in Score during Training
We investigated the daily changes in score during the neurofeed-
back training. In total, each subject had 280 scores (BASE = 40
scores, DAY1–DAY4 = 60 × 4 scores). To investigate the daily
changes in the score, we applied a mixed-effects model based on
linear regression (Aarts et al. 2014) to the scores adopting training
day (a continuous value) as a fixed effect and subject as a ran-
dom effect. We used a maximum likelihood method for estima-
tion of coefficients as implemented in the lme4 package (https://
github.com/lme4/lme4) of R version 3.2.1 (https://www.r-project.
org). We calculated P-values using the lmeTest package of R.

Change in Functional Connectivity during Training
We investigated the daily changes in functional connectivity
between lM1 and lLP during the neurofeedback training in our
offline analysis. The fMRI data were preprocessed with SPM8 on
MATLAB. Preprocessing steps included slice-timing correction,
realignment, coregistration, segmentation of T1-weighted struc-
tural image, normalization into MNI space, and spatial smooth-
ing with an isotropic Gaussian kernel of 8mm full width at half
maximum. BOLD signal time courses were extracted from the 2
ROIs (averaged across voxels). Sources of spurious variance were
removed as described in section Online Calculation of Feedback
Score. Then, we calculated the functional connectivity as Fisher’s
z-transformed Pearson’s correlation coefficients between the
BOLD signals in the 2 ROIs using 7 volumes during the motor
imagery period in each trial, in the same fashion as the online
calculation of the feedback score, that is, the first volume was
discarded and 1 volume from the feedback period was added as
compensation for hemodynamic delay. In total, each subject had
280 functional connectivities (BASE = 40 connectivities,
DAY1–DAY4 = 60 × 4 connectivities).

To compare the daily changes in functional connectivity
between groups, we applied a mixed-effects model to the func-
tional connectivities including training day (a continuous value),
group, and the interaction between group and day as fixed
effects, and subject as a random effect. Further, to investigate
whether the changes of functional connectivity were induced in
the aimed direction in each group, we applied the mixed-effects
model, as a post hoc analysis of the effect of training day on
functional connectivity, separately to each group.
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Resting-State Functional MRI

To investigate the daily changes in resting-state functional
connectivity between the target ROIs (lM1 and lLP) as well as in
connectivity between the network-level ROIs (DMN and MVN),
we measured resting-state fMRI (rsfMRI) every day (Fig. 1A).
The rsfMRIs were measured before the neurofeedback training
except for the last day (after the neurofeedback on DAY4).

Brain Imaging and Calculation of the Resting-State Functional
Connectivity
During the rsfMRI measurements, subjects were instructed to
keep looking at a fixation point at the center of a screen, to
keep still, to stay awake, and to not think about specific things.
MRI scans were obtained using a 3-T Siemens MAGNETOM
Verio scanner. BOLD signals were measured using an EPI
sequence (time, 10min; TR, 2500ms; TE, 30ms; flip angle, 80°).
The entire brain was covered in 40 axial slices (3.5mm of thick-
ness, no gap), voxel size was 3.3 × 3.3 × 3.5mm, and field of
view was 212 × 212mm.

The rsfMRI data were preprocessed with SPM8 on MATLAB.
The first 4 volumes were discarded to allow for T1 equilibration.
Preprocessing steps included those listed in section Change in
Functional Connectivity during Training. BOLD signal time
courses were extracted from the 4 ROIs (lM1, lLP, MVN, and
DMN) and averaged across voxels in each ROI. To determine
network-level ROIs (DMN and MVN), we applied a spatial inde-
pendent component analysis (Calhoun et al. 2001) to rsfMRI
data from 66 subjects (12 women; mean age, 23.2 ± 2.3; age
range, 20–31 years). We visually inspected MVN and DMN ROIs
based on the following criteria: MVN includes bilateral primary
motor cortex and supplementary motor area (Biswal et al.
1995), while DMN includes the medial prefrontal cortex, medial
parietal cortex, and lateral parietal cortex (Raichle 2010). These
network ROIs correspond to ICN8 (MVN) and ICN13 (DMN) as
shown in Figure 2 of a previous study (Laird et al. 2011). To
remove several sources of spurious variance, linear regression
was performed, including (1) 6 motion parameters in addition
to averaged signals over (2) whole brain, (3) white matter, and
(4) cerebrospinal fluid. A temporal band-pass filter of
0.009–0.08 Hz was applied to the time series to restrict the anal-
ysis to low-frequency fluctuations that characterize rsfMRI

BOLD activity (Fox et al. 2005). Furthermore, to reduce spurious
changes in functional connectivity by head motion, we calcu-
lated frame-wise displacement (FD) and removed volumes with
FD > 0.5mm, as proposed by the original article on scrubbing
(Power et al. 2012). FD represents head motion between 2 con-
secutive volumes as a scalar quantity (summation of absolute
displacements in translation and rotation). According to the
above threshold, 3.8% (almost 9 volumes) ± 7.0% (1 SD) volumes
were removed per 10min of rsfMRI session (240 volumes).
Then, we computed the resting-state functional connectivity as
Fisher’s z-transformed Pearson correlation coefficients between
the preprocessed BOLD signals in 2 target ROIs (lM1 and lLP)
and in 2 network-level ROIs (MVN and DMN).

Change in Resting-State Functional Connectivity
To statistically evaluate the daily changes in resting-state func-
tional connectivity and to compare the changes between
groups, we applied a mixed-effects model to the resting-state
functional connectivities. We included group, training day, and
the interaction between group and day as fixed effects and sub-
ject as a random effect. Further, as a post hoc analysis of the
effect of day on the resting-state functional connectivities in
each group, we applied a mixed-effects model, as a post hoc
analysis of the effect of day on resting-state functional connec-
tivity, separately to each group.

Cognitive Tasks

To investigate the effect of the neurofeedback training on cog-
nitive performance, subjects carried out a PVT, EFT, and CWST
outside the MRI using a personal computer and keyboard
before and after the entire neurofeedback training. Here, we
know the direct relationship between cognitive performance
and strength of the functional connectivity of MVN and DMN
only in the vigilance task, in which the more the functional
connectivity decreases the faster subjects react to a target and
vice versa.

Cognitive Task Procedures
Task procedures in the current study followed those in the pre-
vious studies.

1. PVT: PVT is a task that measures the ability to sustain atten-
tional focus. Subjects pressed a key in response to a stimu-
lus that occasionally appeared on a screen. Subjects fixated
on a centrally presented white cross on a gray background.
When the cross was changed to black, subjects pressed the
left arrow key with their right index finger as quickly as pos-
sible. Then, the cross changed to white again. If subjects
failed to respond within 9 s, the cross automatically
returned to white. Subjects performed 4 blocks (about 5min
× 4), each block containing 5 trials. The intertrial interval
(ITI) varied from 10 to 90 s. We measured reaction time as
the time from the change of the cross color to the key press.
If reaction time was over 2 SD from average in each subject,
the trial was excluded from further analysis. This definition
of reaction time and exclusion criterion was also used in
the following tasks.

2. EFT: EFT is a response inhibition test that measures the abil-
ity to suppress inappropriate responses in a particular con-
text. Subjects fixated on a centrally presented black cross on
a gray background. When 5 arrows (arrow direction was
right or left) appeared on screen, subjects pressed the right

Figure 2. Change in score during neurofeedback training. Score averaged across

subjects (n = 30) as a function of training day (error bars: standard error). A

mixed-effects model identified a significant main effect of training day (t = 1.73,

P = 0.044 [one-side]). *P < 0.05.
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or left arrow key as quickly as possible, which corresponded
to the direction of the central arrow in the array of 5 arrows.
Subjects used their right index or middle finger to press the
right or left arrow key, respectively. The task included
incongruent and congruent conditions. Under the congruent
condition, 5 arrows pointed in the same direction (e.g.,
<<<<<), whereas under the incongruent condition, the cen-
tral arrow pointed to the opposite direction from the others
(e.g., <<><<). If subjects failed to respond within 3 s, the
arrows disappeared. Subjects performed 2 blocks (6min ×
2), each block containing 24 trials for each condition, pre-
sented in a pseudorandom order. ITI was 4.5 s. We calcu-
lated the reaction time for each condition.

3. CWST: CWST is also a response inhibition test, and it mea-
sures the ability to suppress inappropriate responses in a
particular context. Subjects fixated on a centrally presented
black cross on a gray background. According to the pretask
cue (“+” or “−”) presented before presenting stimuli, subjects
pressed the key that corresponded to the meaning or color
of the presented stimulus with their right index, middle or
ring finger as quickly as possible. The stimulus was word
(red, blue, or yellow, in Japanese) with color (red, blue, or
yellow). For example, if the pretask cue was “+,” subjects
pressed the key corresponding to the meaning of the word;
if the pretask cue was “−,” subjects pressed the key corre-
sponding to the color of the word. The task included incon-
gruent and congruent conditions. Under the congruent
condition, the color of the word was the same as the mean-
ing of the word, whereas under the incongruent condition,
the color of the word was different from the meaning of the
word. If subjects failed to respond within 3 s, the stimulus
disappeared. Subjects performed 2 blocks (6min × 2), each
block containing 24 trials for each condition presented in a
pseudorandom order. ITI was again 4.5 s. We calculated the
reaction time for each condition.

Change in Cognitive Performance
To compare the changes in the reaction time of each task from
preneurofeedback to postneurofeedback training between the 2
groups, we applied a mixed-effects model to the all reaction
times separately for each task. We included group, day (pre-
neurofeedback and postneurofeedback training), and the inter-
action between group and day as fixed effects and subject as a
random effect. Further, as a post hoc analysis of the effect of
day on reaction times in each group, we applied a mixed-
effects model including day as a fixed effect and subject as a
random effect separately to each group in each task.

Results
Change in Score

Figure 2 shows the change in score during the neurofeedback
training, averaged across the blocks and subjects as a function
of training day. Here, the score increases when the connectivity
changes in the aimed direction for each subject group
Equation (1). We applied a mixed-effects model to the scores
and examined whether a regression coefficient for the day was
greater than zero. As a result, we found a significantly positive
effect of day on the score (DAY: t = 1.70, P = 0.044 [one-side]).
This result indicates that subjects increased their score during
the neurofeedback training.

Change in Functional Connectivity during Training

Figure 3 shows the change in functional connectivity between
lM1 and lLP during the neurofeedback training, averaged across
the blocks and subjects as a function of training day in each
group. To compare the daily changes in functional connectivity
between groups, we applied a mixed-effects model to the func-
tional connectivity. As a result, we found significant effects for
the day and the interaction between group and day (DAY: t =
−3.22, P = 0.0012; DAY × Group: t = 3.86, P = 0.00011) but not for
the group (Group: t = −0.627, P = 0.53). This suggests that the
change in functional connectivity across days was different
between the groups.

Since we defined the lLP ROI as a sphere with a 7.5-mm
radius, one may argue that the size was so large it could
include confounding noise. In our post hoc analysis, we
reduced the radius from 7.5 to 4.0mm, and recalculated the
connectivity between the ROIs. We still found significant effects
for the day and the interaction between group and day (DAY: t
= −3.34, P = 0.00082; DAY × Group: t = 3.82, P = 0.00013), but not
for the group (Group: t = −0.834, P = 0.40).

Further, to investigate whether the changes in functional
connectivity were induced in the aimed direction during the
training in each group, we applied a mixed-effects model sepa-
rately for each group. We found a significant effect of training
day in both groups (“increased functional connectivity” group:
t = 2.17, P = 0.029; “decreased functional connectivity” group:
t = −3.18, P = 0.0014). Mean functional connectivity increased
from −0.12 ± 0.029 at BASE to −0.061 ± 0.046 on DAY4 in the
“increased functional connectivity” group and decreased from
−0.11 ± 0.034 at BASE to −0.22 ± 0.044 on DAY4 in the
“decreased functional connectivity” group. These results indi-
cate that functional connectivity between lM1 and lLP during
the training changed from preneurofeedback to postneurofeed-
back training in the aimed direction in each group, that is, the
functional connectivity increased in the “increased functional
connectivity” group and decreased in the “decreased functional
connectivity” group.

Figure 3. Change in functional connectivity between the left primary motor

area (lM1) and the left lateral parietal region (lLP) during neurofeedback train-

ing. Functional connectivity averaged across subjects in each group (solid line:

increased functional connectivity group, n = 18; broken line: decreased func-

tional connectivity group, n = 12) as a function of training day (error bars: stan-

dard error). A mixed-effects model identified a significant interaction between

group and day (t = 3.86, P = 0.0014). ***P < 0.005, *P < 0.05 according to post hoc

analysis of the main effect of day for each group.
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Change in Resting-State Functional Connectivity

To compare the daily changes in resting-state functional con-
nectivity between the 2 groups, we applied a mixed-effects
model to the resting-state functional connectivities between
lM1 and lLP and to the connectivity between MVN and DMN.
We did not find any significant effect in any connectivity (for
lM1-lLP, DAY: t = 0.41, P = 0.67; Group: t = 1.28, P = 0.20; DAY ×
Group: t = −0.78, P = 0.43; for MVN-DMN, DAY: t = 1.20, P = 0.23;
Group: t = −0.11, P = 0.91; DAY × Group: t = 0.89, P = 0.37).
Further, to investigate the change in connectivity across days
in each group, we applied a mixed-effects model separately for
each group. Consequently, we found a significant effect of
training day in the “increased functional connectivity” group
for the connectivity between MVN and DMN (“increased func-
tional connectivity” group: t = 2.93, P = 0.0045; “decreased func-
tional connectivity” group: t = 1.18, P = 0.24), but not for the
connectivity between lM1 and lLP (“increased functional con-
nectivity” group: t = −0.70, P = 0.48; “decreased functional con-
nectivity” group: t = 0.43, P = 0.66). Specifically, functional
connectivity between MVN and DMN increased from −0.26 ±
0.058 at BASE to −0.13 ± 0.064 on DAY4 in the “increased func-
tional connectivity” group. Therefore, the direction of change in
functional connectivity between MVN and DMN in the
“increased functional connectivity” group was consistent with
our aimed direction, the connectivity change in the neurofeed-
back sessions (Fig. 3), and that in a previous study (Megumi
et al. 2015).

Change in Cognitive Performance

Figure 4 shows the changes in reaction time from the preneuro-
feedback to postneurofeedback training stage averaged across
subjects in each group. Note that there was no significant dif-
ference in reaction time or error rate between the 2 groups for
the preneurofeedback training stage (Supplementary Table 1).
Owing to the absence of significant differences in task

performance before the training, we show only the changes in
reaction time in Figure 4. However, the following statistical
analyses were applied to raw reaction-time data without sub-
traction or averaging. To compare the changes in reaction time
from the preneurofeedback to postneurofeedback training stage
between the 2 groups, we applied a mixed-effects model to the
reaction times in each task. As a result, the interaction effect
between group and day was significant in PVT, EFT congruent,
and CWST congruent (PVT: t = −2.72, P = 0.0065; EFT congruent: t
= 2.41, P = 0.016; CWST congruent: t = −2.67, P = 0.0075), but not
in EFT incongruent or CWST incongruent (EFT incongruent: t = 1.18,
P = 0.23; CWST incongruent: t = −0.50, P = 0.61). These significant
interactions suggest that the changes in reaction time from the
preneurofeedback to postneurofeedback training stage were
different between the groups.

Further, we applied a mixed-effects model to the reaction
times separately for each group in PVT, EFT congruent, and
CWST congruent. The main effect of training day was significant
in the “increased functional connectivity” group in PVT and
CWST congruent (PVT: t = −3.85, P = 0.00013; EFT congruent: t =
0.58, P = 0.56; CWST congruent: t = 6.93, P < 0.0001) and in the
“decreased functional connectivity” group in EFT congruent and
CWST congruent (PVT: t = 0.12, P = 0.90; EFT congruent: t = −2.52,
P = 0.011; CWST congruent: t = 8.53, P < 0.0001). These results
indicate that the change in the reaction time from the preneur-
ofeedback to postneurofeedback training stage could be identi-
fied in the “increased functional connectivity” group in PVT
and CWST congruent and in the “decreased functional connec-
tivity” group in EFT congruent and CWST congruent. Although
some of these main effects of day might have been affected by
repetition of the same task, the interaction effects between the
groups could not be explained by such repetition.

Discussion
Using the connectivity neurofeedback training method, we
experimentally manipulated the functional connectivity

Figure 4. Changes in cognitive performance from preneurofeedback to postneurofeedback training. All panels show changes in reaction time of the increased (n = 13)

and decreased (n = 11) functional connectivity groups. Each marker (black or white circle) represents 1 subject; each bar represents each group’s average (error bars:

standard error). A mixed-effects model identified a significant interaction between group and training day (Vigilance: t = −2.72, P = 0.0065; Flanker congruent: t = 2.41, P

= 0.016; Stroop congruent: t = −2.67, P = 0.0075). Among these tasks, in which interaction effects were significant, the main effect of day was significant in the increased

functional connectivity group in Vigilance and Stroop congruent (Vigilance: t = −3.85, P = 0.00013; Stroop congruent: t = 6.93, P < 0.0001) and in the decreased functional

connectivity group in Flanker congruent and Stroop congruent (Flanker congruent: t = −2.52, P = 0.011; Stroop congruent: t = 8.53, P < 0.0001). *****P < 0.0001, ****P < 0.0005,

**P < 0.01, *P < 0.05, n.s.: not significant.
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between lM1 and lLP and examined the change in performance
from the preneurofeedback to postneurofeedback training
stage. The functional connectivity in each group indeed chan-
ged in the aimed direction during the training (Fig. 3).
Furthermore, we identified significant change in some cognitive
performances between the groups (Fig. 4). These findings indi-
cate that connectivity neurofeedback can induce the aimed
direction of change in functional connectivity as well as induce
a differential change in cognitive performance.

Directions of Change in Reaction Times Dependent on
the Tasks

We found significant change in some cognitive performances,
but the directions of change in reaction time were different for
each task. For example, the reaction times of the vigilance task
increased in the “increased functional connectivity” group but
the reaction times of the flanker task (congruent) increased in
the “decreased functional connectivity” group.

Regarding the EFT, a previous study (Kelly et al. 2008) on
brain–behavior relationships investigated the coefficient of var-
iation (CV; standard deviation divided the by mean) as an index
of task performance. Thus, we could not predict the direction
of change in reaction time for EFT. However, Kelly et al. (2008)
showed that the functional connectivity between MVN and
DMN is positively correlated with CV. Our additional analysis
indicated that the directions of change in CV were consistent
with those in the previous study, that is, CV increased from
preneurofeedback to postneurofeedback training in the
“increased functional connectivity” group and decreased in the
“decreased functional connectivity” group, although their inter-
action effect did not reach a statistically significant level
(Supplementary Text 1).

Regarding the CWST, a previous study (Liu et al. 2015) on
brain–behavior relationships investigated the Stroop effect
(mean reaction time of incongruent condition − mean reaction
time of congruent condition) as an index of task performance.
However, because they investigated the relationship between
the regional homogeneity (ReHo) and Stroop effect, we also
could not predict the direction of change in reaction time. Our
additional analysis indicated that the change in Stroop effect
was not significant (Supplementary Text 1). Furthermore, from
Figure 4, we can easily assume that there are considerable
learning effects on the reaction time in both groups, since the
Stroop task may be more difficult than the other 2 tasks.
However, even if there were learning effects, the significant
interaction between group and day suggests that the reaction
times were significantly and differentially changed from pre-
neurofeedback to postneurofeedback training between the 2
groups. However, we could not conclude that neurofeedback
training influenced the reaction time itself or the learning
effect in the Stroop task (congruent).

Unlike the other 2 tasks, previous studies found a concrete
relationship between reaction time in the vigilance task and
functional connectivity. Thompson et al. (2013) divided their
subjects into 2 groups according to fast or slow reaction time
for PVT. They reported that the fast reaction time group
showed more greatly decreased negative resting-state func-
tional connectivity between MVN and DMN than did the slow
reaction-time group. This finding is consistent with our results.
Hinds et al. (2013) examined fMRI activities of MVN and DMN
during PVT. Their subjects could rapidly respond to a stimulus
when activity in a part of MVN (the supplementary motor area)
increased and activity in DMN decreased. It is assumed that

DMN is more active than MVN when subjects are waiting for a
stimulus in PVT, whereas MVN becomes more active than DMN
when subjects respond to the stimulus. Based on these studies,
as well as our own, one could hypothesize that subjects who
have a more negative resting-state functional connectivity
could more rapidly enhance MVN activity and suppress DMN
activity, which leads to a shorter reaction time. However, fur-
ther evidence is needed to verify this hypothesis.

Difference in Behaviors During Training between
Subject Groups

In the neurofeedback experiment, only the rewarded direction
of change in functional connectivity was flipped during the
neurofeedback training between the “increased functional con-
nectivity” and “decreased functional connectivity” groups.
Nevertheless, the changes in the reaction time of some tasks
from the preneurofeedback to postneurofeedback training stage
differed between the 2 groups (Fig. 4). This suggests that the
change in functional connectivity influences the change in cog-
nitive performance. However, factors other than the rewarded
direction, which cannot be experimentally controlled, may
have differed between the 2 groups and caused the difference
in the change in cognitive performance. We examined these
factors as follows.

Total Score during Training
The score was calculated according to the equivalent formula
for the 2 groups (see Online Calculation of Feedback Score). The
resulting total score may have differed between the groups,
and this difference may have caused a difference in their moti-
vation during training and thus a change in cognitive perfor-
mance. Therefore, we compared the total score over the
training in the increase group with the score in the decrease
group (Supplementary Text 2). The total score averaged across
subjects was 14 379 ± 809 (mean ± 95% confidence interval [CI])
for the “increased functional connectivity” group and 13 860 ±
1448 for the “decreased functional connectivity” group. We
used a 2-sample t-test to compare the total score but did not
obtain a significant difference between the groups (t = 0.68, P =
0.50).

Strategies Adopted by Subjects
We provided identical instructions to both groups, telling them
that the disc (score) becomes bigger as subjects improve at pro-
ducing the tapping imagery during the training. However, the
actual strategies that were adopted by the subjects may have
differed between the groups through their trial-and-error learn-
ing. The difference in strategy may have caused a difference in
regional brain activity and thus affected subsequent cognitive
performance. We conducted a postexperiment debriefing with
25 of the 30 subjects (13 subjects in the increase group and 12
subjects in the decrease group) and examined the differences
in their strategy for the motor imagery (Supplementary Text 3
and Supplementary Table 2). We analyzed the reported strate-
gies in 5 aspects: image category (items: kinesthetic, visual, or
both), hand laterality (left, right, or both hands), tapping
sequence (fixed or random), imagery with or without manipu-
lated object (e.g., a subject imagined typing on a computer key-
board), and imagery with or without a rhythm (Supplementary
Table 3). We counted the numbers of items across subjects and
compared these numbers between the groups. We calculated
the P value as the probability that these results would be
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obtained if we separated subjects randomly (Supplementary
Table 4). As a result, there was no significant difference in the
numbers between the groups.

Difference in the Activity of Target ROIs during Training
Between the Groups

Because the aim of the current study is to control the func-
tional connectivity but not to control the averaged activity in a
specific ROI, it is important to check the changes in activities in
the target regions. We applied a mixed-effects model to aver-
aged activity in each target region in the same manner as our
analysis of functional connectivity (see Change in Functional
Connectivity during Training and Supplementary Text 4). As a
result, we found a significant interaction effect of day on the
lLP activation. This result may indicate that subjects altered
only the activity in the lLP and that the change in temporal cor-
relation between the target regions is an epiphenomenon.
However, this was not the case owing to the following reason.
We investigated whether subjects could get the information
about the activity in the lLP from the feedback score to calcu-
late the correlation between the feedback score and the activity
in lLP (Supplementary Text 5). If there is no correlation between
the feedback score and the brain activity in lLP, subjects could
not have directly altered the activity in lLP through the training.
As a result, we did not find a significant correlation between
the feedback score and activity in the lLP (“increased functional
connectivity” group: r = 0.016, P = 0.23; “decreased functional
connectivity” group: r = −0.01, P = 0.54). These results indicate
that subjects could not get information about activity in the lLP
from the feedback score. Therefore, subjects altered the func-
tional connectivity between the lLP and lM1, and the activity in
the lLP might have been collaterally altered.

Change in Resting-State Functional Connectivity

Our previous study (Megumi et al. 2015) showed the significant
increase in the resting-state functional connectivity between
the target ROIs (lM1 and lLP) from preneurofeedback to post-
neurofeedback training. However, our current study failed to
observe a significant change in the resting-state functional con-
nectivity between the target ROIs. A possible reason is that the
effect of neurofeedback training may have been smaller than in
our previous study. In fact, our previous study showed an
increase of about 0.2 in correlation between the 2 target ROIs
during the training in comparison to about 0.1 in our current
study. This change in correlation between ROIs might have
been insufficient for generalization of the training effect from
the training to rest periods.

By contrast, at the network level, we found a significant
increase in resting-state functional connectivity between MVN
and DMN from preneurofeedback to postneurofeedback train-
ing despite the smaller effect of neurofeedback training than
that in our previous study. A possible reason is the difference
in the number of voxels between ROI and network analyses:
network-level ROIs have more voxels (about 5000 voxels) than
target ROIs (lM1 and lLP: about 100 voxels). Correlation calcu-
lated from signal time courses averaged over the larger number
of voxels is more reliable than that from smaller number of
voxels in most cases. This may have helped us find a signifi-
cant increase in resting-state functional connectivity between
the 2 network-level ROIs. However, we did not observe a signifi-
cant decrease in the resting-state functional connectivity
between MVN and DMN in the “decreased functional

connectivity” group. Because the connectivity is negative
between MVN and DMN in nature, further decreasing the nega-
tive connectivity may be difficult (e.g., changing correlation
from r = −0.4 to −0.6) in comparison to increasing it (e.g., from r
= −0.4 to −0.2). In fact, we confirmed that the distribution of the
functional connectivity between DMN and MVN is positively
skewed (skewness = 0.68), suggesting that probability of a
decrease is less than that of an increase in correlation.

Effect of the Initial Functional Connectivity on Training

We examined whether the differential changes in functional
connectivity and cognitive performances between the 2 groups
were induced by the difference in initial functional connectivity
(Supplementary Text 6). At group level, we did not observe a
significant difference in the initial functional connectivity (lM1-
lLP) between the 2 groups (t-test, t = 0.20, P = 0.84). Thus, the
initial difference unlikely explains the differential changes
between the 2 groups. At individual level, we did not find any
significant correlations between the initial functional connec-
tivity and the change in functional connectivity and cognitive
performances (see Supplementary Text 6 for details). These
results indicate that the change in functional connectivity and
cognitive performances were not induced by the difference in
the initial functional connectivity between the 2 groups.

Associations Among Change in Functional Connectivity
During Training, Change in Resting-State Functional
Connectivity, and Change in Cognitive Performance

We examined the associations among (1) the changes in func-
tional connectivity of lM1–lLP during neurofeedback training,
(2) the changes in resting-state functional connectivity of MVN–

DMN, and (3) the changes in cognitive performance of the 3
tasks, in which the interaction between groups and days
yielded significant effects. We analyzed data of the “increased
functional connectivity” group, in which a significant change in
resting-state connectivity of MVN–DMN was observed. Using
linear regression, we conducted a moderation/mediation analy-
sis. This displayed a significant effect of the change in func-
tional connectivity during training on the change in reaction
time of CWST congruent (β = −1.41, SE = 0.61, t = −2.29, P = 0.044,
adjusted R2 = −0.22) (Supplementary Text 7 and Supplementary
Figure 1). This result suggests that the change in reaction time
of CWST congruent was directly affected by changes in the func-
tional connectivity during training rather than by changes in
the resting-state functional connectivity. However, our modera-
tion/mediation analysis shed light on only a fraction of many
factors related to the connectivity neurofeedback. Further stud-
ies are required to verify the robust relationship between cogni-
tive function and functional connectivity.

Application of Connectivity Neurofeedback Training

Disturbances in regional or brain-wide functional connectivity
have been reported for numerous neurological and psychiatric
diseases (Fox and Raichle 2007; Broyd et al. 2009; Stam 2014;
Fornito et al. 2015). These pathological disturbances have been
related to the severity of cognitive dysfunctions in individual
patients (He et al. 2007; Hawellek et al. 2011; Yahata et al. 2016).
From this perspective, online fMRI neurofeedback (Sulzer et al.
2013) is expected to become a next-generation therapeutic tool
(Esmail and Linden 2014; Stoeckel et al. 2014, Decoded
Neurofeedback Project within the Strategic Research Program
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for Brain Sciences [SRPBS]: http://www.cns.atr.jp/decnefpro/). In
the future, connectivity neurofeedback training methods may
contribute to a remedy for such disturbances and to improve-
ment of impaired cognitive functions by regulating the func-
tional connectivity rather than only the level of regional brain
activity, as traditionally implemented by most neuromodula-
tion techniques such as single-ROI-based neurofeedback, tran-
scranial magnetic stimulation, and deep brain stimulation.

Our current study shows that connectivity neurofeedback
can not only increase but also decrease functional connectivity.
Therefore, connectivity neurofeedback shows potential for
future therapeutic interventions against psychiatric and neuro-
logical disorders caused by not only hyperconnectivity but also
hypoconnectivity. For example, in patients with Alzheimer’s
disease, functional connectivity is reduced between the right
hippocampus and many component regions of the DMN, while
connectivity increases between the left hippocampus and the
right dorsolateral prefrontal cortex (Broyd et al. 2009). In
patients with depression, functional connectivity is increased
between the subgenual cingulate cortex and the DMN (Greicius
et al. 2007; Broyd et al. 2009). In autism spectrum disorders,
connectivity is reduced between the anterior and posterior
DMN regions (Broyd et al. 2009).

Furthermore, our study suggests the possibility of develop-
ing a technique of neurofeedback manipulation to cancel out
the behavioral change induced by previous methods of neuro-
feedback manipulation. This is important for ensuring safe-
guards in clinical applications of connectivity neurofeedback.

Conclusion
In this study, using the connectivity neurofeedback training
method, we tested the hypothesis that connectivity neurofeed-
back can induce the aimed direction of change in functional
connectivity and cognitive performance. As a result, subjects
could increase or decrease the functional connectivity between
2 brain regions, and cognitive performance was significantly
and differentially changed from preneurofeedback to postneur-
ofeedback training between the 2 groups. We did not find a sig-
nificant difference in behaviors between the groups during the
training, except for the rewarded direction of change in func-
tional connectivity between the 2 regions. These findings sug-
gest that connectivity neurofeedback can induce the aimed
direction of change in functional connectivity as well as a
change in cognitive performance.

Supplementary Material
Supplementary data is available at Cerebral Cortex online.

Funding
This study was conducted under the “Development of BMI
(Brain Machine Interface) Technologies for Clinical Application”
of the Strategic Research Program for Brain Sciences supported
by the Japan Agency for Medical Research and Development
(AMED). This study was also partially supported by the
Impulsing Paradigm Change through Disruptive Technologies
(ImPACT) Program of the Council for Science, Technology and
Innovation (Cabinet Office, Government of Japan). A.Y. was
supported by Japan Society for the Promotion of Science (JSPS)
KAKENHI Grant Number 15J06788, a Grant-in-Aid for JSPS
Fellows. H.I. was partially supported by JSPS KAKENHI Grant
Number 26120002.

Notes
Conflict of Interest: None declared.

References
Aarts E, Verhage M, Veenvliet JV, Dolan CV, van der Sluis S.

2014. A solution to dependency: using multilevel analysis to
accommodate nested data. Nat Neurosci. 17:491–496.

Amano K, Shibata K, Kawato M, Sasaki Y, Watanabe T. 2016.
Learning to associate orientation with color in early visual
areas by associative decoded fMRI neurofeedback. Curr Biol.
26:1861–1866.

Barch DM, Burgess GC, Harms MP, Petersen SE, Schlaggar BL,
Corbetta M, Glasser MF, Curtiss S, Dixit S, Feldt C, et al,
Consortium WU-MH. 2013. Function in the human connec-
tome: task-fMRI and individual differences in behavior.
Neuroimage. 80:169–189.

Biswal B, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional
connectivity in the motor cortex of resting human brain
using echo-planar MRI. Magn Reson Med. 34:537–541.

Bray S, Shimojo S, O’Doherty JP. 2007. Direct instrumental con-
ditioning of neural activity using functional magnetic reso-
nance imaging-derived reward feedback. J Neurosci. 27:
7498–7507.

Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-
Barke EJ. 2009. Default-mode brain dysfunction in mental
disorders: a systematic review. Neurosci Biobehav Rev. 33:
279–296.

Caballero-Gaudes C, Reynolds RC. 2016. Methods for cleaning
the BOLD fMRI signal. Neuroimage. doi:10.1016/j.
neuroimage.2016.12.018.[Epub ahead of print].

Calhoun VD, Adali T, Pearlson GD, Pekar JJ. 2001. A method for
making group inferences from functional MRI data using
independent component analysis. Hum Brain Mapp. 14:
140–151.

Cox RW, Jesmanowicz A, Hyde JS. 1995. Real-time functional
magnetic resonance imaging. Magn Reson Med. 33:230–236.

deBettencourt MT, Cohen JD, Lee RF, Norman KA, Turk-Browne
NB. 2015. Closed-loop training of attention with real-time
brain imaging. Nat Neurosci. 18:470–475.

deCharms RC. 2008. Applications of real-time fMRI. Nat Rev
Neurosci. 9:720–729.

deCharms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji
D, Gabrieli JD, Mackey SC. 2005. Control over brain activation
and pain learned by using real-time functional MRI. Proc
Natl Acad Sci U S A. 102:18626–18631.

Enriquez-Geppert S, Huster RJ, Herrmann CS. 2013. Boosting
brain functions: Improving executive functions with behav-
ioral training, neurostimulation, and neurofeedback. Int J
Psychophysiol. 88:1–16.

Esmail S, Linden D. 2014. Neural networks and neurofeedback
in Parkinson’s disease. Neuroregulation. 1:240–272.

Fornito A, Zalesky A, Breakspear M. 2015. The connectomics of
brain disorders. Nat Rev Neurosci. 16:159–172.

Fox MD, Raichle ME. 2007. Spontaneous fluctuations in brain
activity observed with functional magnetic resonance imag-
ing. Nat Rev Neurosci. 8:700–711.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC,
Raichle ME. 2005. The human brain is intrinsically organized
into dynamic, anticorrelated functional networks. Proc Natl
Acad Sci U S A. 102:9673–9678.

Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB,
Kenna H, Reiss AL, Schatzberg AF. 2007. Resting-state

Connectivity Neurofeedback Training Yamashita et al. | 4969

http://www.cns.atr.jp/decnefpro/
http://dx.doi.org/10.1016/j.neuroimage.2016.12.018.
http://dx.doi.org/10.1016/j.neuroimage.2016.12.018.


functional connectivity in major depression: abnormally
increased contributions from subgenual cingulate cortex
and thalamus. Biol Psychiatry. 62:429–437.

Hawellek DJ, Hipp JF, Lewis CM, Corbetta M, Engel AK. 2011.
Increased functional connectivity indicates the severity of
cognitive impairment in multiple sclerosis. Proc Natl Acad
Sci U S A. 108:19066–19071.

He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta
M. 2007. Breakdown of functional connectivity in frontopar-
ietal networks underlies behavioral deficits in spatial
neglect. Neuron. 53:905–918.

Hinds O, Thompson TW, Ghosh S, Yoo JJ, Whitfield-Gabrieli S,
Triantafyllou C, Gabrieli JD. 2013. Roles of default-mode net-
work and supplementary motor area in human vigilance
performance: evidence from real-time fMRI. J Neurophysiol.
109:1250–1258.

Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP.
2008. Competition between functional brain networks med-
iates behavioral variability. Neuroimage. 39:527–537.

Kim DY, Yoo SS, Tegethoff M, Meinlschmidt G, Lee JH. 2015. The
inclusion of functional connectivity information into fMRI-
based neurofeedback improves its efficacy in the reduction of
cigarette cravings. J Cogn Neurosci. 27:1552–1572.

Koush Y, Meskaldji DE, Pichon S, Rey G, Rieger SW, Linden DE,
Van De Ville D, Vuilleumier P, Scharnowski F. 2017. Learning
control over emotion networks through connectivity-based
neurofeedback. Cereb Cortex. 27:1193–1202.

Koush Y, Rosa MJ, Robineau F, Heinen K, WRieger S, Weiskopf
N, Vuilleumier P, Van De Ville D, Scharnowski F.. 2013.
Connectivity-based neurofeedback: dynamic causal model-
ing for real-time fMRI. Neuroimage. 81:422–430.

LaConte SM, Peltier SJ, Hu XP. 2007. Real-time fMRI using brain-
state classification. Hum Brain Mapp. 28:1033–1044.

Laird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR,
Glahn DC, Beckmann CF, Smith SM, Fox PT. 2011. Behavioral
interpretations of intrinsic connectivity networks. J Cogn
Neurosci. 23:4022–4037.

Lancaster JL, Rainey LH, Summerlin JL, Freitas CS, Fox PT, Evans
AC, Toga AW, Mazziotta JC. 1997. Automated labeling of the
human brain: a preliminary report on the development and
evaluation of a forward-transform method. Hum Brain
Mapp. 5:238–242.

Liew SL, Rana M, Cornelsen S, Fortunato de Barros Filho M,
Birbaumer N, Sitaram R, Cohen LG, Soekadar SR. 2016.
Improving motor corticothalamic communication after
stroke using real-time fMRI connectivity-based neurofeed-
back. Neurorehabil Neural Repair. 30:671–675.

Liu C, Chen Z, Wang T, Tang D, Hitchman G, Sun J, Zhao X,
Wang L, Chen A. 2015. Predicting stroop effect from sponta-
neous neuronal activity: a study of regional homogeneity.
PLoS One. 10:e0124405.

Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. 2003. An auto-
mated method for neuroanatomic and cytoarchitectonic
atlas-based interrogation of fMRI data sets. Neuroimage. 19:
1233–1239.

Megumi F, Yamashita A, Kawato M, Imamizu H. 2015.
Functional MRI neurofeedback training on connectivity
between two regions induces long-lasting changes in intrin-
sic functional network. Front Hum Neurosci. 9:160.

Niv S. 2013. Clinical efficacy and potential mechanisms of neu-
rofeedback. Pers Indiv Differ. 54:676–686.

Oldfield RC. 1971. The assessment and analysis of handedness:
the Edinburgh inventory. Neuropsychologia. 9:97–113.

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE.
2012. Spurious but systematic correlations in functional
connectivity MRI networks arise from subject motion.
Neuroimage. 59:2142–2154.

Raichle ME. 2010. The brain’s dark energy. Sci Am. 302:44–49.
Shibata K, Watanabe T, Kawato M, Sasaki Y. 2016. Differential

activation patterns in the same brain region led to opposite
emotional states. PLoS Biol. 14:e1002546.

Shibata K, Watanabe T, Sasaki Y, Kawato M. 2011. Perceptual
learning incepted by decoded fMRI neurofeedback without
stimulus presentation. Science. 334:1413–1415.

Stam CJ. 2014. Modern network science of neurological disor-
ders. Nat Rev Neurosci. 15:683–695.

Stoeckel LE, Garrison KA, Ghosh S, Wighton P, Hanlon CA,
Gilman JM, Greer S, Turk-Browne NB, deBettencourt MT,
Scheinost D, et al. 2014. Optimizing real time fMRI neuro-
feedback for therapeutic discovery and development.
Neuroimage Clin. 5:245–255.

Sulzer J, Haller S, Scharnowski F, Weiskopf N, Birbaumer N,
Blefari ML, Bruehl AB, Cohen LG, DeCharms RC, Gassert R,
et al. 2013. Real-time fMRI neurofeedback: progress and
challenges. Neuroimage. 76:386–399.

Thompson GJ, Magnuson ME, Merritt MD, Schwarb H, Pan WJ,
McKinley A, Tripp LD, Schumacher EH, Keilholz SD. 2013.
Short-time windows of correlation between large-scale
functional brain networks predict vigilance intraindividually
and interindividually. Hum Brain Mapp. 34:3280–3298.

Yahata N, Morimoto J, Hashimoto R, Lisi G, Shibata K, Kawakubo Y,
Kuwabara H, Kuroda M, Yamada T, Megumi F, et al. 2016.
A small number of abnormal brain connections predicts
adult autism spectrum disorder. Nat Commun. 7:11254.

4970 | Cerebral Cortex, 2017, Vol. 27, No. 10


	Connectivity Neurofeedback Training Can Differentially Change Functional Connectivity and Cognitive Performance
	Introduction
	Materials and Methods
	Participants
	Neurofeedback Training
	Brain Imaging and Region of Interest Definition
	Neurofeedback Training Procedure
	Online Calculation of Feedback Score
	Change in Score during Training
	Change in Functional Connectivity during Training

	Resting-State Functional MRI
	Brain Imaging and Calculation of the Resting-State Functional Connectivity
	Change in Resting-State Functional Connectivity

	Cognitive Tasks
	Cognitive Task Procedures
	Change in Cognitive Performance


	Results
	Change in Score
	Change in Functional Connectivity during Training
	Change in Resting-State Functional Connectivity
	Change in Cognitive Performance

	Discussion
	Directions of Change in Reaction Times Dependent on the Tasks
	Difference in Behaviors During Training between Subject Groups
	Total Score during Training
	Strategies Adopted by Subjects

	Difference in the Activity of Target ROIs during Training Between the Groups
	Change in Resting-State Functional Connectivity
	Effect of the Initial Functional Connectivity on Training
	Associations Among Change in Functional Connectivity During Training, Change in Resting-State Functional Connectivity, and ...
	Application of Connectivity Neurofeedback Training

	Conclusion
	Supplementary Material
	Funding
	Notes
	References


