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AAbbssttrraacctt 

In natural conditions the human visual system can estimate the 3D shape of specular 
objects even from a single image. Although previous studies suggested that the 
orientation field plays a key role for 3D shape perception from specular reflections, its 
computational plausibility and possible mechanisms have not been investigated. In this 
study, to complement the orientation field information, we first add prior knowledge 
that objects are illuminated from above and utilize the vertical polarity of the intensity 
gradient. Then we construct an algorithm that incorporates these two image cues to 
estimate 3D shapes from a single specular image. We evaluated the algorithm with 
glossy and mirrored surfaces and found that 3D shapes can be recovered with a high 
correlation coefficient of around 0.8 with true surface shapes. Moreover, under a specific 
condition, the algorithm’s errors resembled those made by human observers. These 
findings show that the combination of the orientation field and the vertical polarity of 
the intensity gradient is computationally sufficient and probably reproduces essential 
representations used in human shape perception from specular reflections. 
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IInnttrroodduuccttiioonn  
Specular reflections, which are seen in many daily objects, provide information about 

their material and surface finish [1–3], enhance the reality of animation and computer 
graphics, support 3D shape perception [4–6], and increase the 3D appearance of images 
[7]. A specular reflection component in a single image can be regarded as a marking that 
is pasted on an object’s surface. However, the human visual system solves inverse optics, 
and we intuitively recognize that an image pattern is generated by a specular reflection 
[8]. The regularity of the image patterns of specular reflections is closely related to 3D 
shape, and the human visual system perceives and evaluates specular reflection 
through coupled computation with 3D shape perception [9–11]. 

A previous psychophysical study showed that humans could recover 3D shapes from a 
single mirrored surface image under unknown natural illumination [12]. Furthermore, 
they hypothesized that the human visual system uses the orientation field for 3D shape 
perception from specular reflection and texture [12–14]. The orientation field is a 
collection of dominant orientations at every image location (Fig 1A), and this 
information is represented in the primary visual cortex (V1), which contains cells tuned 
to specific orientations [15]. In support of their hypothesis, they showed that 3D shape 
perception is modulated by psychophysical adaptation to specific orientation fields [13]. 
However, how 3D shapes are reconstructed from the orientation field, and whether it is 
adequate for 3D shape recovery remains unknown. Tappen [16] proposed a shape 
recovery algorithm and recovered the 3D shape of simple mirrored surfaces with 
curvature constraints by an orientation field from a single image under an unknown 
natural illumination. This suggests a possible mechanism of 3D shape perception from 
specular reflections. However, since the method is limited to convex shapes, it only 
explains a small part of human shape perception, which can recover more general 
shapes including both convex and concave regions [12]. 
 

 
 

FFiigg  11..  OOrriieennttaattiioonn  ffiieelldd  ooff  mmiirrrroorreedd  ssuurrffaaccee  ppaattcchheess.. Orientation fields are depicted on 
right side of images. Hue represents image orientation to which V1-cell-like oriented 
filter maximally responds at each location. Saturation represents degree of clarity of the 
image orientation (i.e., image anisotropy). (A) Surface second derivatives’ orientations of 
surface patch are explained in red on the mirrored surface. kmax and kmin represent large 
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and small surface second derivative. θs represents surface orientation. σmax and σmin 
represent signs of kmax and kmin. (B), (C), (D) Surface patches have identical magnitude 
and orientation of surface second derivatives as A, but second derivative signs are 
different. 
 

Other algorithms have also been proposed to recover 3D shapes from specular images. 
They employed either a known calibrated scene [17–19] or multiple images such as 
specular flows [20], motions of reflection correspondences [21], or line tracking [22]. 
Although they are useful in some situations, they cannot recover 3D shapes from a 
single specular image in an unknown scene. Li et al. recovered shapes using reflection 
correspondences extracted by SIFT [23] just using a single image under an unknown 
illumination environment like our proposed algorithm. However, their method is limited 
because it requires the known surface normal values of several surface points to 
constrain their results. 

In this study, we recover general shapes containing both convex and concave surface 
regions using the orientation field. However, an innate problem prevents the recovery of 
general shapes from it. Here, we briefly explain the information of 3D shapes contained 
in the orientation field and its limitation as well as a strategy to overcome that 
limitation. 

Fig 1 shows the relationship between the orientation field and the second order 
derivatives of the surface depth, which can be decomposed into two orthogonal 
orientations (left side of Fig 1A). This decomposed second derivatives are closely related 
to the principal curvatures, but these are not strictly the same (see Methods). The right 
side of Fig 1A represents the orientation field. In specular reflection, the illumination 
environment is reflected and appears in the image. At that time, the illumination 
environment is compressed toward a strong surface second derivative orientation and 
elongated along a weak surface second derivative orientation [12, 24]. As a result, image 
orientation θ is generated along small surface second derivative orientation θs. 
Moreover, the image anisotropy (the degree of the image orientation’s clarity, see 
Methods) also approximates the surface anisotropy (the ratio of the large and small 
surface second derivatives, see Methods) [12, 24]. The proposed algorithm uses this 
relationship for 3D surface recovery. Here, the problem is that the shape is ambiguous 
whether concave or convex, as shown in Fig 1B, 1C, and 1D. The image orientations are 
identical as Fig 1A because the surface orientations are also the same. However, the two 
signs of the surface second derivatives are different. The orientation field cannot 
distinguish among these four types. 

We overcome the problem of concave/convex ambiguity by imposing a prior that 
illumination is from above [25, 26] (hereafter called the “above illumination prior”). In 
utilizing this prior knowledge, we actively use both a diffuse and a specular reflection 
component. Since most objects that give specular reflection also give diffuse reflection, a 
natural extension is to combine the features of both reflection components. Note that 
this prior also works for mirrored surfaces (see the Results section) and the human 
performance to resolve the concave/convex ambiguity from a mirrored surface increased 
when the illumination environment was brighter in the upper hemisphere [27]. 

We propose using the vertical polarity of the intensity gradient (hereafter vertical 
polarity) as an image cue (Fig 2; see also Supplementary Note1 in S1 Text). As with the 
orientation field, vertical polarity can be obtained by a V1-like filter [28] and its relation 
with 3D shape perception was reported [29]. Assuming the above illumination and 
Lambert reflectance, vertical polarity corresponds to the surface second derivative sign 
of vertical orientation (see Method). This prior is used only as an initial value for the 
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optimization for 3D shape recovery. Because physically possible shape patterns given 
the orientation field are restricted [30, 31], it is expected that the remaining ambiguity 
(i.e., the surface second derivative sign of the horizontal orientation) is implicitly 
resolved and erroneous initial values are corrected through optimization. 
 

 
 

FFiigg  22..  RReellaattiioonnsshhiipp  bbeettwweeeenn  vveerrttiiccaall  ppoollaarriittyy  aanndd  ssuurrffaaccee  sseeccoonndd  ddeerriivvaattiivvee  ssiiggnn.. Shaded 
images of identical surface patches to Fig. 1 are shown on left. Vertical polarity of each 
shaded image, obtained by extracting a sign of oriented filter response of vertical 
direction, is depicted on right. White represents positive and black represents negative. 
 

Our proposed algorithm, which can recover general shapes including both convex and 
concave regions under an unknown natural illumination, is based on the information 
used by the human visual system. Therefore, it makes a critical contribution to 
understanding the mechanism of 3D shape perception from specular reflections. 
 
RReessuullttss  
 
FFlloowwcchhaarrtt  ooff  pprrooppoosseedd  aallggoorriitthhmm  

Fig 3 shows the flowchart of the proposed algorithm that recovers the 3D surface 
depth from a single specular image. The main procedure is as follows. First, the 
orientation field is extracted from an image; second, the cost function is formulated 
based on the orientation field; finally, the 3D shape is recovered by minimizing the cost 
function. Additionally, we extracted the vertical polarity from the image to resolve the 
concave/convex ambiguity. The initial values of the surface second derivative signs, σmax 
and σmin, are calculated based on the vertical polarity and used to minimize the cost 
function. The boundary conditions are also used, although they are omitted from this 
flowchart. The boundary conditions to resolve the ambiguity about the translation and 
affine transformation are incorporated in the cost function. The curvature sign of the 2D 
contour is calculated to obtain the signs of the 3D surface second derivative near the 
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boundary. The details are described in Methods. The proposed algorithm outputs not 
only the recovered 3D surface depth but also the estimated surface second derivative 
signs, σmax and σmin, due to minimizing the cost function. 
 

 
 

FFiigg  33..  FFlloowwcchhaarrtt  ooff  pprrooppoosseedd  sshhaappee  rreeccoovveerryy  aallggoorriitthhmm.. Orientation field and vertical 
polarity are extracted from an image. Cost function is formulated based on orientation 
field. Initial values of signs of surface second derivative, σmax and σmin, are obtained by 
dividing vertical polarity. Estimated surface depth, σmax, and σmin are obtained by 
minimizing cost function. 
 
SShhaappee  rreeccoovveerryy  ooff  gglloossssyy  ssuurrffaacceess  

The twelve glossy surfaces used to validate our proposed algorithm are shown in Fig 4. 
We generated them by computer graphics assuming both specular and diffuse 
reflections of the object’s surface (see Methods for details). The recovered shapes from 
these glossy surfaces are shown in Fig 5. The recovered depths are represented in 
grayscale; nearer surfaces are lighter and more distant surfaces are darker. Additionally, 
15 contour lines are superimposed. The estimated surface second derivative signs, σmax 
and σmin, are shown in S6 and S7 Figs. The true surface shapes and the true signs of the 
surface second derivative are shown in S1-S3 Figs. 
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FFiigg  44..  GGlloossssyy  ssuurrffaacceess  uusseedd  ttoo  vvaalliiddaattee  oouurr  pprrooppoosseedd  33DD  sshhaappee  rreeccoovveerryy  aallggoorriitthhmm.. 
These surfaces were generated by computer graphics assuming both specular and 
diffuse reflection on object’s surface. 
 

 
 

.CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/383174doi: bioRxiv preprint first posted online Aug. 2, 2018; 



7 
 

FFiigg  55..  RReeccoovveerreedd  33DD  sshhaappeess  ffrroomm  gglloossssyy  ssuurrffaacceess.. Recovered surface shapes are 
represented by depth map and contour lines. 
 

We evaluated the image cues (i.e., orientation field and vertical polarity) and the 
estimation results as follows. The orientation field error was quantified by the mean 
absolute errors throughout the object region between the image and surface 
orientations and between the image and surface anisotropies. We quantified the error of 
the vertical polarity by the correct ratio between the initial and true values of σmax and 
σmin, where the initial values exist. The shape recovery performance was quantified with 
two measures: global depth correlation rg and local interior depth correlation rli. The 
global depth correlation is simply the correlation coefficient of the recovered and true 
depths throughout the object region. The local interior depth correlation is the averaged 
value of the correlation coefficients of the recovered and true depths calculated in the 
local regions except near the boundary. The local interior depth correction is more 
sensitive to the agreement of the concavity and convexity inside the object region than 
the global depth correlation. Note that both depth correlations are calculated after the 
affine transformation so that the slant of the true surface depth becomes zero, because 
there is ambiguity about the recovered shape’s affine transformation [32]. No values 
were obtained of the local interior depth correlation of objects #9 and #11 because most 
of the object region is near the boundary. The details of the measures are described in 
Methods. The estimation performance of the surface second derivative signs, σmax and 
σmin, was quantified by the correct ratio with true values throughout the object region. 

The average values of the mean absolute error of the orientation and anisotropy for 12 
objects were 11.3° and 0.15. The average values of the correct ratio of the initial values 
of σmax and σmin for 12 objects were 0.79 and 0.70. The initial values and the correct 
ratios of all objects are shown in S4 and S5 Figs. 

The shape recovery performances of 12 objects (#1, #2,. . . #12) were as follows: global 
depth correlation rg = 0.98, 0.91, 0.87, 0.82, 0.89, 0.88, 0.90, 0.95, 0.89, 0.65, 0.65, 0.80 
(average rg = 0.85); local interior depth correlation rli = 0.97, 0.71, 0.67, 0.66, 0.91, 0.86, 
0.84, 0.95, -, 0.45, -, 0.60 (average rli = 0.76). As an impression of appearance, the shape 
recovery seems successful if both the global and local interior depth correlations exceed 
0.7. The recovered shapes of objects #1, #2, #5, #6, #7, #8, and #9 resemble the 3D 
surface impressions received from the corresponding images in Fig 4. The global depth 
correlations of #10 and #11 and the local interior depth correlations of #3, #4, #10, and 
#12 were below 0.7. The recovered shapes of #3, #4, #11, and #12 were roughly good but 
lacked accuracy. The shape of object #10 was not well recovered. The following are the 
estimation performances of the surface second derivative signs: the correct ratios of the 
estimated σmax were 0.90, 0.90, 0.80, 0.81, 0.79, 0.86, 0.87, 0.93, 0.99, 0.86, 0.98, 0.70 
(average 0.86); the correct ratios of the estimated σmin were 0.77, 0.74, 0.63, 0.68, 0.64, 
0.68, 0.69, 0.82, 0.82, 0.75, 0.78, 0.60 (average 0.72). The correct ratios of the estimated 
σmax and σmin exceeded those of the initial values even though the initial values exist 
only in half of the object region. 
 
SShhaappee  rreeccoovveerryy  ooff  mmiirrrroorreedd  ssuurrffaacceess  

The proposed algorithm is applicable to mirrored surfaces without shading although 
we assumed that shading exists to obtain good initial values of the surface second 
derivative signs by calculating the vertical polarity. Fig 6 shows the mirrored surfaces 
used to validate our proposed algorithm. 
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FFiigg  66..  MMiirrrroorreedd  ssuurrffaacceess  uusseedd  ttoo  vvaalliiddaattee  oouurr  pprrooppoosseedd  33DD  sshhaappee  rreeccoovveerryy  aallggoorriitthhmm.. 
These surfaces were generated by computer graphics assuming only specular reflection 
on object’s surface. 
 

The average values of the correct ratio of the initial values of σmax and σmin for 12 
objects were 0.64 and 0.62. These correct ratios were significantly lower than those of 
the glossy surfaces, but still higher than a chance level of 0.5. The initial values and the 
correct ratios of all the objects are shown in S8 and S9 Figs. The average values of the 
mean absolute error of the orientation and the anisotropy for 12 objects were 10.9° and 
0.13. These orientation field errors were slightly lower than those of the glossy surfaces, 
suggesting that the shading component slightly disturbed the relationship between the 
orientation field and the surface second derivative based on specular reflections. 

The recovered shapes from the mirrored surfaces are shown in Fig 7. The following 
are the shape recovery performances: global depth correlation rg = 0.95, 0.93, 0.78, 0.81, 
0.89, 0.89, 0.81, 0.93, 0.91, 0.66, 0.66, 0.86 (average rg = 0.84); local interior depth 
correlation rli = 0.96, 0.74, 0.60, 0.67, 0.90, 0.85, 0.67, 0.91, -, 0.55, -, 0.65 (average rli = 
0.75). Although the appearances of the recovered shapes from the mirrored surfaces 
look noisier than those from the glossy surfaces (e.g., #1 and #8), the averaged global 
and local interior depth correlations differ by only 0.01 and 0.01, indicating that the 
proposed shape recovery algorithm is applicable to both mirrored and glossy surfaces. 
The following are the estimation performances of the surface second derivative signs. 
The correct ratios of the estimated σmax were 0.74, 0.85, 0.74, 0.72, 0.74, 0.79, 0.80, 0.84, 
0.97, 0.77, 0.99, 0.68 (average 0.80); the correct ratios of the estimated σmin were 0.67, 
0.73, 0.64, 0.68, 0.63, 0.67, 0.68, 0.79, 0.83, 0.70, 0.79, 0.61 (average 0.70). The noisier 
appearance of the recovered shapes of the mirrored surfaces is related to the lower 
correct ratio of the estimated σmax than that of the glossy surfaces. The estimated 
surface second derivative signs, σmax and σmin, are shown in S10 and S11 Figs. 
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FFiigg  77..  RReeccoovveerreedd  33DD  sshhaappeess  ffrroomm  mmiirrrroorreedd  ssuurrffaacceess.. Recovered surface shapes are 
represented by depth map and contour lines. 
 
EEssttiimmaattiioonn  aaccccuurraaccyy  iinn  ddiiffffeerreenntt  ccoonnddiittiioonnss 

We tested the proposed algorithm in four different conditions. The first and second 
conditions are the shape recoveries from the glossy and mirrored surfaces shown in Figs 
4 and 6 (denoted as glossy and mirrored conditions). In the third condition, the shapes 
were recovered from the glossy surfaces shown in Fig 4, but the above illumination prior 
was not used (denoted as the noAIP condition). And in the fourth, the shapes were 
recovered from the shape orientation fields that were obtained from the true 3D shapes 
(denoted as the shapeOF condition). Note that in the shapeOF condition, the same 
initial values of σmax and σmin were used as the glossy condition. Tables 1 and 2 
summarize the errors of the image cues and the estimation performances of the four 
conditions. Additionally, we tested the algorithm in three more conditions to investigate 
the effect of the contour constraint, the illumination environment, and the image 
resolution. These results are shown in Supplementary Note 2 in S1 Text. 
 
TTaabbllee  11..  EErrrroorrss  ooff  iimmaaggee  ccuueess..  

 Mean absolute error Correct ratio 
 Orientation Anisotropy Initial σmax Initial σmin 

Glossy 11.3° 0.15 0.79 0.70 
Mirrored 10.9° 0.13 0.64 0.62 

noAIP (11.3°) (0.15) 0.85 0.67 
shapeOF 0° 0 (0.79) (0.70) 

Orientation field errors and correct ratios of initial values of σmax and σmin, which are 
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averaged values of 12 objects. Values of orientation field errors of noAIP condition and 
correct ratios of initial values of shapeOF condition are parenthesized because these are 
identical as glossy condition. 
 
TTaabbllee  22..  EEssttiimmaattiioonn  ppeerrffoorrmmaanncceess..  
 Shape recovery accuracy Correct ratio 
 rg rli Estimated σmax Estimated σmin 

Glossy 0.85 0.76 0.86 0.72 
Mirrored 0.84 0.75 0.80 0.70 

noAIP 0.77 0.52 0.80 0.67 
shapeOF 0.87 0.88 0.92 0.80 

Global and local interior depth correlations of recovered shapes and correct ratios of 
estimated signs of surface second derivative. These are averaged values of 12 objects. 
 

In the noAIP condition, the shapes were recovered from the glossy surfaces without 
the above illumination prior to check its necessity. In this condition, the initial values of 
σmax and σmin were all set to +1 based on the convex prior possessed by humans [33, 34]. 
The average values of the correct ratio of the initial values of σmax and σmin for 12 objects 
were 0.85 and 0.67. First, the shapes were recovered with the same algorithm that was 
used with the other conditions. As a result, the estimated σmax and σmin were almost the 
same as the initial values; 98% and 88% of the estimated σmax and σmin were +1. This 
means that the estimation failed. The average values of the global and local interior 
depth correlations for 12 objects were rg = 0.74 and rli = 0.48. These estimation 
performances are not summarized in Table 2, because the estimation completely failed. 
Next we altered the temperature parameter of the mean field algorithm (see 
Supplementary Note 3 in S1 Text for details) from β0=10 to β0=1 to extend the search 
range, since the initial values were not reliable in this condition. As a result, we 
obtained better shape recovery results. The average values of the global and local 
interior depth correlation for 12 objects were rg = 0.77 and rli = 0.52. The average values 
of the correct ratio of the estimated σmax and σmin for 12 objects were 0.80 and 0.67. The 
estimation performances of objects #1, #8, and #9 were high despite the noAIP condition. 
However, most of the recovered shapes look noisy, probably because of the alternation of 
the temperature parameter, and the estimation performance was lowest in the four 
conditions. The recovered shapes and the estimated signs of the surface second 
derivative of the noAIP condition are shown in S12-S14 Figs. 

In the shapeOF condition, the shapes were recovered from the surface orientations 
that were obtained from the true 3D shapes instead of the image orientations to 
investigate the effect of the orientation field errors on the shape recovery errors. In this 
condition, the vertical polarity of the glossy surfaces was used to resolve the 
concave/convex ambiguity. The average values of the global and local interior depth 
correlations for 12 objects were rg = 0.87 and rli = 0.88. The average values of the correct 
ratio of the estimated σmax and σmin for 12 objects were 0.92 and 0.80. The estimation 
performances of the shapeOF condition were very high, except for objects #9 and #10, 
and significantly higher than the other conditions. The recovered shapes and the 
estimated signs of the surface second derivative of the shapeOF condition are shown in 
S15-S17 Figs. 
 
CCoonnssiisstteennccyy  wwiitthh  hhuummaann  sshhaappee  ppeerrcceeppttiioonn  

Finally, we conducted a psychophysical experiment to investigate the linkage between 
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the shape recovery algorithm and human shape perception. We prepared a glossy 
surface image that evokes 3D shape misperception (Fig 8A) by using another 
illumination environment that is inconsistent with the above illumination prior 
(Galileo's Tomb of the Devebec dataset) and carefully modifying the 3D object’s shape. 
Fig 8B is an image of the same object rendered under identical illumination 
environments as Figs 4 and 6 (Eucalyptus Grove of the Devebec dataset). Fig 8C 
represents the depth map of the true 3D shapes. The red cross indicates where the 
surface looks concave from Fig 8A, although the surface looks convex from Fig 8B and 
the true surface is convex. Fig 8D and 8E indicate the recovered shapes from the images 
of Fig 8A and 8B. In accordance with the appearance, the recovered shape from Fig 8A is 
concave and that from Fig 8B is convex around the red cross mark. The estimation 
performances (rg, rli, correct ratio of estimated σmax and correct ratio of estimated σmin) of 
Fig 8D and 8E were (0.91, 0.76, 0.73, 0.60) and (0.98, 0.99, 0.90, 0.84). 
 

 
 

FFiigg  88..  IImmaaggeess  uusseedd  ffoorr  ppssyycchhoopphhyyssiiccaall  eexxppeerriimmeenntt.. (A) Glossy surface rendered in indoor 
environment. Red crosses indicate position where misperception likely occurs. (B) 
Glossy surface of identical object as A rendered in outdoor environment. (C) Depth map 
of true 3D shapes of A and B. (D) Recovered shape from image in A. (E) Recovered shape 
from image in B. 
 

In psychophysical experiments, five subjects were first asked whether the local 3D 
surface around the red crosses in Fig 8A and 8B looks convex or concave. After that, 
they were asked whether the true 3D shape (Fig 8C), the recovered 3D shape (Fig 8D, or 
8E) was more similar to the perceived 3D shape from the image. Four of five subjects 
answered that the local surface of Fig 8A looked concave and only one thought that it 
looked convex. All five subjects answered that the local surface of Fig 8B looked convex. 
Four of five subjects answered that the recovered shape (Fig 8D) was closer to the 
perceived shape of the image shown in Fig 8A, and one thought that the true shape (Fig 
8C) was closer. Four of five subjects answered that the recovered shape (Fig 8E) was 
closer to the perceived shape from the image shown in Fig 8B and one answered that 
the true shape was closer. To summarize, most subjects (4 of 5) perceived the incorrect 
shape from Fig 8A and the recovered shape (Fig 8D) was consistent with the 

.CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/383174doi: bioRxiv preprint first posted online Aug. 2, 2018; 



12 
 

misperceived shape. 
 
DDiissccuussssiioonn  

We developed an algorithm that estimates 3D shapes from a single specular image to 
investigate a possible mechanism of human 3D shape perception from specular 
reflections. This algorithm mainly relies on the orientation field suggested by a previous 
psychophysical study [12]. However, since the orientation field cannot resolve the local 
concave/convex ambiguity, the 3D shape recovery from it alone was difficult (see the 
noAIP condition, Table 2). To resolve the concave/convex ambiguity, we added the prior 
knowledge that objects are illuminated from above. The vertical polarity of the intensity 
gradient is an image cue to utilize this prior knowledge. We evaluated the developed 
algorithm with the glossy and mirrored surfaces of 12 complex shapes. The depth 
correlations between the recovered and the true shapes were as high as around 0.8. To 
further confirm the necessity of the vertical polarity information, we also conducted a 
psychophysical experiment with an image that caused human misperception due to the 
inconsistency with the above illumination prior. The human-misperceived and 
recovered shapes were consistent in most subjects. These findings show that the vertical 
polarity of the intensity gradient as well as the orientation field are related to 3D shape 
perception and the combination of both enables 3D shape recovery from a single 
specular image. 
 
SShhaappee  rreeccoovveerryy  ooff  mmiirrrroorreedd  ssuurrffaacceess 

The shape recovery performance of the mirrored condition was almost as high as the 
glossy condition (Table 2), although the relationship between the vertical polarity and 
the surface second derivative sign was only proved in the diffuse reflection component 
(see Methods). The present result indicates that vertical polarity of the specular 
component was also useful for the initial second derivative signs for the following 
reason. The diffuse reflectance component in Fig 2 shows a relationship where the 
luminance is high in the upper side and low in the lower side when the surface is convex 
with respect to the vertical orientation (Fig 2A and 2B) and vice versa (Fig 2C and 2D). 
The same relationship holds for the mirrored surfaces of Fig 1. The luminance tends to 
be higher in the upper side than the lower side when the surface is convex (Fig 1A and 
1B) and vice versa (Fig 1C and 1D). Thus, the vertical polarity of the mirrored surface at 
low frequencies is related to the surface second derivative sign of the vertical 
orientation, although the high-frequency component is not related to it. When the 
vertical polarity is calculated, a relatively low-frequency image component is extracted 
and further smoothed to remove the high-frequency component of the specular 
reflection (see Methods). Therefore, it provides meaningful information about second 
derivative signs even from mirrored surfaces, although the correct ratio of the initial 
sign values of the mirrored condition is actually worse than that of the glossy condition 
(Table 1). 
 
RReepprreesseennttaattiioonn  ooff  ssuurrffaaccee  ccuurrvvaattuurreess 

In this study, the sign and magnitude of the surface second derivatives are separately 
described. Similar representation can be seen in some psychophysical experiments [35, 
36], in which subjects classified 3D shapes based on curvature signs. Furthermore, the 
neural representation of surface curvatures was studied in electrophysiological 
experiments. Srivastava et al. showed that the neurons in the inferior temporal cortex 
(the area for object recognition) of macaques are mainly sensitive to the curvature sign, 
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but the neurons in the anterior intraparietal area (the area for motor planning) are 
sensitive to the curvature magnitude as well as the sign [37]. This might suggest that 
the curvature sign’s representation is important for object recognition, and its 
magnitude is also required for motor planning. These and other psychophysical and 
electrophysiological studies [38, 39] provide hints to develop more efficient and 
human-like shape recovery algorithms. 

The estimation of a small surface second derivative sign, σmin, was more difficult than 
that of a large surface second derivative, σmax, in all four conditions (see right half of 
Table 2). A similar phenomenon can be seen in human shape perception. When subjects 
classified local shapes based on the curvature signs, saddles were often misclassified as 
ridges or ruts (convex or concave cylinders) [35, 36], suggesting that humans often 
neglect the small surface curvature of saddle shapes. Since the small surface curvature 
is less visible in the image, its estimation is intrinsically difficult. In the proposed 
algorithm, the small second derivative sign is forcibly classified as +1 or -1, but it might 
be better to treat it ambiguously like the quantum superposition when its classification 
is difficult. 

Note here that the shape recovery from specular reflections has much in common with 
that from line drawings because lines or specular orientations appear at the high 
curvature in both cases [40, 41]. In a line drawing study, edge-labeling algorithms 
classified the orientation edges as either convex or concave [30, 31]. This corresponds to 
the determination of the large surface second derivative sign in our study. It would be 
interesting to find and utilize the similarities of the shape recovery algorithms from 
specular reflection and line drawing [42]. 
 
OOrriiggiinn  ooff  sshhaappee  rreeccoovveerryy  eerrrroorrss 

The orientation field error is a major error factor of the proposed algorithm, because 
the shape recovery performance was very high in the shapeOF condition (Table 2 and 
S15 Fig). In this condition, the surface second derivative signs were accurately 
estimated even though the initial values from the vertical polarity were somewhat 
incorrect and absent in half of the region. This result indicates that the proposed shape 
recovery algorithm works well at least under such ideal conditions. Therefore, the error 
due to the proposed algorithm’s methodological imperfection is relatively small. It also 
indicates that the orientation field is satisfactory for the 3D shape recovery of such 
curved surfaces examined in this study with the help of the above illumination prior. 
The difference of the shape recovery performances between the glossy and shapeOF 
conditions reflects errors that originate from the image orientation field. Compared 
with the orientation field error, the effects of the initial second derivative sign errors are 
limited because they are expected to be corrected through optimization; orientation field 
error inevitably affects the resultant shape because it is directly incorporated in the cost 
function. Actually, the shape recovery performance of the mirrored condition was 
comparable to the glossy condition even though the initial second derivative sign errors 
of the mirrored condition were significantly larger than those of the glossy condition. Of 
course, too many initial errors cannot be corrected as suggested by the poor shape 
recovery performance of the noAIP condition. The orientation field errors probably 
affect the error corrections of the initial values through optimization. 
 
IInntteerrpprreettaattiioonn  ooff  hhuummaann  sshhaappee  mmiissppeerrcceeppttiioonn  

The glossy surface Fig 8A, which was used for our psychophysical experiment, looks 
concave around the red cross mark, but Fig 8B looks convex. The illumination 
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environment caused this difference. The Eucalyptus Grove environment for Fig 8B is 
outdoors and consistent with the above illumination prior of humans. However, the 
Galileo's Tomb environment for Fig 8A is indoors and the ceiling is dark that is against 
the above illumination prior. The dark ceiling caused a negative value of the vertical 
polarity around the red cross mark despite its convex 3D shape, which presumably 
caused the concave interpretation. In this example, both the convex and concave 
interpretations are consistent with the surrounding information. Therefore, humans 
may interpret images as convex or concave depending on the illumination environment. 
 
LLiimmiittaattiioonnss  aanndd  ffuuttuurree  wwoorrkk 

The following are the limitations of our shape recovery algorithm. First, since it is 
based on the relationship between the orientation field and the surface second 
derivative, large error occurs when this relationship is invalid. For example, if the 
illumination environment is biased to a specific orientation (e.g., striped illumination), 
it biases the image orientation [24]. The orientation error becomes large where the 
surface anisotropy is small [24]. For example, if the true shape is a plane (i.e., the 
surface anisotropy is zero), the image orientation reflects not the surface second 
derivative but only the orientation of the illumination environment and causes shape 
recovery errors. Second, images under an unnatural illumination environment against 
the above illumination prior could not be properly recovered as it is difficult for humans 
[27, 43]. Third, the proposed algorithm cannot estimate the depth scale as well as the 
slant due to the ambiguity about the affine transformation of the recovered shape [32]. 
Humans also have difficulty estimating the slant [6, 44] and the depth scale [6, 32] from 
a single image without prior knowledge of the object’s shape. Therefore, we evaluated 
the recovered shapes by depth correlations after the affine transformation so that the 
slant of the true surface depth becomes zero. We did not evaluate the normal map 
because it depends on the depth scale. Fourth, because the proposed algorithm assumes 
that the surface depth is second order differentiable, it cannot properly treat bends, 
cusps, and self-occlusion inside the object region (occluding edges or limbs [31]) and 
generates smoother shapes than actual shapes. This property may worsen the shape 
recovery performance of objects #10, #3, and #4. Note that the limitations listed above 
(except for the fourth) are closely related to the limitations of human shape perception. 

Future work has several promising directions. First, further psychophysical 
experiments are required to understand human shape perception from specular 
reflections in detail and will help improve the shape recovery algorithm to better 
simulate the human shape perception. It would be interesting to use the image-based 
shape manipulation method based on the orientation field [45] to compare the recovered 
and human-perceived shapes. Second, the proposed shape recovery algorithm will be 
useful for computer vision methods. By integrating it with a study that estimates 
material (BRDF) from a single image of a known shape [46], it might become possible to 
estimate an unknown shape’s material. By providing more accurate recovered depth 
information, we expect to enhance the reality of the image-based material editing that 
is based on shape information [47]. For further improvement of the shape recovery 
performance, the proposed shape from the specularity algorithm could be integrated 
with the shape from shading algorithms [48, 49], where it would be helpful to use color 
information to separate diffuse and specular reflection components [50]. Third, it would 
be interesting to study whether 3D shapes can be recovered from translucent images 
with specularities. A previous study [51] argued that an object looks translucent when 
images are manipulated so that the diffuse reflection component is contrast-reversed, 
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but the specular reflection component is left intact. This result suggests that we must 
alter how the specular and diffuse reflection components are combined for shape 
recovery from translucent images, such as reversing the sign of the vertical polarity in 
the case of translucent images compared with opaque images. 
 
MMeetthhooddss  

As a precondition to 3D shape recovery, we assume that the image region is known 
where the object exists. It may be obtained by an edge detection algorithm or decided by 
humans. We denote the object region as Ω, the number of pixels in Ω as NΩ, the 
boundary region, which is the region between the boundary of Ω and one pixel inside it, 
as ∂Ω, and the number of pixels in ∂Ω as N∂Ω. The resolution of the 3D shape recovery 
was 256 × 256 pixels. We set a Cartesian coordinate on the image plane, where the x 
and y axes represent the horizontal and vertical axes of an image plane and the z axis 
represents the front direction. We represent the depth of the 3D object surface as z(x,y). 
The following notations are used: scalars are represented in normal-type letters as x; 
vectors are represented in lower-case boldface letters as xx; matrices are represented in 
upper-case boldface letters as XX. 

 
IImmaaggeess  aanndd  eexxttrraaccttiioonn  ooff  iimmaaggee  ccuueess  

We used the images of 12 different 3D shapes to evaluate the proposed algorithm 
(Figs 4 and 6). The images had 1024 × 1024 pixel resolution and were colored, although 
they were downsampled to 256 × 256 pixels before the 3D shape recovery and became 
achromatic because the proposed algorithm does not use color information. These 
images were rendered by Radiance software (http://radsite.lbl.gov/radiance/). The 
surface reflection property was modeled by the Ward-Duer model [52, 53]. We set diffuse 
reflectance ρd, specular reflectance ρs, and the spread of specular reflection α as ρd = 0.1, 
ρs = 0.15, α = 0 for the glossy surfaces (Fig 4) and ρd = 0, ρs = 0.25, α = 0 for the mirrored 
surfaces (Fig 6). For the natural illumination environment, we used a high dynamic 
range image from the Devebec dataset (http://ict.debevec.org/~debevec/; Eucalyptus 
Grove). For the quadratic patch images in Figs 1 and 2, we set ρd = 0, ρs = 0.25, α = 0 for 
the mirrored surfaces in Fig 1, and ρd = 0.4, ρs = 0 for the matte images in Fig 2. 

The 3D shapes of objects #1-6 were randomly generated with spherical harmonics. To 
incrementally increase the complexity of the 3D shapes, the maximum degree of the 
spherical harmonics was limited to 5 for objects #1-2, 7 for objects #3-4, and 10 for 
objects #5-6. The weights of the spherical harmonics were determined by a random 
number and normalized so that the power of each degree is inversely proportional to the 
degree (pink noise). Then the maximum amplitude of the spherical harmonics was 
normalized to 0.5. The object’s radius of each angle is given by the sum of 1 and the 
value of the spherical harmonics. The 3D shapes of objects #7-12 were human-made and 
used in our previous electrophysiological studies of gloss perception [54, 55]. 

We extracted the orientation field as follows. The image orientation θ(x,y) is the angle 
that maximizes the magnitude of response p of the oriented filter (first-derivative 
operator) as     yxpyx ,'maxarg, 2

'



 . Image anisotropy α(x,y) is defined by the 

ratio of the minimum and maximum magnitudes of the oriented filter response with 
respect to its angle [12] as      yxpyxpyx ,,1, 2

max
2
min . α=0 means that the 

local image is isotropic, and α=1 means that it only consists of one directional 
component. The steerable pyramid [56, 57] (matlabPyrTools, 
https://github.com/LabForComputationalVision/matlabPyrTools) was used to extract 
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the image orientation in accordance with previous studies [12, 13, 24]. Responses were 
obtained by steering the filter through 120 equal orientation steps between 0 and 180°. 
The finest orientation responses were extracted in accordance with a previous study 
[12]. Then the amplitudes, which are the squared responses, were downsampled to 256 
× 256 pixels and convolved by a 3 × 3 constant filter for noise reduction. Then the image 
orientation and the image anisotropy were obtained based on the above equations. 

We obtained the vertical polarity of intensity gradient pv(x,y) by extracting the sign of 
the oriented filter response of the vertical direction (θ = 0°) as 

    yxpyxpv ,sgn,
0


 . The steerable pyramid was used to extract the vertical 

polarity. The responses of the pyramid level of 256 × 256 resolution were extracted (a 
relatively low-frequency component compared to the original image resolution). The 
response values near the boundary are unreliable because they are affected by the 
image outside of the object region. Therefore, we overwrote the response values within 
five pixels from the boundary to zeros and smoothed them by a Gaussian filter whose 
standard deviation is four pixels to reduce the noise and the high-frequency components 
of the specular reflection.  

We derived the signs of the apparent curvature of the image contour as follows. First, 
we drew a circle centered at a boundary point with a radius of 128 pixels (1/8 of the 
image size); second, we determined that the curvature sign value at that boundary point 
is +1 or -1 when the object region’s area within the circle is smaller or larger than the 
area of the outside object region within the circle; third, for noise reduction, we 
smoothed the curvature sign values by convolving a constant circular filter of a radius of 
16 pixels (1/64 of the image size) and downsampled it to 256 × 256 pixels; then we 
extracted the signs. The resultant curvature signs of the image contour are shown in 
S18 Fig. 
 
CCuurrvvaattuurree  ffoorrmmuullaattiioonn  

We described the surface shape of objects by Hessian matrix H(z) of surface depth 
z(x,y). Because the Hessian matrix is symmetric, H(z) is diagonalized with rotation 
matrix R as 

      ss R
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yx
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yx
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, (1) 

where kmax and kmin are the eigenvalues of the larger and smaller magnitudes. θs, which 
indicates the angle of the small surface second derivative, is called the surface 
orientation. There is a minus at the beginning of the right-hand side of Eq 1 so that the 
surface second derivatives become positive in the case of convex shapes (e.g., sphere). In 
this study, we described the surface curvature by Hessian matrix based on the image 
coordinate system instead of the standard curvature that is defined on the object 
surface’s intrinsic coordinate system. This difference was previously scrutinized [24]. 
The reason why we adopted the former is that orientation field depends on the Hessian 
matrix, not on the standard curvatures. For example, in the case of a sphere, the 
standard curvature is the same at every point on its surface. In contrast, the second 
derivatives are large near the boundary and small at the center, and correspondingly, 
the image orientation of the specular reflectance is clear near the boundary and not 
clear at the center (see Fig 16 of [24]). 

.CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/383174doi: bioRxiv preprint first posted online Aug. 2, 2018; 



17 
 

Next we introduce other variables and transform the equation. First, surface 
anisotropy αs is defined as 2

max
2
min1 kks   [12]. αs=0 denotes that the magnitude 

of the two surface second derivatives is the same (e.g., a convex sphere, a concave 
sphere, or a saddle), and αs=1 means that the small surface second derivative is zero 
(e.g., a convex cylinder or a concave cylinder). Second, variables are introduced so that 
the surface second derivative’s sign and magnitude are separately described. The sign of 
the large surface second derivative is represented as σmax ∈ {+1, -1}. +1 and -1 
correspond to convex and concave shapes. The magnitude of the large surface second 
derivative is represented as ka=|kmax|. The sign of the small surface second derivative 
is represented as σmin ∈ {+1, -1}. Using these variables, the surface second derivatives 
are described: 
 maxmax akk  , (2) 

   minmin 1  as kk  . (3) 
 
RReellaattiioonnsshhiipp  bbeettwweeeenn  vveerrttiiccaall  ppoollaarriittyy  aanndd  ssuurrffaaccee  sseeccoonndd  ddeerriivvaattiivvee  ssiiggnnss 

With the prior knowledge that the object is illuminated from above, we can derive the 
relationship among the vertical polarity, pv, and the surface second derivative signs. In 
the case of the Lambert reflectance, the surface luminance is proportional to the inner 
product of the lighting direction and the surface’s normal direction. Here we assume 
that the illumination map is stronger as it gets closer to just above (x,y,z)=(0,1,0). As a 
result, the surface luminance becomes stronger as the surface slant (-∂z/∂y) is increased. 
By taking a derivative of this relationship with respect to y and taking the sign, the 
following equation is obtained: 

 










 2

2

sgn
y
zpv . (4) 

Here we described it as nearly equal instead of equal because the two assumptions of 
the Lambert reflectance and the just above illumination do not strictly hold in real 
situations. For example, for images taken outdoors, the angle of the sun (dominant 
illumination) changes based on time. 

We transform Eq 4 into a more available form. The following equation is derived from 

Eqs 1, 2, and 3 as   sssaky
z  2

min
2

max2

2

sin1cos 



 . Then we used the 

approximation of orientation θ ≈ θs and anisotropy α ≈ αs: 
    2

min
2

max sin1cossgn vp . (5) 

We divided object region Ω into two regions:    22 sin1cos   holds in Ωa, but not 
in Ωb. Then the following relationship is obtained: 
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. (6) 

The approximation of Eq 6 was evaluated in our experiment and summarized in the 
right half of Table 1. All of the results of the objects in the glossy and mirror conditions 
are shown in S4-S5 and S8-S9 Figs. 
 
FFoorrmmuullaattiioonn  ooff  ccoosstt  ffuunnccttiioonn  
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Cost function E consists of two terms: the second derivative constraint given by 
orientation field C and boundary condition B: 
 BCE  . (7) 
We first explain second derivative constraint C and then boundary condition B, which 
consists of the following three terms: B = B0 + B1 + Bc. 

The second derivative constraint is based on the relationship between the orientation 
field and the surface second derivatives where the image orientation approximates 
surface orientation θ ≈ θs and the image anisotropy approximates surface anisotropy α ≈ 
αs [12, 24]. These relationships are described with error terms as  s  and 

 s . These errors were evaluated in our experiment and summarized in the 
left half of Table 1. For more information, a previous study [24] assessed the orientation 
error, which depends on the surface anisotropy and the difference between the surface 
orientation and the illumination map’s orientation. By substituting these equations into 
Eq 1, we obtain 
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To simplify this equation, we introduce the coordinate axes (u, v) by rotating the original 
axes (x, y) by image orientation θ(x,y). Note that the axes (u, v) depend on each position 
based on the image orientation in that position. Then this equation is described as 
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which indicates that the surface strongly bends toward the v direction (the orthogonal 
direction of the image orientation) by second derivative magnitude ka with sign σmax and 
the surface weakly bends toward the u direction by second derivative magnitude ka(1-α) 
with sign σmin. Second derivative constraint C is based on Eq 9 where the left-hand side 
is small. The cost is the sum of the squared Frobenius norm of the left-hand side of Eq 9 
throughout the object region: 
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Since this cost function is a quadratic function with respect to z and ka or with respect to 
σmax and σmin, it is relatively easy to optimize. 

Here, because the right-hand side of Eq 9 is proportional to ka, it would be more 
appropriate to use a cost function that is the sum of the amplitude of the left-hand side 
of Eq 9 after multiplied by 1/ka. We denote this cost function as C’: 
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However, cost function C’ is more difficult to optimize. Therefore, we use the first cost 
function C to obtain the solution, and then with the solution as an initial value, we 
obtain the improved solution with the second cost function C’. The summarized formula 
and the minimization of the second cost function are described in Supplementary Note 4 
in S1 Text. 

.CC-BY 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/383174doi: bioRxiv preprint first posted online Aug. 2, 2018; 



19 
 

Boundary conditions B0 and B1 were introduced to resolve the solution’s ambiguity. B0 
resolves the translation ambiguity along the z axis by making the mean depth value 
zero at the boundary region: 
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Another ambiguity exists about affine transformations [32]. B1 is introduced so that the 
solution is not slanted in both the x and y directions: 
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where CMx  and CMy  are the average values of x and y in boundary region ∂Ω. We 

summarize these boundary conditions as BzzTBB
2
1

10  , where zz is the column 

vector of size NΩ × 1 that consists of z(x,y) in object region Ω and BB is the coefficient 
matrix of size NΩ × NΩ. 

Next the constraint from the contour was introduced.  Assuming that the 3D surface 
near the boundary is smooth and differentiable, the second derivative toward the 
normal direction of the contour at the boundary is minus infinity. Therefore, the surface 
orientation is parallel to the contour and σmax = +1. Moreover, a previous study [58] 
proved that the sign of the 3D curvature parallel to the contour (=σmin) equals the sign of 
the apparent curvature of the 2D contour. The apparent curvature sign of the image 
contour, which is calculated and utilized as the initial values of σmin near the boundary, 
is also incorporated in the cost function: 
  minminmaxmax σhσh TT

cB  , (14) 
where hhmin is a column vector that consists of the contour’s curvature sign (S18 Fig), 
hhmax is a column vector that consists of +1 (near the boundary, where the value exists in 
S18 Fig) and 0 (otherwise) and σσmax and σσmin are column vectors that consist of σmax(x,y) 
and σmin(x,y). 

The cost function is summarized as  

 
 

   minminmaxmax
2

minmax

2
1

2
1

σhσhkHIk

σHKDσKDzAzz

TT
a

T
a

a
T

uua
T

vv
TTBCE




, (15) 

where kka and αα are column vectors that consist of ka(x,y) and (x,y); KKa and HH are 
diagonal matrices with diagonal elements kka and (11-αα); DD is a matrix that represents the 
second order differential operator with respect to subscript variables; 

BDDDDDDA  uv
T

uvuu
T

uuvv
T

vv 2 ; II is an identity matrix of size NΩ × NΩ. 
Optimal 3D shape zz  minimizes the cost function. Therefore, the derivative of the cost 
function with respect to z should be zero. The solution is obtained as 
  minmax

1 σHKDσKDAz a
T

uua
T

vv   . (16) 
Here, matrix A is invertible since A is positive definite, which can be easily shown. First, 
the eigenvalue of A is non-negative from the definition (Eqs 7, 10, 12, and 13). Second, 
there is no zero eigenvalue because of the boundary condition (Eqs 12 and 13). By 
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substituting the solution Eq 16 into Eq 15, the cost function becomes a function of σσmax, 
σσmin, and kka: 

 
   

   minminmaxmax
2

minmax
1

minmax

2
1

2
1

σhσhkHIk

σHKDσKDAσHKDσKD

TT
a

T
a

a
T

uua
T

vv

T

a
T

uua
T

vvE



 

. (17) 

The procedure for minimizing the cost function is described in Supplementary Note 3 in 
S1 Text. 
  
EEvvaalluuaattiioonn  ooff  rreeccoovveerreedd  ddeepptthhss  

We quantify the shape recovery performance by taking the correlation between the 
recovered depth and the true depth. Note that here we apply the affine transformation 
so that the slant of the true surface depth becomes zero before taking the depth 
correlations. The proposed algorithm generates a shape whose slant is zero because of 
the boundary condition (Eq 13). Therefore, we compared the recovered shape with the 
true depth after the affine transformation. We summarized the depth correlations 
without the affine transformation in Supplementary Note 5 in S1 Text. 

We used two depth correlations: global and local interior. The global depth correlation 
is simply the correlation coefficient of the recovered and true depths throughout the 
object region. However, the global depth correlation tends to become high as long as the 
depth around the boundary is small, because the true depth is generally very small 
around the boundary and modest inside the object region. In other words, it is sensitive 
to the depth around the boundary and insensitive to the details of the shapes inside the 
object region. Therefore, we proposed a local interior depth correlation, which was 
calculated as follows. First, we drew a grid that divided the vertical and horizontal axes 
of the image region into eight (at 32 pixel intervals). Second, we drew a circle centered 
at an intersection of the grid with a radius of 32 pixels. Third, we measured a depth 
correlation in the intersection of the circle and the object area after removing the area 
near the boundary (within 24 pixels from the boundary). We did not measure a depth 
correlation if the intersection area was smaller than half of the circle’s area. Fourth, we 
averaged the depth correlation values. As a result, the local interior depth correlation is 
not affected by the shapes near the boundary and is sensitive to the agreement of the 
concavity and the convexity inside the object region. Note that we did not evaluate the 
local interior depth correlation for objects #9 and #11. No depth correlation values were 
obtained with the above procedure because most of the object region is near the 
boundary, and the global depth correlation seems sufficient as a measure because there 
is no fine shape structure inside these object regions. 
 
PPssyycchhoopphhyyssiiccaall  eexxppeerriimmeenntt  

Five unpaid volunteers participated in the experiment (three males and two females; 
age range, 33-58), all of whom had normal or corrected-to-normal vision and were naïve 
to its purpose. The experiment was approved by the Ethics Committee for Human 
Research of National Institute for Physiological Sciences. The experiment was 
conducted in accordance with the principles of the Helsinki Declaration. Written 
informed consent was obtained from all participants. 

Stimuli were presented on a 58.1 × 38.6 cm flat screen OLED monitor at a distance of 
60 cm in a darkened room. Each image subtended at about a 10° visual angle. The 
stimulus images are shown in Fig 8, although the red crosses in it were not displayed 
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during the experiment. The images of Fig 8A and 8B were rendered by Radiance 
software with the surface reflection property ρd = 0.1, ρs = 0.15, α = 0 under illumination 
environments of the Devebec dataset (Galileo's Tomb for Fig 8A and Eucalyptus Grove 
for Fig 8B) 

Subjects performed two tasks. Both were two-alternative forced choice tasks with no 
time limits. First, we presented either the image of Fig 8A (Galileo illumination 
condition) or Fig 8B (Eucalyptus illumination condition). Unfilled, 2.7-cm diameter gray 
circle centered at the red cross position was superimposed in the first task. Subjects 
were asked whether the local surface indicated by the circle was convex or concave. 
Next, we presented the same image and the recovered depth map by the proposed 
algorithm and the true depth map. The image was located in the center, and the two 
depth maps were located at the image’s left and right. The left and right arrangements 
of the recovered and the true depth maps were random. Subjects were asked whether 
the recovered 3D shape or the true 3D shape more closely resembled the perceived 3D 
shape from the image. They sequentially performed two tasks for two conditions: the 
Galileo illumination condition and the Eucalyptus illumination condition. The order of 
the conditions was counter-balanced among the subjects (two subjects performed the 
Galileo illumination condition first and three performed the Eucalyptus illumination 
condition first). Before the experiment, the subjects performed a practice trial with 
sphere images rendered under another illumination environment (Campus at Sunset of 
the Devebec dataset) and were instructed about the depth map’s meaning. 
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