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Abstract Working memory deficits are present in many neuropsychiatric diseases with

diagnosis-related severity. However, it is unknown whether this common behavioral abnormality is

a continuum explained by a neural mechanism shared across diseases or a set of discrete

dysfunctions. Here, we performed predictive modeling to examine working memory ability (WMA)

as a function of normative whole-brain connectivity across psychiatric diseases. We built a

quantitative model for letter three-back task performance in healthy participants, using resting

state functional magnetic resonance imaging (rs-fMRI). This normative model was applied to

independent participants (N = 965) including four psychiatric diagnoses. Individual’s predicted

WMA significantly correlated with a measured WMA in both healthy population and schizophrenia.

Our predicted effect size estimates on WMA impairment were comparable to previous meta-

analysis results. These results suggest a general association between brain connectivity and

working memory ability applicable commonly to health and psychiatric diseases.

DOI: https://doi.org/10.7554/eLife.38844.001

Introduction
Working memory is a goal-directed active information maintenance and manipulation in mind, form-

ing a foundation for diverse complex cognitive functions, learning, and emotion regulation
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(Baddeley, 2003; Cowan, 2014; Etkin et al., 2015; Otto et al., 2013). A range of psychiatric disor-

ders commonly shows working memory deficits, although the severity of the deficits is dependent of

psychiatric diagnosis (Forbes et al., 2009; Lever et al., 2015; Millan et al., 2012; Snyder, 2014;

Snyder et al., 2015). Working memory emerges by coordinating multiple related processes from

sensory perception, cognitive control (e.g. updating, focused attention), to motor action and thus

requires close communication among widespread brain regions (D’Esposito and Postle, 2015;

Eriksson et al., 2015; Nee et al., 2013; Owen et al., 2005; Postle, 2006; Rottschy et al., 2012).

Functional connectivity (FC) quantifies how brain regions are temporally coordinated and is

increasingly used to examine brain network architecture. Resting state (i.e. task-free) FC has been

associated with a wide range of individual traits (Baldassarre et al., 2012; Dosenbach et al., 2010;

Lewis et al., 2009; Seeley et al., 2007). For example, whole-brain FC models have recently demon-

strated that sets of functional connections across widespread brain regions can predict performance

on cognitive tasks (Finn et al., 2015; Rosenberg et al., 2016; Smith et al., 2015; Yamashita et al.,

2015). These findings suggest that specific cognitive processes (e.g. memory, attention) may be rep-

resented by the corresponding interaction patterns among distributed brain networks, at least

among healthy populations.

Functional connectivity has also provided insight into the biological basis of psychiatric disorders

and shown that different diagnoses are related to unique patterns of FC (Baker et al., 2014;

Harrison et al., 2009; Kaiser et al., 2015; Yahata et al., 2016). For example, a whole-brain FC-

based model has been shown to reliably predict autism spectrum disorder (ASD), as well as individ-

ual clinical scores (Emerson et al., 2017; Lake et al., 2018; Yahata et al., 2016), suggesting that FC

disruption is quantitatively relevant to behavioral abnormality. More broadly, this suggests that a

specific relationship between FC and behavior might exist across many disparate diagnoses that

have common symptoms, such as impairments in working memory.

With the above issues in mind, we set out to examine competing hypotheses about the relation-

ship between FC and working memory ability (WMA) across healthy populations and a range of psy-

chiatric diagnoses. In this study, we define working memory ability simply as a summary index of

general working memory performance, without specializing sensory modality and underlying sub-

functions. The first hypothesis proposes a distinct FC-WMA relationship for each diagnosis, rational-

ized by the fact that each psychiatric diagnosis is characterized by differential alterations in FC

(Baker et al., 2014; Harrison et al., 2009; Kaiser et al., 2015; Yahata et al., 2016). This hypothesis

predicts that the FC-WMA relationship among healthy populations will fail to generalize in predict-

ing impairments across different diagnoses. The alternative hypothesis proposes a common FC-

WMA relationship across health and multiple diagnoses. The rationale for this hypothesis is that pre-

vious studies have suggested that several cognitive functions, such as attention and memory, gener-

alize to predict behavior in patients as well as in healthy populations (e.g. Kessler et al., 2016;

Lin et al., 2018; O’Halloran et al., 2018; Rosenberg et al., 2016). This hypothesis predicts that a

FC-WMA relationship estimated from whole-brain functional connections in healthy populations will

generalize to predict working memory impairment across diagnoses.

To test these hypotheses, we built a prediction model of working memory ability in a letter 3-

back task using whole-brain FC among a healthy population. Then, we examined whether the model

was predictive of individual differences in behaviorally measured working memory ability not only in

healthy individuals but also in individuals with schizophrenia. Moreover, we examined whether the

model was predictive of group differences in working memory ability among four different psychiat-

ric diagnoses by comparing the predicted effect sizes across diagnoses.

Results

Design
We constructed a prediction model of working memory ability among healthy individuals recruited

at ATR (Advanced Telecommunications Research Institute International), Japan (ATR dataset;

Figure 1A). To test its generalizability, independently collected resting state fMRI (rs-fMRI) was

entered into this model to predict individual working memory ability. Specifically, we applied the

model to independent test datasets of healthy individuals in the USA (the Human Connectome Proj-

ect dataset, HCP dataset) and schizophrenia patients and their controls (Figure 1B). The predicted
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Figure 1. Schematic diagram of model construction and generalization tests using independent datasets. (A) Model was developed using a whole-

brain resting state FC and a learning plateau of a letter 3-back task within healthy individuals from ATR dataset. (B) We applied the model to resting

state FC patterns and predicted individual participant’s working memory ability. We first examined the external validity using an independent USA

healthy dataset (HCP dataset: the upper flow chart in (B)). The predicted working memory ability was compared to actual working memory performance

(visual-object N-back task and the NIH toolbox list sorting test). Then we examined the generalizability to a clinical population using a schizophrenia

dataset (the lower flow chart in (B)). The predicted working memory ability was compared to actual working memory score measured by Digit

Figure 1 continued on next page
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working memory ability was compared with actually measured working memory score. We empha-

size that these individual differences analyses were performed to examine the relative (i.e. the ability

to differentiate between good and bad performers), not absolute accuracy of the prediction model

(i.e. the ability to predict specific level of performance). Moreover, the model was applied to

patients with psychiatric diagnoses including schizophrenia (SCZ), major depressive disorder (MDD),

obsessive-compulsive disorder (OCD), and ASD and also their age- and gender-matched healthy/

typically developed controls (multiple psychiatric diagnoses dataset; Figure 1C). The effect size esti-

mates of predicted working memory impairments were compared with that of behaviorally observed

ones reported in previous meta-analysis studies. We note that individual behavioral scores on work-

ing memory ability were available in schizophrenia cohort but not available in other psychiatric diag-

noses, and that the same SCZ dataset was analyzed from an individual difference perspective as well

as a group-level difference perspective (see below).

Building prediction model
We used the ATR dataset (N = 17, age 19–24 years old) to develop a prediction model of working

memory ability. The participants performed a letter 3-back task for about 25 sessions (80–90 min).

Working memory ability was quantified by estimating a learning plateau in this task as follows. An

individual learning curve was obtained by calculating d-prime for each session, and by smoothing

the data points with five-session moving average (Figure 2—figure supplement 1). The individual

learning curve was fitted by an inverse curve (y = a – b/x), where y is a d-prime in the x-th session,

while a and b is a parameter for learning plateau and learning speed, respectively. We collected rest-

ing state fMRI data from each participant, and estimated whole-brain functional connectivity. We

used network-level rather than node-level connectivity features to avoid overfitting to training sam-

ples (the curse of dimensionality). Specifically, we calculated FC values, based on 18 whole-brain

intrinsic networks of BrainMap ICA (Laird et al., 2011), for pair-wise between-network (18 � 17/

2 = 153) connections and within-network connections.

To evaluate test-retest reliability of this functional connectivity estimation method, we calculated

intra-class correlation (ICC) using three external datasets: Beijing Normal University (BNU 1), Institute

of Automation, Chinese Academy of Sciences (IACAS 1), and University of Utah (Utah 1). As a result,

we obtained ICC values 0.34 ± 0.12 (range 0 to 0.65) for BNU 1, 0.26 ± 0.18 (range 0 to 0.66) for

IACAS 1, and 0.21 ± 0.17 (range 0 to 0.59) for Utah one datasets. We found ICC values for the left

FPN/right FPN: 0.28/0.23, 0.49/0.47, and 0.11/0.03 for BNU 1, IACAS 1, and Utah one dataset,

respectively. According to an interpretation criteria of ICC (Landis and Koch, 1977), our connectivity

estimation methods yielded ‘fair’ reliability (0.2 < ICC � 0.4) for the three datasets. These results

suggest that test-retest reliability of our methods are comparable to other common connectivity esti-

mation methods (Birn et al., 2013; Noble et al., 2017).

Using sparse linear regression, individual letter 3-back learning plateaus were modeled as a linear

weighted summation of automatically selected 16 functional connectivity values among 15 intrinsic

networks (Figure 2). The letter 3-back learning plateaus were positively correlated with three func-

tional connectivity values (P1-P3) and negatively correlated with the remaining 13 connectivity values

(N1-N13). A contribution ratio of each connection to the working memory ability, which is deter-

mined by the product (weight x FC-value) at the connection, is represented as thickness of connec-

tion lines in Figure 2. Table 1 describes networks connected by the 16 connections, and the

contribution ratio of each connection. The anatomical regions in the network are summarized in

Supplementary file 2. We did not find a significant correlation between the predicted letter 3-back

learning plateau and age (r = 0.21, p = 0.42), gender (r = 0.28, p = 0.28), or head motion (r = - 0.37,

p = 0.14). This provided a normative prediction model based on healthy young Japanese

participants.

Figure 1 continued

sequencing test. (C) Using the multiple psychiatric diagnoses dataset, degree of working memory impairment for each diagnosis was predicted as

differences from corresponding controls. The predicted impairments were validated by previous meta-analysis studies on digit-span across multiple

diagnoses. Note that the HCP dataset’s task stimuli images are just illustration purpose and different from the original stimuli.

DOI: https://doi.org/10.7554/eLife.38844.002
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Figure 2. Normative model of working memory ability (WMA). Circle plot of networks and their connections in the model. Individual letter 3-back

learning plateaus are predicted by a linear weighted summation of 16 FC values at 16 connections selected by a sparse linear regression algorithm.

Connection thicknesses indicate contribution ratios (weight x FC at each connection). Connections are labeled ‘Positive/Negative (P/N)’ based on

correlation coefficient signs with letter 3-back learning performances, whereas numbers indicate descending orders of contribution ratio. Each

network’s color indicates relevance with working memory function based on BrainMap ICA (Laird et al., 2011); warmer colors indicate closer relevance

to working memory function. See Table 1 for the networks connected by the selected 16 connections, and precise values of contribution ratio of each

connection. Each network’s label and regions included in it are summarized in Supplementary file 2.

DOI: https://doi.org/10.7554/eLife.38844.003

The following figure supplement is available for figure 2:

Figure supplement 1. Letter 3-back learning curves for each participant.

Figure 2 continued on next page
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Prediction in independent test set of healthy individuals
We next tested the model’s generalizability to an entirely independent healthy cohort using HCP

dataset 500 Subjects Release (Van Essen et al., 2013). We restricted our analysis to participants for

whom all rs-fMRI, visual-object N-back, the NIH Toolbox list-sorting test (Tulsky et al., 2014), and

Raven’s progressive matrices with 24 items (Bilker et al., 2012) were available (N = 474; 194 males,

5 year age ranges in the Open Access Data: 22–25, 26–30, 31–35 and 36 + years old). Individual

working memory performance was briefly measured by the visual-object N-back with 0-back and 2-

back conditions (visual-object N-back score) and the list-sorting test (Figure 1B). The N-back scores

were evaluated by the accuracy percentage of 2-back and 0-back conditions (86.0 ± 9.5% (SD), range

45.8% to 100%). The other working memory measure, the list-sorting test, is a sequencing task of

visual or auditory stimuli (mean scores: 110.5 ± 11.6 (SD), range 80.8 to 144.5). Additionally, general

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.38844.004

Table 1. Selected connections and their contribution to working memory ability.

Label Connection (rank) Contribution ratio [%]

Positive features

P1 Left fronto-parietal
network (1)

(within-network) 33.9%

P2 Supplemental motor
network (3)

Primary sensorimotor network (hand) (11) 15.4%

P3 Middle frontal and
parietal network (2)

Lateral temporal network (6) 1.9%

Negative features

N1 Cingulo-opercular
network (5)

Midbrain (10) 13.9%

N2 Right fronto-parietal
network (4)

Midbrain (10) 11.4%

N3 Right fronto-parietal
network (4)

Superior parietal network (18) 9.2%

N4 Supplemental motor
network (3)

Orbitofrontal network (14) 5.0%

N5 Middle frontal and
parietal network (2)

Primary sensorimotor network (mouth) (9) 3.0%

N6 Lateral occipital
network (7)

Auditory (15) 2.6%

N7 Left fronto-parietal
network (1)

Midbrain (10) 1.8%

N8 Cerebellum (12) Auditory (15) 1.3%

N9 Left fronto-parietal
network (1)

Lateral occipital network (7) 0.3%

N10 Lateral occipital
network (7)

Primary sensorimotor network (hand) (11) 0.3%

N11 Lateral occipital
network (7)

Superior parietal network (18) 0.1%

N12 Primary sensorimotor
network (mouth) (9)

Cerebellum (12) �0.0%

N13 Left fronto-parietal
network (1)

Basal ganglia (8) �0.2%

Rank indicates relevance with working memory function according to the BrainMap ICA.

DOI: https://doi.org/10.7554/eLife.38844.012
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fluid intelligence was assessed by Raven’s progressive matrices. The scores are integers that indicate

the number of correct items (16.5 ± 4.8 (SD) from 4 to 24).

Before the generalization test, we found that the visual-object N-back task and the list-sorting

test scores were positively correlated with general fluid intelligence (Spearman’s rank correlation

� = 0.46, p = 3.3 � 10-26;� = 0.32, p = 5.7�10�13, respectively) and negatively correlated with aver-

age in-scanner head motion (Spearman’s rank correlation � = �0.24, p = 1.5 � 10-7; � = �0.12,

p = 0.009) as shown in Figure 3—figure supplement 1. To exclude these contaminations, we per-

formed a partial correlation analysis while factoring out these two variables. This revealed a signifi-

cant partial correlation of the predicted working memory ability with the measured visual-object

N-back scores (Spearman’s rank partial correlation � = 0.11; p = 0.0072, Figure 3A) and with the

measured list-sorting scores (Spearman’s rank partial correlation � = 0.084; p = 0.034). The model

captures FC variations specific to working memory ability independently of general fluid intelligence

and head motion.

Furthermore, we examined whether the model prediction was more similar to the 2-back score

than the 0-back score. Spearman’s rho partial correlation between the model prediction and task

performance was 0.078 for 2-back task and 0.086 for 0-back task, while factoring out two confound-

ing variables (fluid intelligence and head motion). There was no significant difference between the

two correlation coefficients. Therefore, we could not conclude that the model prediction was more

similar to 2-back score than 0-back score.

Prediction in individual schizophrenia patients and controls
We examined whether the prediction model also predicted individual differences in working memory

ability using independently collected resting state fMRI scans of schizophrenia (SCZ) dataset. The

Figure 3. Generalizability to HCP dataset and schizophrenia dataset. (A) Significant Spearman’s rank partial correlation between predicted letter 3-

back learning performance and measured visual-object N-back accuracy while factoring out general fluid intelligence and head motion (� = 0.110,

p = 0.0072). (B) Significant Pearson partial correlation between predicted letter 3-back performances and measured digit-sequencing scores while

factoring out the composite BACS score and age (� = 0.248, p = 0.033).

DOI: https://doi.org/10.7554/eLife.38844.005

The following figure supplements are available for figure 3:

Figure supplement 1. Spearman’s rank correlation matrix for HCP dataset.

DOI: https://doi.org/10.7554/eLife.38844.006

Figure supplement 2. Pearson’s correlation matrices for schizophrenia samples.

DOI: https://doi.org/10.7554/eLife.38844.007

Figure supplement 3. Distribution of BACS digit-sequencing score.

DOI: https://doi.org/10.7554/eLife.38844.008
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schizophrenia patients (N = 58) and their age- and gender-matched controls (N = 60) underwent a

cognitive test battery the Japanese version of Brief Assessment of Cognition in Schizophrenia

(BACS-J) (Kaneda et al., 2007). This test battery is composed of six subtests including a digit

sequencing test as a working memory measure. In this test, auditory sequences of numbers were

presented, with increasing length from three to nine digits (Figure 1B). Participants repeated the

sequences aloud by sorting in ascending order. The digit-sequencing scores were the number of cor-

rect trials among 28 trials (18.4 ± 4.1 (SD), range 10 to 27 in patients while 22.9 ± 4.3 (SD), range 12

to 28 in controls). Their composite BACS score was evaluated by average score of BACS’s five subt-

ests other than the digit sequencing test.

First, we applied the model to patients with schizophrenia. Before the model application, we

found that the digit-sequencing scores correlated positively with composite BACS score excluding

working memory (r = 0.61, p = 3.0 � 10�7), negatively with age (r = �0.36, p = 0.005), but not with

head motion (r = �0.03, p = 0.83) as shown in Figure 3—figure supplement 2. While controlling

the age and the composite BACS score using a partial correlation analysis, the model predictions

showed significant correlations with digit-sequencing scores (� = 0.25, p = 0.033, Figure 3B). Sec-

ond, we applied the model to full sample of SCZ patients (N = 58) and controls (N = 60). We found

that the digit-sequencing score was correlated positively with composite BACS score excluding

working memory (r = 0.68, p = 2.0 � 10�17), and negatively with age (r = �0.36, p = 5.7�10�5), but

not with head motion (r = �0.04, p = 0.68). While controlling the age and the composite BACS

score, a partial correlation analysis showed that the model prediction is significantly correlated with

the digit-sequencing score (� = 0.15, p = 0.048). Therefore, the model captures FC variations that

are specific to working memory ability independently of age or the composite BACS score.

Furthermore, we examined whether the model predictions were correlated with digit-sequencing

score in controls alone. Before the model application, we found that the digit-sequencing scores dis-

tributed non-normally (Lilliefors test, p = 0.001) and correlated positively with composite BACS score

excluding working memory (Spearman’s rho = 0.52, p = 2.1 � 10�5), but not with age (Spearman’s

rho = �0.19, p = 0.15) and head motion (Spearman’s rho = 0.02, p = 0.88). While controlling the

composite BACS score using a partial correlation analysis, the model predictions showed no signifi-

cant correlations with digit-sequencing scores (Spearman’s rho = �0.07, p = 0.60). This result is likely

attributed to a ceiling effect in the BACS digit-sequencing score for controls (see Figure 3—figure

supplement 3).

Prediction in four distinct psychiatric disorders
We addressed whether our model could quantitatively reproduce degrees of working memory defi-

cits across four psychiatric diagnoses, including schizophrenia (SCZ), major depressive disorder

(MDD), obsessive-compulsive disorder (OCD), and autism spectrum disorder (ASD). Their demo-

graphic data are summarized in Table 2. This dataset were collected at a Japanese neuropsychiatry

consortium (Takagi et al., 2017; Yahata et al., 2016) (https://bicr.atr.jp/decnefpro/). Previous stud-

ies generally observed working memory impairment, in descending order of severity, in SCZ, MDD,

OCD and ASD (Forbes et al., 2009; Lever et al., 2015; Snyder, 2014; Snyder et al., 2015). We

predicted individual working memory ability by applying the prediction model of working memory

ability to their resting state functional connectivity. Then, we compared the model predictions

between patients and age- and gender-matched controls scanned at the same site to remove differ-

ences in scanner and imaging protocols between sites. Consequently, we identified significant differ-

ences in the predicted working memory ability between the patients and controls only for SCZ

patients (two-tailed t-test for SCZ group: t116 = �3.68, P = (3.5 � 10�4) x 4 = 0.0014, Bonferroni cor-

rected; Figure 4A). Next, we calculated individual patients’ Z-score (normalized difference between

a patient and average of controls at the same site) of the predicted working memory ability for each

diagnosis (Figure 4B). A one-way ANOVA revealed a significant main effect of diagnosis on the Z-

score (F3,245 = 7.63, p = 6.8 � 10�5). The severity of the predicted impairment in SCZ patients was

larger than all other diagnoses (post-hoc Holm’s controlled t-test, adjusted p < 0.05).

The predicted working memory ability alteration was more negative in the order of SCZ, MDD,

OCD, and ASD with effect sizes (Hedge’s g) of �0.68, –0.29, �0.16, and 0.09, respectively. Meta-

analyses on working memory ability measured by digit span tasks (digit-span score) (Forbes et al.,

2009; Snyder, 2014; Snyder et al., 2015) could provide a quantitative measure of working memory

impairment for each diagnosis in terms of the effect size. Red horizontal lines in Figure 4C indicate
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confidence intervals of the effect sizes according to the meta-analysis studies. The effect sizes of the

predicted working memory impairment fell within confidence intervals for forward digit-span in SCZ,

MDD, and OCD and for backward digit-span in OCD (Figure 4C). Therefore, the model capturing a

normal range of variation in working memory ability reproduced not only the order but also the

quantitative aspects of working memory deterioration across the four distinct diagnoses. Note that

no meta-analysis was available for ASD. However, previous studies generally showed little differen-

ces in verbal working memory ability from typically developed controls (Koshino et al., 2005;

Lever et al., 2015; Williams et al., 2005), consistent with the predictions of our model. Moreover,

we examined whether these predicted effect sizes were more similar to working memory ability or

general cognitive ability (IQ) reported in meta-analysis studies (Abramovitch et al., 2018;

Ahern and Semkovska, 2017; Heinrichs and Zakzanis, 1998). As illustrated in Figure 4—figure

supplement 1, the predicted working memory ability falls within confidence interval of the IQ effect

size only for first-episode MDD while it falls within confidence interval of effect size of working mem-

ory (forward digit span) for every diagnosis. Regarding the relative order of effect sizes, the effect

size of IQ deficits can be ordered as SCZ, OCD, and MDD (first episode). In contrast, the effect sizes

of working-memory deficits (as measured by digit-span task) can be ordered as SCZ, MDD and

OCD, which is consistent with the order predicted by our model. Therefore, predicted working-

memory deficits were more similar to observed deficits in working memory than those in fluid intelli-

gence. We identified no significant differences in head motion between patients and their healthy

Table 2. Demographic data of the multiple psychiatric diagnoses dataset.

Diagnosis Site Measure Patients Controls Test P-value

SCZ KYU N 58 60 - -

Age 37.9 35.2 t116 = 1.7 0.1

(9.3) (8.4)

Male % 52% 67% Fisher’s exact test 0.13

MDD HRU N 77 63 - -

Age 41.6 39.3 t138 = 1.3 0.21

(11.2) (12.0)

Male % 56% 46% Fisher’s exact test 0.31

OCD KPM N 46 47 - -

Age 32.2 30.3 t91 = 1.1 0.28

(9.9) (8.7)

Male % 37% 45% Fisher’s exact test 0.53

ASD UTK (site1) N 33 33 - -

Age 32.8 34.7 t64 = �1.0 0.3

(8.4) (7.0)

Male % 64% 55% Fisher’s exact test 0.62

SHU (site2) N 36 38 - -

Age 29.9 32.5 t72 = �1.5 0.14

(7.2) (7.4)

Male % 100% 100% Fisher’s exact test 1

Pooled N 69 71 - -

Age 31.3 33.5 t138 = �1.8 0.08

(7.9) (7.2)

Male % 83% 79% Fisher’s exact test 0.67

Site: KYU, Kyoto University; HRU, Hiroshima University; KPM, Kyoto Prefectural University of Medicine; UTK, University of Tokyo; SHU, Showa University.

Measure: ‘N’ indicates the number of subjects; ‘Age’ is shown as mean (SD); ‘Male %” is the fraction of male. The tests and p-values compare the patient

and control groups within-site.

DOI: https://doi.org/10.7554/eLife.38844.011
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controls in any diagnosis (two-tailed t-tests, at largest t138 = 1.77, p > 0.080 observed in ASD

group).

Functional connectivity patterns in psychiatric diagnoses
Given a common FC-WMA relationship across these diagnoses, we examined how diagnosis-depen-

dent working memory impairment resulted from FC alteration patterns. Since the model is the

weighted summation of 16 FC values, increased/decreased working memory ability is determined by

the sum of the increased/decreased weighted-FC values of the connections. To investigate the effect

of FC alteration at each connection on working memory impairment, for each individual patient, we

examined the difference in weighted-FC value at each connection from the average of the corre-

sponding controls. We call this difference the D-score (see Materials and methods). By averaging the

D-scores within each diagnosis, Figure 5A shows how the accumulation of diagnosis-dependent D-

scores resulted in difference in working memory impairment across the diagnoses. Some D-scores

are relatively constant, while others are variable across diagnoses. For example, the D-score for P1

Figure 4. Prediction of diagnosis-specific alterations of working memory ability. (A) Predicted letter 3-back

working memory ability for patients (N = 58, 77, 45, and 69 for SCZ, MDD, OCD, and ASD, respectively) and their

age- and gender-matched healthy/typically developed controls (HC, N = 60, 62, 47, and 71) shown as kernel

density. For illustration purposes, distribution of each control group was standardized to that of the ATR dataset,

and the same linear transformation was applied to patients’ distributions. � indicates mean value for each group.

(B) Violin plots of Z-scores for predicted working memory ability alterations. White circles indicate medians. Box

limits indicate 25th and 75th percentiles. Whiskers extend 1.5 times interquartile range from 25th and 75th

percentiles. (C) Comparison of estimated effect sizes for working memory deficits. k indicates number of studies

included in the meta-analyses (Forbes et al., 2009; Snyder, 2014; Snyder et al., 2015). Error bars indicate 95%

confidence intervals.

DOI: https://doi.org/10.7554/eLife.38844.009

The following figure supplement is available for figure 4:

Figure supplement 1. Effect sizes of IQ, digit-span, and predicted working memory ability.

DOI: https://doi.org/10.7554/eLife.38844.010
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Figure 5. Accumulation of function connectivity differences exhibits diagnosis-specific working memory ability. (A) Accumulation of averaged D-scores

for all 16 connections. Bold black line indicates summation of contributions by all connections, corresponding to predicted working memory ability

alteration. This figure shows how diagnosis-specific working memory impairment results from complex disturbances of multiple connections. Upper

panel depicts two representative alteration patterns across diagnoses. While connection P1 commonly decreased working memory ability across

diagnoses, connection N6 distinctly affected working memory ability (decrease in SCZ and MDD and increase in OCD and ASD). (B) Z-scores

(normalized D-scores) for each diagnosis. Left asterisks and lines indicate significant differences in mean Z-scores between two diagnoses (p < 0.05,

Bonferroni corrected). Vertical lines across horizontal bars indicate Z-scores averaged across connections. (C) Z-scores for connection that showed a

significant effect of diagnosis. Connections were sorted by small p values of diagnosis effect (Kruskal-Wallis test, Q < 0.05, FDR corrected).

DOI: https://doi.org/10.7554/eLife.38844.013

The following figure supplements are available for figure 5:

Figure supplement 1. Connections of non-significant effect of diagnosis.

DOI: https://doi.org/10.7554/eLife.38844.014

Figure supplement 2. Distribution of magnitude of diagnosis effect on connectivity change between the connections in the model and other

connections.

Figure 5 continued on next page
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was commonly negative regardless of the diagnosis, while the D-score for N6 was negative or posi-

tive, dependent on the diagnosis (inset, Figure 5A). Therefore, Figure 5A qualitatively suggests that

diagnosis-dependent working memory impairment is derived from complex FC alterations patterns.

To compare the weighted FC-values between the diagnoses, we calculated standardized score

(Z-score) by dividing D-score by the standard deviation of the corresponding control group (see

Materials and methods). We entered the Z-score in a two-way ANOVA with diagnosis as a between-

participant factor and connection as a within-participant factor. We found a significant main effect of

diagnosis (p < 1.0 � 10�4; Figure 5B). SCZ patients showed significantly more negative mean Z-

scores across connections than the other diagnoses (post-hoc diagnosis-pair-wise comparisons,

p < 0.05). This suggests that the global patterns of the working memory ability-related 16 connec-

tions in SCZ were more severely disrupted than the other three diagnoses.

We found a significant interaction effect between diagnosis and connection in the Z-scores (p <

1.0 � 10�5), suggesting that FC alterations at particular connections are diagnosis-dependent. In

seven connections (Figure 5C), the Z-scores were significantly different among the four diagnoses

(Q < 0.05, false discovery rate (FDR) corrected), suggesting that these connections are differentially

altered across the diagnoses. Conversely, no significant differences in the Z-scores were observed

across diagnoses in the remaining nine connections (Figure 5—figure supplement 1).

Furthermore, we examined whether the working memory ability-related 16 connections were

more consistently altered in patients relative to controls than connections excluded from the model.

Specifically, we first quantified the effect of diagnostic labels on connectivity alterations for every

connection by using chi-square values of a Kruskal-Wallis test (a non-parametric version of one-way

ANOVA). Then, we tested if the distribution of the chi-square values was different between the mod-

el’s 16 connections and other 155 connections (Kolmogorov–Smirnov test). Consequently, we found

no significant difference between the distributions (p = 0.30). This means that connectivity is altered

at the working memory ability-related connections as well as the other connections (Figure 5—fig-

ure supplement 2).

To understand these results from global brain networks, we grouped the 18 networks into seven

clusters based on the hierarchical clustering of the networks performed in the BrainMap ICA study

(Laird et al., 2011). They were named fronto-parietal, motor/visuospatial, emotion/interoception,

audition/speech, visual, cerebellum and default-mode clusters (Supplementary file 2). We selected

connections bridging between different clusters. We then fixed a cluster and summed D-scores

(averaged across participants of each diagnosis) of the connections that have nodes (networks) in

the cluster. This summation was repeated for every cluster. Figure 5—figure supplement 3 shows

the summed D-score for each cluster and diagnosis. The four diagnoses commonly showed altered

connectivity related to the fronto-parietal cluster. This confirmed importance of the fronto-parietal

networks across diagnosis. The motor/visuospatial, audition/speech, and visual clusters are associ-

ated with lower working memory in schizophrenia and MDD. This suggests that dysfunctions in

motor and sensory systems are related to lower working memory in specific diagnoses. Note that we

could not find any connections that have a node in the default-mode cluster, which does not appear

in the figure.

Discussion
We built a prediction model of working memory ability using data-driven analysis of whole-brain

connectivity among healthy Japanese individuals. Our model predicted individual differences of

working memory ability in SCZ patients. It also reproduced the order of working memory impairment

for four distinct diagnoses (i.e., SCZ > MDD > OCD > ASD). Moreover, the magnitudes of repro-

duced impairment were consistent with previous meta-analyses. Our results provide the first evi-

dence for a common whole-brain FC-WMA relationship across healthy populations and a range of

psychiatric disorders. That is, our results support the idea that working memory impairment in

Figure 5 continued

DOI: https://doi.org/10.7554/eLife.38844.015

Figure supplement 3. D-scores related to network clusters.

DOI: https://doi.org/10.7554/eLife.38844.016
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psychiatric disorders is a continuous deviation from a normal pattern while preserving the common

relationship between brain-wide connectivity and working memory ability. Our detailed examination

suggested that the difference in degrees of the impairment across the diagnoses results from both

common and diagnosis-specific connectivity changes within the common FC-WMA relationship.

Our model’s generalizability to completely independent datasets is supported by rigorous meth-

ods. Our simple model by combining low-number (=18) of network nodes and sparse estimation of

relevant FC compensated the weakness of relatively small training sample size (=17). Also, our care-

ful evaluation of working memory ability in 1500 trials devoting about 80–90 min enhanced measure-

ment precision by reducing trial-by-trial variability at the individual participant level (Smith and

Little, 2018). In this way, our training dataset ensured that our model captured low-complexity FC

pattern essential for individual working memory ability. We note that larger sample sizes do not

really always improve prediction accuracy. Using identical methods in our model construction, we

developed a new prediction model of visual-object N-back score using the HCP dataset as a training

dataset (N = 474). However, this model failed to provide significant prediction even within the train-

ing samples (R2 = 0.005). This seemingly unexpected result may partly result from differences in the

way where individuals’ working memory ability were evaluated. The HCP conducted the N-back task

in a limited time (160 trials for each individual), which may be noisy to precisely characterize individ-

ual ability. On the other hand, Rosenberg et al. built a model with careful examination of cognitive

performance (more than 40 min of attention task), using modest (N = 25) training samples and dem-

onstrated robust generalization to independent test sets (Rosenberg et al., 2016). Our model’s

accuracy was comparable with their model of attention ability for an external test set (r ~ 0.3).

We carefully excluded the spurious correlations (Siegel et al., 2016; Whelan and Garavan,

2014). We examined general intellectual/cognitive ability, age, and head motion and confirmed that

these disturbance variables had a minimal effect on prediction. Moreover, we analyzed age- and

gender-matched controls from the same sites and compared the alterations from the controls (Z-

scores), thereby minimizing the false positives that could be derived from age, gender, or imaging

sites/parameters.

Our proposed two-stage approach, which builds a normative model and applies it to multiple

diagnoses, is an effective technique to systematically compare neural substrates across multiple

diagnoses. Clinical measures of attention deficit hyperactivity disorder were previously predicted by

FC patterns that determine attention ability in healthy populations (Rosenberg et al., 2016), sug-

gesting common connectivity-cognition relationships across healthy and clinical populations. By

extending this approach, we directly examined working memory ability of the patients in cognitive

tasks rather than assessments of clinical symptoms based on subjective report or behavioral observa-

tion. We also tested the model across not only a single diagnosis but also multiple diagnoses.

By coherently establishing FC-cognition relationships from normal to abnormal, our two-stage

approach could potentially cluster multiple psychiatric disorders based on neurobiological measures

and behaviors (Insel et al., 2010). Such neurobiological insights into behavioral abnormality are con-

sistent with recent transdiagnostic studies of genomics (Cross-Disorder Group of the Psychiatric

Genomics Consortium, 2013; O’Donovan and Owen, 2016; Plomin et al., 2009) and neuroimag-

ing (Clementz et al., 2016; Goodkind et al., 2015; Sheffield et al., 2017), which indicate that some

neurobiological changes are shared across psychiatric diagnoses. Consistent with our results, recent

studies provide evidences indicating that models of attention and memory generalize to predict

behavior in patient as well as in healthy populations (Kessler et al., 2016; Lin et al., 2018;

O’Halloran et al., 2018; Rosenberg et al., 2016).

Our results identified alterations in large-scale network clusters that correlated with working

memory impairment (Figure 5—figure supplement 3). First, the four diagnoses commonly showed

altered connections related to the fronto-parietal networks. This finding support a hypothesis that

the executive control network regulates symptoms, and its dysregulation is a shared neural substrate

across diagnostic categories (Cole et al., 2014; Smucny et al., 2018). Second, visual and auditory

networks were associated with lower working memory ability in schizophrenia and MDD. These two

results are consistent with the hypothesis that cognitive function is disrupted regarding not only top-

down executive control but also bottom-up sensory processes (Javitt, 2009). Recently, a neurophysi-

ological study has suggested contributions of motor and premotor neurons to encoding serial order

of working memory (Carpenter et al., 2018). This is consistent with our result that alterations of
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connections related to the motor/visuospatial networks were associated with lower working memory

ability in schizophrenia, MDD, and ASD.

The test-retest reliability of our functional connectivity estimation methods was fair level (0.2 <

ICC � 0.4) according to an interpretation criteria of ICC (Landis and Koch, 1977). A previous study

on test-retest reliability of functional connectivity between 18 different brain regions (Birn et al.,

2013), reported similar ICC values (ICC ~0.2) when scan length was 6 to 15 min. Another previous

study examined functional connectivity reliability (Noble et al., 2017), using 268 regions from

whole-brain, also reported that 6 min of scan length yielded similar reliability (dependability

coefficient ~0.2 to 0.4). Although our connectivity estimation methods cannot reach clinically recog-

nized request (ICC > 0.8), these studies suggest that test-retest reliability of our methods are com-

parable to other common connectivity estimation methods.

Regarding the large contribution of the left fronto-parietal network (FPN) to our prediction model

in comparison to the right FPN, the BrainMap ICA on which our network definition is based gives us

useful information. The BrainMap ICA paper (Laird et al., 2011) reported that IC18 (left FPN) has

greater functional relevance to working memory than IC15 (right FPN) based on meta-analyses of

thousands of publications. Moreover, a meta-analysis on N-back task with different stimulus modality

(Owen et al., 2005) found monitoring of verbal stimuli was strongly associated with left ventrolateral

prefrontal cortex (a part of left FPN), while monitoring of spatial locations activated right lateralized

frontal and parietal regions. In the current study, we used a letter 3-back task that requires encoding

alphabet letters, which are more related to word monitoring than location monitoring. Therefore,

the left FPN would be expected to contribute more to our prediction model than the right FPN.

Although large portion of the model relies on the within-network connectivity of the left FPN (~34%

contribution), the right FPN also showed a substantial contribution to working memory via negative

connectivity N2 (connection with the midbrain network, please see Figure 2) and N3 (connection

with the superior parietal network) (~20% contribution).

The primary limitation of this study is the assumption that our model captures general capability

of working memory not restricted to letter 3-back performance. Working memory is an umbrella

term which involves multiple distinct sensory modalities and executive functions, and the empirical

findings and theoretical conceptualization is still rapidly extending (Chatham and Badre, 2015;

Cogan et al., 2017; D’Esposito and Postle, 2015; Ma et al., 2014; Myers et al., 2017; Seren-

ces, 2016). Rather than focus a single specific domain, we utilized any domains of working memory

performance (letter N-back, visual object N-back, digit-sequencing task, and digit span). Future

work may reveal more elaborate findings for FC-WMA relationships based on more nuanced defini-

tion of WMA, since distinct types of working memory tasks are engaged with specific neural pro-

cesses (Nee et al., 2013; Owen et al., 2005). Second, working memory performance was measured

only in schizophrenia patients but not in other diagnostic groups. Therefore, it was impossible to

compare their predicted working memory ability with measured scores. This presents challenges for

the between-group comparisons in the patient samples. Third, although the participants are

matched on age and sex within each site, the groups may differ along a number of dimensions

beyond working memory (e.g. medication status, scanning protocol, and potentially IQ and other

cognitive abilities). It is difficult to fully control every dimension, and little is known how such dimen-

sions affect estimation of functional connectivity. Fourth, the results in the HCP dataset showed that

only a little variance can be explained by our model. This may be attributed to considerable differen-

ces between the HCP dataset and the ATR dataset. The major differences include population loca-

tion (the American vs. the Japanese), and working memory task properties that contrast in sensory

modality (visual object vs. verbal), number of observations made for each individual (160 vs. 1500 tri-

als), difficulty level (0-back and 2-back vs. 3-back), and measurement environment (in vs. out of MRI

scanner). Finally, in the HCP dataset, the model predictions were not more closely related to 2-back

than 0-back performance. This result suggest that the model may capture abilities beyond working

memory.

In conclusion, our data provide a unified working memory ability framework across healthy popu-

lations and multiple psychiatric disorders. Our whole-brain functional connectivity model quantita-

tively predicted individual working memory ability in independently collected cohorts of healthy

populations and patients with any of four psychiatric diagnoses (N = 965). Our results suggest that

the FC-WMA relationship identified in healthy populations is commonly preserved in these psychiat-

ric diagnoses and that working memory impairment in a range of psychiatric disorders can be
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explained by the cumulative effect of multiple disturbances in connectivity among distributed brain

networks. Our findings lay the groundwork for future research to develop a quantitative, brain-wide-

connectivity-based prediction model of human cognition that spans health and psychiatric disease.

Materials and methods

ATR dataset
This dataset was a final set of participants after excluding individuals who exhibited noisy data col-

lected in our previous study (Yamashita et al., 2015). Here, we used this dataset to construct a nor-

mative prediction model of working memory ability regarding a letter 3-back task learning plateau

(N = 17, age 19–24 years old, 11 males). Recent study on predictive modeling of a single specific

task performance using fMRI connectivity has reported comparable sample size (Baldassarre et al.,

2012; Rosenberg et al., 2016).

Working memory assessment
The participants performed a letter 3-back task (Figure 1A) over 25 sessions of training, with 60 tri-

als for each session (1500 trials in total training sessions taking about 80–90 min). We obtained an

individual learning curve by calculating the d-prime for each session, and by smoothing the data

points with five-session moving average (Figure 2—figure supplement 1). The individual learning

curve was fitted by an inverse curve (y = a – b/x), where y is a d-prime in the x-th session, while a

and b is a parameter for learning plateau and learning speed, respectively. We used the estimated

learning plateau (a) for a measure of individual working memory ability (letter 3-back WMA). More

detailed information is described in our previous paper (Yamashita et al., 2015).

Functional connectivity estimation
We recorded a rs-fMRI scan with 3 � 3 � 3.5 mm spatial resolution and a temporal resolution of 2.0

s for each participant (5 min 4 s). After removing the first two volumes, the data were preprocessed

with slice timing correction, motion correction, and spatial smoothing with an isotropic Gaussian ker-

nel (full width at half maximum = 8 mm). To remove several sources of spurious variance, we

regressed out six motion parameters and the averaged signals over gray matter, white matter, and

cerebrospinal fluid (Fox et al., 2005). The gray matter signal regression improves FC estimation by

effectively removing motion-related artifacts (Burgess et al., 2016; Ciric et al., 2017; Power et al.,

2014). Finally, we performed ‘scrubbing’ (Power et al., 2012) in which we removed scans where

framewise displacement was > 0.5 mm.

We used network-level rather than node-level connectivity features to avoid overfitting to training

samples (the curse of dimensionality). Specifically, we calculated FC values, based on the 18 whole-

brain intrinsic networks of BrainMap ICA (Laird et al., 2011), for pair-wise between-network (18 �

17/2 = 153) connections and within-network connections. Between-network FC was calculated as

Pearson’s correlation between blood-oxygen-level dependent signal time courses averaged across

voxels within each network. Within-network FC was calculated as mean voxel-wise correlations within

each of 18 networks.

Test-retest reliability of functional connectivity estimation
To examine test-retest reliability of the functional connectivity estimation method, we calculated

intra-class correlation (ICC) using three different datasets from Consortium for Reliability and Repro-

ducibility (Zuo et al., 2014). We picked up following three datasets, Beijing Normal University (BNU

1), Institute of Automation, Chinese Academy of Sciences (IACAS 1), and University of Utah (Utah 1).

We selected these datasets because 1) they have test-retest data across fMRI sessions, 2) ages of

participants are comparable with those in our discovery dataset that was used for the construction

of our model (ATR dataset), 3) two datasets include Asian participants (participants in ATR dataset

are Japanese). BNU one includes data from 57 healthy young volunteers (age 19–30 years, 30 males)

who completed two MRI scan sessions within an interval of approximate 6 weeks (33–50 days, mean

40.94 days). All were right-handed and had no history of neurological and psychiatric disorders. The

resting state fMRI data was collected for 6 min 46 s. Detailed information is available for BNU one at

http://fcon_1000.projects.nitrc.org/indi/CoRR/html/bnu_1.html. Seven participants (‘BNU25914’ to
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‘BNU25920’) have incomplete data, thus these data were not used for the analysis. IACAS one

includes data from 28 healthy young volunteers (age 19–43 years, 13 males) who completed two

MRI scan sessions within an interval of approximate 6 weeks (20–343 days, mean 75.2 days). The

resting state fMRI data was collected for 8 min. Detailed information is available for IACAS one at

http://fcon_1000.projects.nitrc.org/indi/CoRR/html/iacas_1.html. Utah 1 includes 26 healthy young

volunteers (age 8–39 years; 26 males) who completed two MRI scan sessions at least two years apart

(733–1,187 days, mean 928.4 days). The resting state fMRI data was collected for 8 min 4 s. Detailed

information is available for Utah one at http://fcon_1000.projects.nitrc.org/indi/CoRR/html/utah_1.

html. To estimate functional connectivity, we used the same analysis pipeline. We obtained 171 (153

between-network and 18 within-network) functional connectivity values for each participant/session

(test or retest). To estimate test-retest reliability, intra-class correlation (ICC) was calculated for each

of the 171 functional connectivity values (univariate test-retest reliability). ICC was calculated by fol-

lowing equation:

ICC ¼ ðMSb�MSwÞ= MSb þ ðk� 1ÞMSwf g

where, MSb is the between-subjects mean squared error and MSw is the within-subjects mean

squared error and k is the number of independent fMRI measures (i.e. k = 2 for test and retest). We

put negative ICC values to be zeros as done by previous studies (e.g. Zhang et al., 2011).

Developing prediction model
To predict individual learning plateaus in the letter 3-back task, we performed a sparse linear regres-

sion analysis (Sato, 2001) on the whole-brain FC values (http://www.cns.atr.jp/cbi/sparse_estima-

tion/sato/VBSR.html). Individual working memory ability was modeled as a linear weighted

summation of FC values at a small number of connections among the intrinsic networks. The connec-

tions were automatically selected by the sparse linear regression algorithm. In our previous study

(Yamashita et al., 2015), we employed a leave-one-out cross-validation to estimate the prediction

accuracy, and the analysis achieved high prediction accuracy within this dataset (R2 = 0.73). To build

a single prediction model, we utilized all the data (N = 17) as the training set.

Human connectome project (HCP) dataset
The dataset was collected in the HCP and shared as 500 Subjects Release (Van Essen et al., 2013).

We restricted our analysis to participants for whom all rs-fMRI, visual-object N-back, the NIH Tool-

box list-sorting test (Tulsky et al., 2014), and Raven’s progressive matrices with 24 items

(Bilker et al., 2012) were available (N = 474; 194 males, 5 year age ranges in the Open Access Data:

22–25, 26–30, 31–35 and 36 + years old).

Working memory assessment
Individual working memory performance was briefly measured by the visual-object N-back with 0-

back and 2-back conditions (visual-object N-back score) and the list-sorting test (Figure 1B). The

N-back task was performed in two fMRI runs, and each run contains eight task blocks of 10 trials (80

trials for each 0-back and 2-back condition). The scores were evaluated by the accuracy percentage

of 2-back and 0-back conditions (86.0 ± 9.5% (SD), range 45.8% to 100%). The other working mem-

ory measure, the list-sorting test, is a sequencing task of visual or auditory stimuli (mean scores:

110.5 ± 11.6 (SD), range 80.8 to 144.5). Additionally, general fluid intelligence was assessed by Rav-

en’s progressive matrices. The scores are integers that indicate the number of correct items

(16.5 ± 4.8 (SD) from 4 to 24).

Examination of model prediction
We used rs-fMRI data (2 mm isotropic spatial resolution and a temporal resolution of 0.72 s) that

were pre-processed and denoised by a machine learning tool that removes structured noise and

moment-to-moment motion parameters (Salimi-Khorshidi et al., 2014). Additionally, spatial

smoothing (full width at half maximum = 4 mm) and nuisance regression was performed using aver-

age signals of gray matter, white matter, and cerebro-spinal fluid. To extract slow oscillation and

removes high-frequency noise (e.g. cardiac pulsation around 0.3 Hz), a band-pass filter (0.009–0.08

Hz) was applied and volumes with framewise displacement > 0.5 mm were removed. After
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preprocessing of fMRI data, FC was estimated following procedures described in the ATR dataset.

We entered FC values into the prediction model developed from the ATR dataset, and predicted

individual working memory ability. Because the scores of the visual-object N-back task and list-sort-

ing test showed non-normal distributions, we used a nonparametric statistical test (Spearman’s rank

correlation) to examine the model prediction accuracy. We compared the rank correlation coefficient

between the predicted working memory ability and actual working memory scores with the null dis-

tribution obtained by shuffling participant labels (10,000 permutations). Links between behavioral

scores and motion measures were preserved. Specifically, the subject label was shuffled for pre-

dicted working memory ability while the subject labels were preserved for confounding factors (e.g.

age, fluid intelligence, and head motion).

Multiple psychiatric diagnoses dataset
These data were collected at a Japanese neuropsychiatry consortium (Takagi et al., 2017;

Yahata et al., 2016; Yahata et al., 2017; Yamada et al., 2017; Yamashita et al., 2018) (https://

bicr-resource.atr.jp/decnefpro/). Resting state fMRI analysis was performed in the same way as

described in ATR dataset. We performed slice timing correction and then motion estimation. The

estimated motion parameters were used to estimate excessive motion data by frame-wise displace-

ment > 0.5 mm. We did not remove a frame before or after the excessive motion. We conducted

quality control for the rs-fMRI data and excluded participants if more than 40% of their total number

of volumes of their data were removed by the scrubbing method. We calculated the ratio of

excluded volumes to the total number of volumes for each subject, and averaged within patients or

controls for each diagnosis. They were 2.3 ± 5.5 % / 1.4 ± 2.9% (patients/controls) for SCZ, 2.7 ± 6.6

% / 2.4 ± 6.3% for MDD, 0.4 ± 0.8 % / 0.7 ± 1.7% for OCD, and 1.4 ± 3.8 % / 4.6 ± 8.5% for ASD.

We found a significant difference in the ratio between patients and controls only for ASD

(t97.3 = 2.91, p = 4.4�10�3). We detected outliers within each group (defined as values > 3 SD from

the mean) for a control participant of MDD and a patient with OCD (N = 1, 1, respectively). These

two participants were excluded from further analysis. After their data quality was assured, age- and

gender-matched healthy control subjects were included in the analysis. Consequently, we used the

rs-fMRI data of patients with SCZ, MDD, OCD, and ASD (N = 58, 77, 46, and 69, respectively) as

well as their age- and gender-matched healthy/typically developed controls (N = 60, 63, 47, and 71).

These sample sizes were comparable to or even larger than recent generalization test analysis

(Rosenberg et al., 2016). Demographic data is summarized in Table 2. Scanning parameters are

reported in Supplementary file 1.

Participants with SCZ
Patients with SCZ diagnosed with the patient edition of the Structured Clinical Interview for the

Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) Axis I Disorders

(SCID) (First et al., 1995) were recruited from in- and out-patients facilities in the Kansai region,

Japan. The controls had no history of psychiatric illness, as screened with the non-patient edition of

the SCID (First et al., 2002), and it was confirmed that their first-degree relatives had no history of

psychotic disorders. Exclusion criteria for all individuals included a history of head trauma, neurologi-

cal illness, serious medical or surgical illness, and substance abuse. All participants were physically

healthy when they undertook the scanning. All the patients with SCZ had received antipsychotic

medication. The mean ± SD values of medications based on chlorpromazine equivalents were

608 ± 459 mg/day. Other medications that the patients received were as follows; antiparkinsonism

drugs (N = 23), anxiolytics and sleep inducing drugs (N = 39). The study design was approved by

the Committee on Medical Ethics of Kyoto University and was conducted in accordance with the

Code of Ethics of the World Medical Association. After being given a complete description of the

study, all participants gave written informed consent.

Participants with MDD
Patients with MDD were recruited from local clinics in Hiroshima, Japan, and all the patients were

screened with the DSM-IV criteria for a unipolar MDD diagnosis, using the mini-international neuro-

psychiatric interview (M.I.N.I.) (Otsubo et al., 2005; Sheehan et al., 1998). No patient had current

or past SCZ episodes. Healthy participants were recruited from the local community. They were
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interviewed with the M.I.N.I. and none showed a history of psychiatric disorders according to DSM-

IV criteria. At the time of scanning, six MDD individuals were medication free, and the rest of MDD

individuals had been administered the following psychotropic drugs: antidepressants (N = 70), anti-

psychotics (N = 7), antiepileptics (N = 7), anxiolytics (N = 15), and sleep inducing drugs (N = 26),

before the scanning. Around half of participants had been administered multiple drugs (N = 36). The

current study protocol was approved by the Ethics Committee of Hiroshima University. Prior to the

administration of any experimental procedure, written informed consent was obtained from all the

participants.

Participants with OCD
Patients were recruited at the Kyoto Prefectural University of Medicine Hospital, Kyoto, Japan. All

patients were primarily diagnosed as OCD using the Structured Clinical Interview for DSM-IV Axis I

Disorders-Patient Edition (SCID) (First et al., 1995). Exclusion criteria were 1) cardiac pacemaker or

other metallic implants or artifacts; 2) significant disease, including neurological diseases, disorders

of the pulmonary, cardiac, renal, hepatic, or endocrine systems, or metabolic disorders; 3) prior psy-

chosurgery; 4) DSM-IV diagnosis of mental retardation and pervasive developmental disorders based

on a clinical interview and psychosocial history; and 4) pregnancy. We excluded patients with current

DSM-IV Axis I diagnosis of any significant psychiatric illness except OCD as much as possible and

only four patients with trichotillomania, one patient with tic disorder, and one patient with tic disor-

der and specific phobia were included as patients with comorbidity. Thirty-five OCD individuals and

34 healthy controls were also included in a published paper (Abe et al., 2015).

There was no history of psychiatric illness in the healthy controls as determined by the Structured

Clinical Interview for DSM-IV Axis I Disorders, Non-patient Edition (SCID-NP) (First et al., 2002).

Additionally, we confirmed that there was no psychiatric treatment history in any of their first-degree

relatives. At the time of scanning, 40 OCD individuals were medication free, whereas the remaining

five OCD individuals had been administered the following psychotropic drugs: anxiolytics (N = 2),

antidepressants (N = 5), before the scanning. Some participants had been administered multiple

drugs (N = 2). The Medical Committee on Human Studies at the Kyoto Prefectural University of

Medicine approved all the procedures in this study. All participants gave written, informed consent

after receiving a complete description of the study.

Participants with ASD (site 1)
Patients with ASD were recruited through the Department of Child Psychiatry and Neuropsychiatry

at the University of Tokyo Hospital and via an advertisement on the website of the University of

Tokyo Hospital. All ASD participants (N = 33) were diagnosed with pervasive developmental disor-

der based on the DSM-IV-TR criteria (Association, 2000). DSM-IV-TR diagnoses of autistic disorder,

Asperger’s disorder, or pervasive developmental disorder not otherwise specified (N = 22, N = 3,

and N = 8, respectively) were supported by Autism Diagnostic Observation Schedule (Lord et al.,

1994) (N = 33) and Autism Diagnostic Interview-Revised (Catherine Lord, Rutter, & Le Couteur,

1994) (N = 25). The Japanese version of M.I.N.I. (Otsubo et al., 2005; Sheehan et al., 1998) was

used to evaluate psychiatric comorbidity. No participant satisfied the diagnostic criteria for sub-

stance use disorder, bipolar disorder, or SCZ. The intelligence quotient (IQ) scores of participants

with ASD were obtained using the Wechsler adult intelligence scale-revised (WAIS-R) or third edition

(WAIS-III). The full-scale IQs of all of the individuals with ASD were measured and found to be

greater than 85. Typically-developed individuals were recruited from the local community. M.I.N.I.

was used to confirm that none of the typically developed individuals met the diagnostic criteria for

any psychiatric disorder. The IQs of the typically developed individuals were estimated using the

Japanese version of the national adult reading test (Matsuoka et al., 2006). All participants were

right-handers according to the Edinburgh Handedness Inventory (Oldfield, 1971). They completed

the Japanese version of the autism-spectrum quotient (Wakabayashi et al., 2007). At the time of

scanning, 10 ASD individuals were medication free, whereas the remaining 23 ASD individuals had

been administered the following psychotropic drugs: anxiolytics (N = 17), antidepressants (N = 19),

antipsychotics (N = 15), antiepileptics (N = 5), and sleep inducing drugs (N = 17), before the scan-

ning. Some participants had been administered multiple drugs (N = 19). All participants provided
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written informed consent as approved by The Ethics Committee of the Graduate School of Medicine

and Faculty of Medicine at the University of Tokyo.

Participants with ASD (site 2)
Patients with ASD were recruited from outpatient units of the Karasuyama Hospital, Tokyo, Japan. A

team of three experienced psychiatrists and a clinical psychologist assessed all patients. All patients

were diagnosed with ASD based on the criteria of the DSM-IV (Association, 2000) and a medical

chart review. The assessment consisted of participant interviews about developmental history, pres-

ent illness, life history, and family history and was performed independently by a psychiatrist and a

clinical psychologist in the team. Patients were also asked to bring suitable informants who had

known them in early childhood. At the end of the interview, the patients were formally diagnosed

with a pervasive developmental disorder by the psychiatrist if there was a consensus between the

psychiatrist and clinical psychologist; this process required approximately three hours. The group of

typically developed individuals was recruited by advertisements and acquaintances. None of the typ-

ically developed individuals reported any severe medical problem or any neurological or psychiatric

history. None of them satisfied the diagnostic criteria for any psychiatric disorder. The IQ scores of

all participants with ASD were evaluated using either the WAIS-III or the WAIS-R, while those of typi-

cally developed individuals were estimated using the Japanese version of the national adult reading

test (Matsuoka et al., 2006). Every participant with ASD was considered to be high functioning,

because his or her full-scale IQ score was higher than 80. Participants completed the Japanese ver-

sion of the autism-spectrum quotient (Wakabayashi et al., 2007). At the time of scanning, 25 ASD

individuals were medication free, whereas the remaining 11 ASD individuals were administered the

following psychotropic drugs: anxiolytics (N = 4), antidepressant (N = 6), antipsychotics (N = 6), anti-

epileptics (N = 2), and sleep-inducing drugs (N = 8). Some participants were administered multiple

drugs (N = 7). The Ethics Committee of the Faculty of Medicine of Showa University approved all

the procedures used in this study, including the method of obtaining consent, in accordance with

the Declaration of Helsinki. Written informed consent was obtained from all the participants after

fully explaining the purpose of this study. Any concern regarding the possibility of reduced capacity

to consent on his or her own was not voiced by either the ethics committee or patients’ primary

doctors.

Working memory assessment
The SCZ patients and their healthy controls underwent the Japanese version of Brief Assessment of

Cognition in Schizophrenia (BACS-J) (Kaneda et al., 2007). This cognitive battery is composed of six

subtests including a digit sequencing test as a working memory measure. In this test, auditory

sequences of numbers were presented, with increasing length from three to nine digits (Figure 1B).

Participants repeated the sequences aloud by sorting in ascending order. The digit-sequencing

scores were the number of correct trials among 28 trials (18.4 ± 4.1 (SD), range 10 to 27 in patients

while 22.9 ± 4.3 (SD), range 12 to 28 in controls). Their composite BACS score was evaluated by

average score of BACS’s five subtests other than the digit sequencing test.

Examination of model prediction (SCZ patients and controls)
After preprocessing of fMRI data, FC was estimated following procedures described in the ATR

dataset. We entered FC values into the normative model and predicted individual’s working memory

ability. For individual SCZ patients and controls, we performed a partial correlation analysis between

the predicted and the actual working memory performance while factoring out age and composite

BACS score excluding working memory (see above). We examined the statistical significance on the

prediction accuracy by permutation tests as described in HCP dataset.

Examination of model prediction (multiple diagnoses)
After prediction of working memory ability for each patient, we investigated working memory

impairments in each of the four diagnoses. Specifically, patients’ predicted letter 3-back working

memory were evaluated by the Z-scores standardized to their age-and gender-matched controls col-

lected in the same site. After confirming the homoscedasticity (Bartlett’s test, p = 0.17), the stan-

dardized predicted working memory ability differences were entered in a one-way ANOVA with
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diagnosis as a between-participant factor. Post-hoc pair-wise comparisons were corrected using

Holm’s method.

Comparison of functional connectivity differences
We are interested in how working memory ability is determined by functional connectivity, and if the

relationship between working memory ability and connectivity is altered by psychiatric disorders

(e.g. if our model constructed from healthy controls can predict working memory of patients). The

predicted working memory ability in our model is a weighted summation of connectivity values,

meaning that alteration in working memory is determined by the product of connectivity values and

model weights. For example, the working memory deficit caused by alteration of a specific connec-

tion is large, even if difference in a connectivity value between patients and controls is small, when

the weight for the connection is large. Conversely, the working memory deficit is small, even if differ-

ence in a connectivity value is large, when the weight is small. Therefore, we mainly analyzed product

of connectivity values and model weights.

To illustrate how each connection contributed to the predicted letter 3-back working memory

ability differences, we defined the D-scores (difference-score) as follows. First, to align the FC value

distribution of the control groups across the diagnostic groups, for every connection’s Gaussian dis-

tribution N(�, s), each control group’s FC value was transformed to an ATR dataset’s distribution N

(�ATR, sATR) using a linear transformation. The same transformation was performed for correspond-

ing patient FC values. Since the predicted letter 3-back working memory ability is the weighted sum-

mation of the FC values, we can calculate each connection’s differences in the weighted-FC values

from the control average. Specifically, if wi is a regression weight and xi,p and xi,c are the FC values

at connection i of patient p and control c, weighted-FC difference Di,p (D-score) becomes

Di;p ¼ wixi;p � meanðwixi;cÞ ¼ wi xi;p � meanðxi;cÞf g:

To statistically compare the magnitude of the weighted-FC differences across diagnoses, the D-

score was standardized for each patient and each connection:

Zi;p ¼ wixi;p � meanðwixi;cÞf g=SDðwixi;cÞ ¼ Di;p=SDðwixi;cÞ:

Next, we examined the effects of diagnosis and connection on the Z-score. We tested the null

hypotheses of (i) no main effect of diagnosis and (ii) no interaction effect between diagnosis and con-

nection. Since these Z-scores showed heterogeneous variances across the diagnoses and connec-

tions, we calculated data-specific p values based on permutation tests as follows. First, to examine

the main effect of diagnosis, we shuffled the diagnosis labels (i.e. SCZ, MDD, OCD, and ASD) and

performed a two-way ANOVA with diagnosis as a between-participant factor and connection as a

within-participant factor, obtaining the F value for the main effect of diagnosis. We also performed

post-hoc permutation tests to compare the disorder-pair-wise differences. We shuffled the diagnosis

labels within a pair of diagnoses (e.g., SCZ and MDD), performed a two-way ANOVA, and obtained

F values for the main effect of diagnosis. Furthermore, we examined the interaction of diagnosis and

connection by shuffling both the diagnosis and connection labels and performed a two-way ANOVA,

obtaining F values for interaction. These permutations were repeated 10,000 times for the main

effects and 100,000 times for the interaction effect. The reported p values indicate how many times

the observed F values were obtained in the repetitions. A post-hoc Kruskal-Wallis test was per-

formed to examine the simple main effects of the diagnosis on all the connectivity alteration Z-

scores. We performed false discovery rate (FDR) correction to account for multiple comparisons

(Benjamini-Hochberg method, Q < 0.05).

Acknowledgements
This research was conducted as the ‘Development of BMI Technologies for Clinical Application’ of

the Strategic Research Program for Brain Sciences supported by Japan Agency for Medical Research

and Development (AMED). This research was supported by AMED under Grant Number

JP18dm0307008. Drs. Yamashita, Kawato, and Imamizu were also supported by the ImPACT Pro-

gram of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan). Dr.

Imamizu was also partially supported by JSPS KAKENHI Grant Number 26120002. Dr. Kasai was

Yamashita et al. eLife 2018;7:e38844. DOI: https://doi.org/10.7554/eLife.38844 20 of 26

Research article Neuroscience

https://doi.org/10.7554/eLife.38844


partially supported by Brain/MINDS, AMED. Data were provided in part by the Human Connectome

Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil;

1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for

Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington

University.

Additional information

Funding

Funder Grant reference number Author

Council for Science, Technol-
ogy and Innovation

ImPACT Program Masahiro Yamashita
Mitsuo Kawato
Hiroshi Imamizu

Japan Agency for Medical Re-
search and Development

Brain/MINDS Kiyoto Kasai

Wellcome Trust Ben Seymour

Arthritis Research UK 21357 Ben Seymour

Ministry of Education, Culture,
Sports, Science, and Technol-
ogy

‘Development of BMI
Technologies for Clinical
Application’ of the Strategic
Research Program for Brain
Sciences and
JP18dm0307008

Mitsuo Kawato

Japan Society for the Promo-
tion of Science

KAKENHI 26120002 Hiroshi Imamizu

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Masahiro Yamashita, Conceptualization, Resources, Software, Formal analysis, Validation, Investiga-

tion, Visualization, Methodology, Writing—original draft, Project administration, Writing—review

and editing; Yujiro Yoshihara, Ryuichiro Hashimoto, Noriaki Yahata, Naho Ichikawa, Yuki Sakai, Taka-

shi Yamada, Noriko Matsukawa, Go Okada, Resources, Data curation; Saori C Tanaka, Kiyoto Kasai,

Nobumasa Kato, Yasumasa Okamoto, Funding acquisition; Ben Seymour, Hidehiko Takahashi, Con-

ceptualization, Supervision, Funding acquisition, Project administration, Writing—review and editing;

Mitsuo Kawato, Conceptualization, Formal analysis, Supervision, Funding acquisition, Visualization,

Methodology, Writing—original draft, Project administration, Writing—review and editing; Hiroshi

Imamizu, Conceptualization, Supervision, Funding acquisition, Investigation, Methodology, Writ-

ing—original draft, Writing—review and editing

Author ORCIDs

Masahiro Yamashita http://orcid.org/0000-0003-1520-2548

Ryuichiro Hashimoto http://orcid.org/0000-0002-9661-3412

Ben Seymour https://orcid.org/0000-0003-1724-5832

Hiroshi Imamizu http://orcid.org/0000-0003-1024-0051

Ethics

Human subjects: ATR dataset was acquired using protocol (#12-101) according to the Declaration of

Helsinki and approved by the Ethics Committee at Advanced Telecommunication Research Institute

International. All participants gave written informed consent. Data from SCZ group was acquired by

study design that was approved by the Committee on Medical Ethics (#R0027) of Kyoto University

and was conducted in accordance with the Code of Ethics of the World Medical Association. All par-

ticipants gave written informed consent. Data from MDD group was acquired by study protocol (#E-

38) that was approved by the Ethics Committee of Hiroshima University. All participants gave written

Yamashita et al. eLife 2018;7:e38844. DOI: https://doi.org/10.7554/eLife.38844 21 of 26

Research article Neuroscience

http://orcid.org/0000-0003-1520-2548
http://orcid.org/0000-0002-9661-3412
https://orcid.org/0000-0003-1724-5832
http://orcid.org/0000-0003-1024-0051
https://doi.org/10.7554/eLife.38844


informed consent. Data from OCD group was acquired by study protocol (#RBMR-C-1098-5) that

was approved by the Medical Committee on Human Studies at the Kyoto Prefectural University of

Medicine. All participants gave written informed consent. Data from ASD group at the University of

Tokyo was acquired by study protocol (#3048 and #3150) approved by the Ethics Committee of the

Graduate School of Medicine and Faculty of Medicine at the University of Tokyo. All participants

gave written informed consent. Data from ASD group at Showa University was acquired by study

protocol (#893) that was approved by Ethics Committee of the Faculty of Medicine of Showa Univer-

sity. All participants gave written informed consent.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.38844.023

Author response https://doi.org/10.7554/eLife.38844.024

Additional files
Supplementary files
. Supplementary file 1. Resting state fMRI scan parameters and their values.

DOI: https://doi.org/10.7554/eLife.38844.017

. Supplementary file 2. Whole-brain intrinsic functional network labels and their component regions.

DOI: https://doi.org/10.7554/eLife.38844.018

. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.38844.019

Data availability

The following dataset was generated: Yamashita, M, Yoshihara, Y, Hashimoto, R, Yahata, N, Ichi-

kawa, N, Sakai, Y,. .. Imamizu, H, 2018, Working Memory Prediction Database, https://bicr.atr.jp/

dcn/en/download/database-wmp/. A download link for the open access dataset will be sent after

the application form for data usage is completed (https://bicr.atr.jp/dcn/wp-content/uploads/Appli-

cation_Form_for_Data_Usage_WMP-3.pdf). MATLAB code used to build the prediction model are

also shared via this download link. You can send the completed application form to dcn_db@atr.jp.

Part of this database includes data from the DecNef Project (https://bicr-resource.atr.jp/decnefpro/)

and the project will share raw MRI data by the end of 2018. The Human Connectome Project 500

Subjects Release Open Access dataset is available from ConnectomeDB (https://db.humanconnec-

tome.org/app/template/Login.vm) after the creation of a free account. Before accessing the dataset,

users must agree with the Open Access Data Use Terms from ConnectomeDB (further information

can be found here https://www.humanconnectome.org/study/hcp-young-adult/document/500-sub-

jects-data-release and here https://www.humanconnectome.org/study/hcp-young-adult/data-use-

terms).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Masahiro Yamashi-
ta, Yujiro Yoshihara,
Ryuichiro Hashimo-
to, Noriaki Yahata,
Naho Ichikawa, Yuki
Sakai, Takashi Ya-
mada, Noriko Mat-
sukawa, Go Okada,
Saori C Tanaka,
Kiyoto Kasai, Nobu-
masa Kato, Yasu-
masa Okamoto, Ben
Seymour, Hidehiko
Takahashi, Mitsuo
Kawato, Hiroshi Im-
amizu

2018 Working Memory Pred https://bicr.atr.jp/dcn/
en/download/database-
wmp/

Working Memory
Prediction Database,
database-wmp

Yamashita et al. eLife 2018;7:e38844. DOI: https://doi.org/10.7554/eLife.38844 22 of 26

Research article Neuroscience

https://doi.org/10.7554/eLife.38844.023
https://doi.org/10.7554/eLife.38844.024
https://doi.org/10.7554/eLife.38844.017
https://doi.org/10.7554/eLife.38844.018
https://doi.org/10.7554/eLife.38844.019
https://bicr.atr.jp/dcn/en/download/database-wmp/
https://bicr.atr.jp/dcn/en/download/database-wmp/
https://bicr.atr.jp/dcn/wp-content/uploads/Application_Form_for_Data_Usage_WMP-3.pdf
https://bicr.atr.jp/dcn/wp-content/uploads/Application_Form_for_Data_Usage_WMP-3.pdf
https://bicr-resource.atr.jp/decnefpro/
https://db.humanconnectome.org/app/template/Login.vm
https://db.humanconnectome.org/app/template/Login.vm
https://www.humanconnectome.org/study/hcp-young-adult/document/500-subjects-data-release
https://www.humanconnectome.org/study/hcp-young-adult/document/500-subjects-data-release
https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms
https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms
https://bicr.atr.jp/dcn/en/download/database-wmp/
https://bicr.atr.jp/dcn/en/download/database-wmp/
https://bicr.atr.jp/dcn/en/download/database-wmp/
https://doi.org/10.7554/eLife.38844


References
Abe Y, Sakai Y, Nishida S, Nakamae T, Yamada K, Fukui K, Narumoto J. 2015. Hyper-influence of the
orbitofrontal cortex over the ventral striatum in obsessive-compulsive disorder. European
Neuropsychopharmacology 25:1898–1905. DOI: https://doi.org/10.1016/j.euroneuro.2015.08.017, PMID: 263
95293

Abramovitch A, Anholt G, Raveh-Gottfried S, Hamo N, Abramowitz JS. 2018. Meta-analysis of intelligence
quotient (IQ) in obsessive-compulsive disorder. Neuropsychology Review 28:111–120. DOI: https://doi.org/10.
1007/s11065-017-9358-0

Ahern E, Semkovska M. 2017. Cognitive functioning in the first-episode of major depressive disorder: A
systematic review and meta-analysis. Neuropsychology 31:52–72. DOI: https://doi.org/10.1037/neu0000319,
PMID: 27732039

Association AP. 2000. Diagnostic and Statistical Manual of Mental Disorder. Fourth Edition. DSM Library.
Baddeley A. 2003. Working memory: looking back and looking forward. Nature Reviews Neuroscience 4:829–
839. DOI: https://doi.org/10.1038/nrn1201, PMID: 14523382

Baker JT, Holmes AJ, Masters GA, Yeo BT, Krienen F, Buckner RL, Öngür D. 2014. Disruption of cortical
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Figure 1. Schematic diagram of model construction and generalization tests using independent datasets. (A) Model was developed using a whole-

brain resting state FC and a learning plateau of a letter 3-back task within healthy individuals from ATR dataset. (B) We applied the model to resting

state FC patterns and predicted individual participant’s working memory ability. We first examined the external validity using an independent USA

healthy dataset (HCP dataset: the upper flow chart in (B)). The predicted working memory ability was compared to actual working memory performance

(visual-object N-back task and the NIH toolbox list sorting test). Then we examined the generalizability to a clinical population using a schizophrenia

Figure 1 continued on next page
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Figure 1 continued

dataset (the lower flow chart in (B)). The predicted working memory ability was compared to actual working memory score measured by Digit

sequencing test. (C) Using the multiple psychiatric diagnoses dataset, degree of working memory impairment for each diagnosis was predicted as

differences from corresponding controls. The predicted impairments were validated by previous meta-analysis studies on digit-span across multiple

diagnoses. Note that the HCP dataset’s task stimuli images are just illustration purpose and different from the original stimuli.

DOI: https://doi.org/10.7554/eLife.38844.002
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Figure 2. Normative model of working memory ability (WMA). Circle plot of networks and their connections in the model. Individual letter 3-back

learning plateaus are predicted by a linear weighted summation of 16 FC values at 16 connections selected by a sparse linear regression algorithm.

Connection thicknesses indicate contribution ratios (weight x FC at each connection). Connections are labeled ‘Positive/Negative (P/N)’ based on

correlation coefficient signs with letter 3-back learning performances, whereas numbers indicate descending orders of contribution ratio. Each

network’s color indicates relevance with working memory function based on BrainMap ICA (Laird et al., 2011); warmer colors indicate closer relevance

to working memory function. See Table 1 for the networks connected by the selected 16 connections, and precise values of contribution ratio of each

connection. Each network’s label and regions included in it are summarized in Supplementary file 2.

DOI: https://doi.org/10.7554/eLife.38844.003
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Figure 2—figure supplement 1. Letter 3-back learning curves for each participant. Data points were five-session

moving averaged (e.g. training session one plots average d-prime from sessions 1 to 5).

DOI: https://doi.org/10.7554/eLife.38844.004
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Figure 3. Generalizability to HCP dataset and schizophrenia dataset. (A) Significant Spearman’s rank partial correlation between predicted letter 3-

back learning performance and measured visual-object N-back accuracy while factoring out general fluid intelligence and head motion (� = 0.110,

p = 0.0072). (B) Significant Pearson partial correlation between predicted letter 3-back performances and measured digit-sequencing scores while

factoring out the composite BACS score and age (� = 0.248, p = 0.033).

DOI: https://doi.org/10.7554/eLife.38844.005
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Figure 3—figure supplement 1. Spearman’s rank correlation matrix for HCP dataset.

DOI: https://doi.org/10.7554/eLife.38844.006
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Figure 3—figure supplement 2. Pearson’s correlation matrices for schizophrenia samples. (A) Correlation among schizophrenia patients (N = 58). (B)

Correlation among schizophrenia patients and controls (N = 118).

DOI: https://doi.org/10.7554/eLife.38844.007
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Figure 3—figure supplement 3. Distribution of BACS digit-sequencing score. The count of healthy controls

increased toward the maximum score (28), and the largest count was found for the maximum score. This suggests

a ceiling effect in the healthy controls.

DOI: https://doi.org/10.7554/eLife.38844.008
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Figure 4. Prediction of diagnosis-specific alterations of working memory ability. (A) Predicted letter 3-back

working memory ability for patients (N = 58, 77, 45, and 69 for SCZ, MDD, OCD, and ASD, respectively) and their

age- and gender-matched healthy/typically developed controls (HC, N = 60, 62, 47, and 71) shown as kernel

density. For illustration purposes, distribution of each control group was standardized to that of the ATR dataset,

and the same linear transformation was applied to patients’ distributions. � indicates mean value for each group.

(B) Violin plots of Z-scores for predicted working memory ability alterations. White circles indicate medians. Box

limits indicate 25th and 75th percentiles. Whiskers extend 1.5 times interquartile range from 25th and 75th

percentiles. (C) Comparison of estimated effect sizes for working memory deficits. k indicates number of studies

included in the meta-analyses (Forbes et al., 2009; Snyder, 2014; Snyder et al., 2015). Error bars indicate 95%

confidence intervals.

DOI: https://doi.org/10.7554/eLife.38844.009

Yamashita et al. eLife 2018;7:e38844. DOI: https://doi.org/10.7554/eLife.38844 10 of 15

Research article Neuroscience

https://doi.org/10.7554/eLife.38844.009
https://doi.org/10.7554/eLife.38844


Figure 4—figure supplement 1. Effect sizes of IQ, digit-span, and predicted working memory ability. k indicates

number of studies included in the meta-analyses (Abramovitch et al., 2018; Ahern and Semkovska, 2017;

Heinrichs and Zakzanis, 1998). Error bars indicate 95% confidence intervals.

DOI: https://doi.org/10.7554/eLife.38844.010
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Figure 5. Accumulation of function connectivity differences exhibits diagnosis-specific working memory ability. (A) Accumulation of averaged D-scores

for all 16 connections. Bold black line indicates summation of contributions by all connections, corresponding to predicted working memory ability

alteration. This figure shows how diagnosis-specific working memory impairment results from complex disturbances of multiple connections. Upper

panel depicts two representative alteration patterns across diagnoses. While connection P1 commonly decreased working memory ability across

diagnoses, connection N6 distinctly affected working memory ability (decrease in SCZ and MDD and increase in OCD and ASD). (B) Z-scores

(normalized D-scores) for each diagnosis. Left asterisks and lines indicate significant differences in mean Z-scores between two diagnoses (p < 0.05,

Bonferroni corrected). Vertical lines across horizontal bars indicate Z-scores averaged across connections. (C) Z-scores for connection that showed a

significant effect of diagnosis. Connections were sorted by small p values of diagnosis effect (Kruskal-Wallis test, Q < 0.05, FDR corrected).

DOI: https://doi.org/10.7554/eLife.38844.013
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Figure 5—figure supplement 1. Connections of non-significant effect of diagnosis.

DOI: https://doi.org/10.7554/eLife.38844.014
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Figure 5—figure supplement 2. Distribution of magnitude of diagnosis effect on connectivity change between

the connections in the model and other connections. The horizontal axis shows chi-square values of a Kruskal-

Wallis test for each connection. There was no significant difference between the two groups (two-sample

Kolmogorov-Smirnov test, p = 0.30).

DOI: https://doi.org/10.7554/eLife.38844.015
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Figure 5—figure supplement 3. D-scores related to network clusters.

DOI: https://doi.org/10.7554/eLife.38844.016
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