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Abstract Many evidences suggest that the central ner-

vous system (CNS) acquires and switches internal models

for adaptive control in various environments. However,

little is known about the neural mechanisms responsible for

the switching. A recent computational model for simulta-

neous learning and switching of internal models proposes

two separate switching mechanisms: a predictive mecha-

nism purely based on contextual information and a post-

dictive mechanism based on the difference between actual

and predicted sensorimotor feedbacks. This model can

switch internal models solely based on contextual infor-

mation in a predictive fashion immediately after alteration

of the environment. Here we show that when subjects

simultaneously adapted to alternating blocks of opposing

visuomotor rotations, explicit contextual information about

the rotations improved the initial performance at block

alternations and asymptotic levels of performance within

each block but not readaptation speeds. Our simulations

using separate switching mechanisms duplicated these ef-

fects of contextual information on subject performance and

suggest that improvement of initial performance was

caused by improved accuracy of the predictive switch

while adaptation speed corresponds to a switch dependent

on sensorimotor feedback. Simulations also suggested that

a slow change in output signals from the switching

mechanisms causes contamination of motor commands

from an internal model used in the previous context

(anterograde interference) and partial destruction of inter-

nal models (retrograde interference). Explicit contextual

information prevents destruction and assists memory

retention by improving the changes in output signals. Thus,

the asymptotic levels of performance improved.

Keywords Sensorimotor learning � Predictive switch �
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Introduction

Internal models are neural mechanisms that mimic the input-

output properties of controlled objects (Wolpert et al. 1995;

Brashers-Krug et al. 1996; Kawato 1999; Imamizu et al.

2000). Empirically, two types of information are crucial for

the switching of internal models: contextual information

such as color or shape of the objects that can be perceived

before movement execution, and information about the

difference between actual and predicted sensorimotor
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feedbacks that can be calculated during or after execution. A

computational model for switching of internal models,

called MOdular Selection and Identification for Control

(MOSAIC), has proposed two separate switching architec-

tures for each type of information (Wolpert and Kawato

1998).

Multiple pairs of forward and inverse internal models

exist in the MOSAIC model. Forward internal models

predict sensory feedback from the efference copy of motor

commands while inverse internal models transform desired

sensory consequences into the motor commands that

achieve them. The MOSAIC model has two architectures

for switching the inverse models: a predictor and an esti-

mator (Fig. 1). The predictor receives contextual informa-

tion and calculates the degree to which each inverse model

is responsible for the current environment. The estimator

also calculates the degree based on prediction error, which

is the difference between actual sensory feedback and

sensory feedback predicted by a forward model. An inverse

model paired with a forward model that has small predic-

tion error is likely appropriate for the current environment.

In Bayesian statistics, the degree from the predictor cor-

responds to prior probability regarding the environment

before movement execution while the degree from the

estimator corresponds to likelihood based on observed

information. A responsibility signal is a product of prior

probability and likelihood, and determines the final degree

to which each inverse internal model is responsible for the

current environment.

If contextual information is given, the predictor can

calculate an appropriate responsibility signal independent

of sensorimotor feedback, and the MOSAIC model can

conduct an appropriate switch immediately after the

alteration. If contextual information is not given, the esti-

mator solely determines the responsibility signal. In this

situation, switching ability depends on the appropriateness

of the forward internal models gauged by prediction error.

We hypothesize that the appropriateness of the internal

models gradually changes in a similar fashion to perfor-

mance changes in neural networks (Kawato et al. 1987).

Thus, switching is not immediate or predictive but pro-

ceeds gradually in a trial-by-trial fashion. Because the

predictor and estimator are separate architectures, the

MOSAIC model predicts that the existence of contextual

information selectively improves switching by the predic-

tor immediately after the alteration while it does not affect

the gradual switching by the estimator based on sensori-

motor feedback.

Previous studies have investigated the effects of con-

textual information (e.g. color, auditory, or kinesthetic

cues) on switching or learning in dual tasks, in which

subjects were required to switch between opposing visuo-

motor rotations or force fields (e.g., Cunningham and

Welch 1994; Gandolfo et al. 1996; Wada et al. 2003; Miall

et al. 2004; Osu et al. 2004). However, little is separately

known about the effects on the predictive switching

immediately after the alteration and the gradual switching

based on sensorimotor feedback. In the current study, we

directly manipulated explicit contextual information pro-

duced by detailed instruction about the characteristics of

opposing visuomotor rotations and investigated whether

the information gives different effects to the predictive

switch and switching based on sensorimotor feedback. We

conducted a computer simulation of the MOSAIC model in

the current behavioral task and examined whether the

simulation results are consistent with behavioral results.
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Fig. 1 Architecture of a MOSAIC model during manipulation of

multiple objects. The model consists of feedback-controller parts

(bottom architecture) and feedforward-controller parts (upper archi-
tecture). Cyan parts are related to switching mechanisms based on

contextual information while magenta parts are related to those based

on sensorimotor feedback. Nomenclature for symbols is described in

the simulation parts of the METHODS section and Supplementary

Material

Exp Brain Res

123



Furthermore, to confirm significance of the separate

architectures for the switching, we also conducted a sim-

ulation using a modular network that does not structurally

distinguish the predictor and the estimator, and compared

the results to those of the MOSAIC model.

Methods

Subjects

Ten male subjects (20–35 years of age) participated in this

study after giving informed consent. All subjects were

right-handed and naive to the purpose of this institutional

review board-approved study.

Task and apparatus

In each trial, subjects made an out-and-back pointing

movement from the center start zone to one of eight radial

targets (Fig. 2a). The target and a cursor corresponding to the

fingertip position were displayed on a computer screen. A

position recording system (OPTOTRAK, NorthernDigital,

Canada) was attached to the right index fingertip, and its

position was projected along the coronal plane (x–y plane).

The cursor (a small ‘‘x’’) position on the screen was deter-

mined by the projected position. The cursor was visible at all

times, but subjects could not see their arm or hand. The

forearm of the subjects was fixed on a platform, and

movements of the wrist and the metacarpophalangeal joint of

the right index finger were allowed. Surgical tape fixed the

distal and proximal interphalangeal joints of the finger. Arm

and hand positions were carefully adjusted to remain com-

fortable to prevent fatigue. Although the pointing movement

may be unstable and inaccurate in comparison to arm

movement using the elbow and shoulder, which is frequently

used in studies on sensorimotor control and learning, we

adopted it considering our future study in the limited space in

an fMRI scanner.

The subjects were asked to start movements immedi-

ately after the target appears and to move in a fast and

smooth motion without trajectory correction. The eight

targets were located radially in 45� increments (inset in

Fig. 2a). Only one of these targets appeared in each trial.

The distance between the center of the start zone and the

target was 8.0 cm in hand space. The distance was slightly

magnified on the screen (9.0 cm, a visual angle of 2.29�) so

that subjects could easily see the cursor trajectory. The

average interval was 0.52 s (SD 0.13) between the target

onset and the movement onset and 0.56 s (SD 0.28)

between the movement onset and its termination.

Procedure

Several days before the main experiment, subjects con-

ducted a baseline block consisting of 120 trials without

visuomotor rotations to become habituated to the pointing

task. During the main experiment, the cursor position was

rotated 40� clockwise (CW) or counterclockwise (CCW)

around the center of the screen (Fig. 2b). The ten subjects

were assigned to either an instructed group (n = 5) or a

non-instructed group (n = 5). While Fig. 2b was shown to

the instructed subjects, they were informed of the rotation

as follows. ‘‘The cursor position will be rotated 40�
clockwise or counter clockwise around the center of the

screen. Thus, when you move your finger straight right,

the cursor will move in the lower right direction under the

clockwise condition but the cursor will move in the upper

right direction under the counter clockwise condition.

Similarly, when you move the finger straight up, the cursor

will move in the upper right direction under the clockwise

condition but the cursor will move in the upper left in the

counter clockwise rotation, etc. To hit the target, you need

to rotate the finger trajectory in the opposite direction to the

imposed rotation.’’ The non-instructed subjects were not
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Fig. 2 a Experimental apparatus (left) and positions of the start zone

and targets on the screen (right inset). b Relationship between

direction of finger movements (black arrows) and cursor movements

(white arrows) under 40� CCW and 40� CW rotations. Numbers
indicate correspondence between black and white arrows. C Angular

error (E) in each trial was measured by angular difference between the

vector from center of start zone to target ð~TÞ and the vector from

center of start zone to the cursor position at the moment of maximal

outward velocity ð~PÞ
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informed of the rotations, and their verbal reports indicated

that none used any conscious or systematic strategy.

The eight targets were presented randomly in each cycle

of eight trials. One block consisted of 15 cycles (120 trials)

and lasted 9 min. Each subject underwent ten blocks with a

3-min break between the blocks. The rotation type (CW or

CCW) alternately changed at every block, and the order of

rotations was counterbalanced between subjects. The in-

structed subjects were informed of the rotation type by an

experimenter at the beginning of each block.

Analysis

To gauge performance accuracy, we measured the angular

error between the target direction and the direction of the

cursor movement at the moment of first maximal velocity

(Fig. 2c). Outliers within each cycle (eight trials) were

excluded using Grubb’s test (Grubbs 1969). That is, the

maximum or minimum value was expunged from the

dataset if Y � Ymax

� �
=SD or Y � Ymin

� �
=SD was larger

than

ðN � 1Þ
ffiffiffiffi
N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

a=ð2NÞ;N�2ð Þ

N � 2þ t2
a=ð2NÞ;N�2ð Þ

vuut :

Here, N; Y; and SD denote the sample size, mean, and

standard deviation, respectively. t2(a/(2N),N–2) denotes the

critical value of t-distribution with a significance level of

a/(2N). a was set at 0.05. The test was iterated until no

outliers were detected. The maximum number of outliers in

each cycle was two. The errors in the first cycle of each

block were included in our analyses, whereas they have

sometimes been excluded in previous studies (e.g., Krak-

auer et al. 1999). We confirmed that similar results were

obtained in our study if they were excluded. When we

separately computed the mean error for each subject and

rotation type (CW or CCW) and performed a t-test, there

was no significant difference between rotation types

(t(18) = 1.2). Thus, we omitted the rotation type effects in

the statistical analyses described below.

To examine whether behavioral measures change across

blocks, we used a nonparametric test for trend (Lehmann

1975). A statistical measure D is defined as

D ¼ ðT1 � 1Þ2 þ ðT2 � 2Þ2 þ � � � þ ðTn � nÞ2:

Here, Ti is the rank (from the smallest to the largest) of the

ith value (xi) in a given time series of data (x1, x2, x3, ..., xn).

The Z statistic is calculated as

Z ¼ D� E
ffiffiffiffi
V
p :

Here, E ¼ n3�n
6

and V ¼ n2ðnþ1Þ2ðn�1Þ
36

: Because the distri-

bution of Z is approximately a normal distribution, we can

reject a null hypothesis that there is not a decreasing trend

if Z is larger than the critical value of a normal distribution

with a significance level of a. This test can also examine an

increasing trend. We computed the mean values of the

behavioral measure for each block and applied the test to

the values.

Simulations

We defined a simplified environment of the pointing task

under the visuomotor rotations. When xðtÞ ¼ ½ xðtÞ yðtÞ �T
and uðtÞ ¼ ½ uxðtÞ uyðtÞ �T represent the cursor position

and the motor command at time t respectively, the equation

of motion can be described as

€x tð Þ
€y tð Þ

� �
¼ R hð Þ uxðtÞ

uyðtÞ

� �
; ð1Þ

where R(h) is the rotation matrix, and the mass of the finger

tip is 1 for simplicity. T represents the transpose of a matrix,

and €x indicates the second time derivative (acceleration) of

x. Thus, the cursor will be accelerated in the direction

deviating by h [radian] from that of the intended motor

command. Although subjects made an out-and-back point-

ing movement in the behavioral experiment, we simulated

only the out part of the movement. As mentioned above, the

average interval was 0.56[s] between the movement onset

and its termination in out-and-back movements. Thus, we

set the interval in the simulation at half of 0.56[s]; that is,

the out movement began at t = 0[s] and terminated at

t = 0.28[s]. The initial position of the cursor was ½ 0 0�T at

the beginning of each trial. The path of the desired trajec-

tory ðxdðtÞ ¼ ½ xdðtÞ ydðtÞ �TÞ was a line connecting the

initial position with one of the eight targets. The velocity-

profile of the desired trajectory was bell-shaped. The time

interval (Dt) in the simulation was 0.01[s].

The MOSAIC model observes the position (x(t)) and

velocity ð€xðtÞÞ of the cursor at each time point, and cal-

culates a motor command (u(t)). Each forward internal

model in the MOSAIC model estimates the angle of the

rotation (h). The estimated parameter was represented by ĥi

(i = 1, 2, ..., M). Because there were two types of the

rotations in the current simulation, M was 2 (see Supple-

mentary Material for simulations when M was four). An

initial value of ĥi was set at 5 before learning. The forward

model predicts the acceleration vector of the cursor ð€̂xiÞ
from the motor command (u) based on the estimated angle:

€̂xiðtÞ ¼ RðĥiÞuðtÞ: ð2Þ

An inverse model calculates feedforward motor command

(ui
ff) from the acceleration of the desired trajectory ð€xdÞ :
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uff
i ðtÞ ¼ RðĥÞ�1€xdðtÞ: ð3Þ

The total output from the MOSAIC is a summation of

feedback motor command (ufb, see the lower parts of

Fig. 1) and the feedforward motor commands weighted by

the responsibility signal.

The simulation was conducted in instructed and non-

instructed conditions. The explicit contextual information,

i.e. the current angle of visuomotor rotation (h), was fed

into the predictor in the instructed condition and contri-

buted to calculation of the responsibility signal but it was

not fed into the predictor in the non-instructed condition.

Because we investigated the effect of explicit contextual

information produced by detailed instruction about char-

acteristics of visuomotor rotations, we provided the pre-

dictor in simulations with the exact current angle of

visuomotor rotation. Details of simulations are described in

Supplementary Material.

We also conducted a simulation using a modular archi-

tecture that has a single switching mechanism (see Fig. S1

in Supplementary Material). This architecture was con-

structed in a simulation study of object manipulation (Gomi

and Kawato 1993) based on a mixture-of-experts model

(Jacobs et al. 1991). The mixture-of-experts model involves

expert modules, which are equivalent to internal inverse

models, and a gating module. The gating module is a single

switching mechanism that does not structurally distinguish

contextual information and sensorimotor feedbacks.

Results

Behavioral results

Figure 3 shows angular errors as a function of trial number

from subjects in the instructed and non-instructed groups.

Regarding the baseline block (leftmost gray lines), we

computed the angular error averaged across trials for each

subject and performed a t-test to check differences in

baseline pointing accuracy between the two groups. Mean

error (±SD) across subjects was 6.89� (±2.06�) for the in-

structed group and 6.73� (±1.83�) for the non-instructed

group. There was no significant difference between groups

(t(8) = 0.11). To check the effect of target direction on

angular error in the baseline block, we computed the error

averaged across trials for each subject and target direction

and analyzed the averaged error with a one-way ANOVA.

The directional effect was not significant (F(7,72) = 1.75).

Therefore, we could not identify any difference in pointing

accuracy between the groups or among the target directions

in the natural condition.

Regarding angular errors as a function of trial number in

the main experiment (blue or red lines), the increase of

errors at the beginning of each block replicated perfor-

mance interference between opposing rotations (Krakauer

et al. 1999; Bock et al. 2001; Tong et al. 2002; Miall et al.

2004). The decrease in the errors within each block has

been characterized as short-term readaptation (Welch et al.

1993). Although trial-by-trial error fluctuates in both the

instructed and non-instructed subjects, the error of in-

structed subjects sometimes increased more abruptly than

non-instructed subjects. Correspondingly, the number of

detected outliers (black squares in Fig. 3; see ‘‘Methods’’)

from a total of 1,200 trials was 28.6 (2.38% of the total

trials, SD ±6.69) averaged across the instructed subjects

while it was 8.4 (0.70%, SD ±0.89) averaged across the

non-instructed subjects.

To examine the effects of the explicit contextual infor-

mation on the short-term readaptation process, we sepa-

rately calculated mean angular error for the early (trial

numbers 1–40), middle (41–80), and late (81–120) stages

within each block and investigated the instruction effects on

the mean error. The errors were separately averaged across

blocks for the stages within each subject and analyzed with

a two-way (group · stage) ANOVA. Figure 3E shows the

errors averaged across blocks and subjects. The effect of

group was significant (F(1,8) = 8.46, P < 0.05), and error

averaged across stages, blocks and subjects in the instructed

group (mean ± SD 12.12 ± 3.24) was smaller than in the

non-instructed group (22.60 ± 9.51). This indicates a

positive instruction effect on overall performance. An

interaction effect between the group and the stage was

significant (F(2, 16) = 7.87, P < 0.01), suggesting a

different instruction effect that depended on the stages.

When we compared error averaged within each stage

between groups, error in the instruction group was most

significantly smaller than in the non-instructed group in the

early stage (Tukey’s HSD post hoc test at P < 0.01 level),

but there was no significant difference in the late stage. This

result suggests that the effect of the contextual information

was prominent immediately after the alteration of the

environment.

To examine a long-term change of subject performances

across blocks, we averaged angular error within each block

across trials and subjects and plotted the averaged error as a

function of block number in the main experiment (Fig. 4a,

b). We considered a two-way (instructed/non-instructed

group · block) ANOVA as a simple analysis, but we also

examined the difference between odd (filled circles) and

even (open circles) blocks because the rotation type was

different between them. Specifically, blocks were divided

into the odd or even groups, and then given an order within

each group, e.g., the first block is the first block in the odd

group, the second block is the first block in the even group,

the third block is the second block in the odd group, the

fourth block is the second block in the even group, and so
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on. Then, we applied a three-way (instructed/non-in-

structed group · even/odd block group · block order

within the block group) ANOVA to error averaged within

each block. Error averaged across blocks and subjects in

the instructed group was smaller than in the non-instructed

group (F(1,8) = 8.49, P < 0.05), indicating a positive

instruction effect on overall performance, as in previous

analysis. The errors in the odd blocks were smaller than

those in the even blocks (F(1,8) = 7.1, P < 0.05), indicat-

ing that the errors remained small for the rotation type

presented in the first block. We identified a significant

effect of block order (F(4,32) = 11.16, P < 0.01), sug-

gesting that error averaged within each block changed

across blocks.

Time courses along the abscissa in Fig. 4a and b indi-

cates how the error averaged within each block changed

across blocks. Error averaged within the first block was

small in both the instructed and non-instructed groups, and

reflects initial performance before subjects experienced the

opposing rotations. We could not identify a significant

difference in the error averaged within the first block

between the instructed and non-instructed groups (Tukey’s

HSD post hoc test at P < 0.05 level). Error averaged within

each block increased in the second and third blocks in

which subjects experienced opposing rotations and gradu-

ally decreased as block number increased. To examine if a

long-term change of performance across blocks occurred

under interference between opposing rotations, we

Fig. 3 a–d Angular errors as a

function of trials of four

representative subjects from

instructed and non-instructed

groups. Black squares represent

outliers detected by Grubb’s test

(see ‘‘Methods’’). Values larger

than 80 are plotted at 80. e
Angular errors averaged across

trials blocks and subjects (±SD)

separately for the early, middle,

and late stages of the

readaptation process. *P < 0.05,

**P < 0.01, NS not significant

according to Tukey’ HSD post

hoc test
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separately applied a test for trend (see ‘‘Methods’’) to the

error averaged within each block for the odd and even

blocks. We did not include the error averaged within the

first block in the test because performance in the first block

is free from interference. A decreasing trend was signifi-

cant for even blocks in both the instructed (P < 0.05) and

non-instructed groups (P < 0.01), and marginally signifi-

cant for odd blocks in both groups (P < 0.10). These re-

sults suggest a positive long-term change of performance,

especially in the even blocks. However, we could not

determine whether the decrease in error was caused by the

improvement of performance immediately after block

alterations, the speed of short-term readaptation, the

asymptotic performance after readaptation within each

block, or combinations of these components because error

averaged within each block can be affected by all of these

components.

To separately investigate the effect of explicit contex-

tual information for these components, we fitted the fol-

lowing curve to a time course of trial-by-trial error in each

block, as shown by the green curves in Fig. 5a and b:

y ¼ aþ b expð�c � xÞ:

Here, x and y represent trial number and error, respectively.

As illustrated in the inset of Fig. 5b, parameter a corre-

sponds to the asymptotic level within each block when

short-term adaptation is completed. Parameter b corre-

sponds to the initial increase of the error at block altera-

tions from the asymptotic level. Parameter c reflects

adaptation speed within in each block. Each estimated

parameter was separately analyzed with a two-way (in-

structed/non-instructed group · block) ANOVA. The left

panels in Fig. 5c, d and e shows the parameters averaged

across blocks and subjects. A significant effect of instruc-

tion was identified in asymptotic level (a) (F(1,8) = 9.00,

P < 0.017) and initial increase of error (b) (F(1,8) = 24.9,

P < 0.0011). Specifically, the parameter values of a and b

in the instructed group were smaller than the values in the

non-instructed group. The small value of b in the instructed

group corresponds to the small angular error in the early

stages within each block in comparison to the error in the

non-instructed group (Fig. 3e). However, we could not

identify a significant effect on adaptation speed (c)

(F(1,8) = 0.01).

The middle and right panels in Fig. 5c, d and e shows

the parameters averaged across subjects as a function of

block number. We investigated long-term changes of

parameter values across blocks (from the second to the

tenth blocks) in the same fashion as Fig. 4. Regarding

parameter a, time courses of parameter value were sim-

ilar to those in Fig. 4. We could not identify a significant

decreasing trend of the value across the even blocks in

the non-instructed group (dashed curve in middle panel

of Fig. 5c), but the value markedly decreased from the

second to the remaining even blocks. Error averaged

within each block also markedly decreased in the even

blocks in the non-instructed group (dashed curve in

Fig. 4a). A marginally significant decreasing trend

(P < 0.10) was found for the odd blocks in the non-

instructed group (solid curve in middle panel of Fig. 5c).

The same trend was also found for error averaged within

each block in the odd blocks in the non-instructed group

(solid curve in Fig. 4a). A decreasing trend of a-value

was marginally significant (P < 0.10) in the even blocks

in the instructed group (dashed curve in right panel of

Fig. 5c), and the trend of error averaged within each

block in the even blocks in the instructed group was

significant (P < 0.05, dashed curve in Fig. 4b). Although

a decreasing trend was marginally significant in error

Fig. 4 a, b Angular error averaged within each block as a function of

block number. Error within each block is averaged across trials and

subjects (±SD). Filled and open circles correspond to odd and even

blocks, respectively. Broken curves indicate exponential functions

fitted to the averaged errors in even blocks. Solid curves indicate

functions to the averaged errors in odd blocks (from the third to the

ninth blocks) + P < 0.10 (marginally significant), *P < 0.05,

**P < 0.01, NS not significant. Arrows indicate results of tests for

trends. Dashed line across panels indicate results of Tukey’ HSD post

hoc test
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averaged within each block in the odd blocks in the

instructed condition (solid curve in Fig. 4b), a significant

trend could not be identified in the odd blocks in the

instructed condition (solid curve in right panel of

Fig. 5c). Although statistical significances weakened in

Fig. 5c, we found similar patterns of time courses in

Figs. 4 and 5c, suggesting a similarity to a certain degree

between error averaged within each block and asymptotic

level.

Regarding the initial increase of error at block altera-

tions (Fig. 5d), the b-value in the non-instructed group did

not decrease across blocks and remained around 40� for

both the odd and even blocks (middle panel). We identified

a significant decreasing trend (P < 0.05) in the instructed

group in the even blocks but not in the odd blocks (right

panel). The b-value in the odd blocks was small across

blocks in the instructed group. Regarding adaptation speed

(Fig. 5e), c-values significantly increased (P < 0.05) in the
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exponential curves (green) fitted

to error time courses of two
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Fig. 3a–d). Inset illustrates how

an exponential curve (y = a +

b exp (–c�x)) changes depending

on each parameter. Conventions
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non-instructed group both in the odd and even blocks

(middle panel). However, we could not identify a signifi-

cant trend in the instructed group (right panel).

To examine the validity of exponential fitting, we

computed the sum of squares due to error (SSE) associated

with the exponential model (y = a + b exp (–c�x)):

SSEðExponential ModelÞ ¼
Xn

i¼1

ðyi � ŷiÞ;

where n, yi and ŷi denote the number of trials in the main

experiment for each subject, observed angular errors and

values predicted by the model, respectively. The outliers

above mentioned were not included in this analysis. As a

reduced model for comparison, we fitted a linear model

(y = a + b x) to the angular errors, computed SSE

associated with the linear model, and calculated the ratio

F¼½SSEðLinearModelÞ�SSEðExponentialModelÞ�=ðp�kÞ
SSEðExponentialModelÞ=ðn�pÞ :

Here, p and k denote, the numbers of parameters in the

exponential model (i.e., 3) and in the linear model (i.e., 2),

respectively. The ratio has F distribution with (p – k) and

(n – p) degrees of freedom, and the large ratio indicates that

the exponential model is more effective than the reduced

linear model (Chatterjee and Price 1991). We conducted this

analysis for each subject and identified the significant

effectiveness of exponential fitting in all subjects. That is,

even the smallest ratio among subjects (F(1, 1188) = 4.64 in

subject MS) was larger than the F value at the P < 0.05

level. This result suggests the significance of parameter c.

Simulation results

Figure 6 shows results of the simulation using the MO-

SAIC model. Figure 6a and c indicates time courses of the

responsibility signals for the CW and the CCW internal

models. A significant difference between the instructed and

the non-instructed conditions was observed immediately

after alteration of the environment. The responsibility

signal rapidly changed in the instructed condition (cyan

curves) while the signal changed slowly in the non-

instructed condition (magenta curves).

Figure 6b and d indicates the angle of the visuomotor

rotation estimated by each internal model (ĥi see ‘‘Meth-

ods’’ section). These parameters are closely related to the

degree of learning acquisition of internal models. Their

values were initially set at 5� and approached 40� as

learning proceeds. The gray regions correspond to blocks

in which the other internal model was appropriate for the

environment. Time courses of the parameter values slightly

dropped in the gray regions. The drop of the time course in

the instructed condition was smaller than in the non-in-

structed condition. Consequently, time courses in the in-

structed condition were superior to those in the non-

instructed condition.

The increase in angular error immediately after the

alteration was small in the instructed condition (Fig. 6e)

corresponding to rapid change in the responsibility signals.

In contrast, the error greatly increased after the alteration in

the non-instructed condition (Fig. 6f). Gray bars in Fig. 6e

and f indicate error averaged within each block across

trials. As the block number increased, the averaged error in

the instructed condition decreased more rapidly than in the

non-instructed condition, suggesting a positive instruction

effect on performance. We fitted exponential curves to the

time courses of trial-by-trial error in each block in simu-

lations (green curves) and compared the parameters aver-

aged across blocks (from the second to the tenth blocks) in

the instructed condition to those in the non-instructed

condition, as shown in Fig. 6g. A significant difference was

identified in both parameters a (t(16) = 2.39, P < 0.030)

and b (t(16) = 5.81, P < 0.000026), but not in parameter c

(t(16) = 0.28), which is consistent with the behavioral

results (left panels in Fig. 5c–e).

Figure 7 shows results of the simulation using the

modular architecture based on a single switching mecha-

nism (i.e., the mixture-of-expert model). Figure 7a and c

indicates time courses of the responsibility signals. The

amplitude of the correct responsibility signal tends to be

larger in the instructed condition (cyan curves) than that in

the non-instructed condition (magenta curves). However,

there was not much difference in the values of the respon-

sibility signals for the two conditions immediately after the

alteration of the environment. Figure 7b and d indicates the

angle of the visuomotor rotation estimated by each internal

model ðĥiÞ: We could not find any significant effect of the

instruction on the time courses of the learning. Figure 7e

indicates angular error as a function of trial numbers. There

was little difference in error immediately after the alteration

between the instructed and the non-instructed conditions in

parallel with the time courses of the responsibility signals.

The learning in the modular architecture was very slow

(Fig. 7b, d, e: note that horizontal axes are partially mag-

nified). We tried a large parameter value for the learning

rate (gexpert, see Supplementary Material), but the switching

occurred much too frequently within each block and the

performance became unstable.

Discussion

We confirmed performance interference (Krakauer et al.

1999; Bock et al. 2001; Tong et al. 2002; Miall et al. 2004)
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and short-term readaptation (Welch et al. 1993) when

subjects simultaneously adapted to alternating blocks of

opposing rotations (Fig. 3a–d). Regarding short-term re-

adaptation, the effect of explicit contextual information

was prominent immediately after alteration of the envi-

ronment (Fig. 3e). To examine the long-term change of

subject performance under interference, we investigated

how angular error averaged within each block changed

across blocks (from the second to the last blocks). Espe-

cially in the even blocks, error averaged within each block

decreased both in the instructed and non-instructed groups

as block number increased (Fig. 4), suggesting a positive

long-term performance change under interference.

Based on the results of exponential fitting, both the

asymptotic level after short-term readaptation (a) and the

initial increase of error at block alterations (b) became

small if explicit contextual information existed (left panels

in Fig. 5c, d). We investigated long-term changes of these

parameters from the second to the last blocks. Regarding

the even blocks in the instructed group, a significant

decreasing trend was identified in both the a and b-values

(dashed curves in right panels of Fig. 5c and d), although it

was only marginally significant in the a-value. This sug-

gests that both the asymptotic level and the initial perfor-

mances at block alterations improved as block number

increased. We could not identify a significant decreasing

trend in the odd blocks in either the a- or b-values (solid

lines in right panels of Fig. 5c and d). This is probably

because the values were small already in the early blocks,

e.g., the third block, and difficult to decrease further in the
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late blocks (‘‘floor effect’’). These results indicate that a

significant long-term decrease of error averaged within

each block in the even blocks of the instructed group

(Fig. 4b) was caused by improvement of both the asymp-

totic level and the initial performance at block alterations.

Regarding the non-instructed group, we could not

identify a significant decreasing trend of the a-value in the

even blocks (dashed curve in middle panel of Fig. 5c) but

the value markedly decreased from the second to the

remaining even blocks. The a-value in the odd blocks

(solid line) decreased as block number increased, although

the trend was marginally significant. The b-values did not

change from around 40� in either the even or odd blocks

(middle panel of Fig. 5d). The c-value, which corresponds

to adaptation speed, gradually and significantly increased

across blocks in both the odd and even blocks in the non-

instructed group (middle panel of Fig. 5e). Therefore, a

long-term decrease of error averaged within each block in

the non-instructed group (Fig. 4a) was caused by

improvement of both the asymptotic level and short-term

adaptation speed.

In the simulation results using the MOSAIC model, we

found a difference in the changes of responsibility signals

(Fig. 6a, c), the learning acquisition of internal models

(Fig. 6b, d), and the error time courses (Fig. 6e–g) between

the instructed and non-instructed conditions. However, in

our simulation using modular architecture based on a single

switching mechanism (mixture-of-expert model), we could

not find a difference in the change of responsibility signals

at block alterations (Fig. 7a, c), the learning acquisition of

internal models (Fig. 7b, d), or the error time courses

(Fig. 7e) between the two conditions. These results suggest

that the MOSAIC model can better explain differences in

the behavioral results between the instructed and non-in-

structed groups than modular architecture based on a single

switching mechanism.

In the MOSAIC model, the changes of responsibility

signals affect the short-term changes of errors and the long-

term acquisition of internal models as follows. Below,

(CW, CCW) denotes a pair of responsibility signal values

for the CW and CCW internal models. In the instructed

condition (cyan curves in Fig. 6a, c), the predictor can set

the values at (0.75, 0.25) with a priority on the CW rotation

based on instructions at the beginning of the first block. In

the non-instructed condition (magenta curves), however,

the predictor cannot contribute to the calculation of the

values, and thus the values are (0.5, 0.5). At the beginning

of the second block in the instructed condition, the pre-

dictor contributes to the calculation and the responsibility-

signal values rapidly shift to nearly (0, 1). However, the

change in the responsibility signal is slow in the non-in-

structed condition. The intermediate values of the respon-

sibility signals, e.g., (0.7, 0.3), during the transition evokes

two types of negative effects on switching and learning: (1)

output signals from the CW internal model consist of 70%

of the motor command, despite the fact that the subject

should perform the CCW task in the second block. Thus

error increases more than when a subject performs the

CCW task in the first block (Fig. 6f). (2) Memory in the

CW internal models is disrupted (the downward black

Responsibility 
Signal for 
CW Internal 
Model (experts)

Learning 
Acquisition of 
CW Internal  

Responsibility 
Signal for 
CCW Internal 
Model (experts)

Learning 
Acquisition of 
CCW Internal  

A

B

C

D

trials

E

1.0

0.5

0.0

1.0

0.5

0.0

15

10

5

120010008006004002000

15

10

5

120010008006004002000

40

30

20

120010008006004002000

CW
 1st 

CCW
 2nd 

CW
 3rd Block

Task

Instructed condition Non-instructed condition

CCW
 4th 

CCW
 10th 

Fig. 7 Results of simulation

using a modular architecture

based on the mixture of experts

model. Change in responsibility

signals (a, c), learning

acquisition of internal models

(b, d) and angular errors (e)

when the architecture learns the

CW task in the first block. Note

that the horizontal axes in b, d,

and, e are partially magnified

Exp Brain Res

123



arrows) in proportion to the responsibility signal values.

The degrees of the negative effects in the non-instructed

condition are larger than those in the instructed condition

because of the slow change in the responsibility signals.

In the above framework, the initial increase of error at

block alterations (b) is caused by contamination of motor

commands from an internal model used in the previous

block (first type of negative effect). If explicit contextual

information is given, the predictor can calculate appropri-

ate responsibility signals immediately after block alter-

ation. Thus, the initial increase of error at block alterations

is small. Therefore, the b-value reflects the accuracy of the

predictive switch based on explicit contextual information.

Asymptotic level (a) within each block corresponds to the

error when responsibility signals completely change to

appropriate values for the current context and switching is

completed. Therefore, the a-value reflects the performance

of an internal model for each rotation. Adaptation speed (c)

corresponds to the speed of the gradual change of

responsibility signals based on sensorimotor feedback.

As mentioned in the introduction, the MOSAIC model

predicts that the existence of explicit contextual informa-

tion selectively improves the predictive switch immedi-

ately after alteration without affecting the gradual switch

based on sensorimotor feedback. This prediction is con-

sistent with our behavioral results indicating that the initial

increase of error at block alterations (b) became small if

explicit contextual information existed, but that adaptation

speed (c) did not change (left panels of Fig. 5c–e).

In MOSAIC simulations, the time courses of the learn-

ing acquisition of internal models in the instructed condi-

tion (cyan curves in Fig. 6b–d) were always superior to the

non-instructed condition (magenta curves), suggesting

better performance of internal models in the instructed than

in non-instructed conditions. This is consistent with our

behavioral results indicating that asymptotic level (a)

averaged across blocks was smaller in the instructed group

than in the non-instructed group (right panel of Fig. 5c).

Regarding long-term performance changes, MOSAIC

simulations indicated that performance of the internal

models gradually improved across blocks, especially in the

instructed condition (cyan curves in Fig. 6b and d), and

that initial error at block alterations decreased across

blocks in the instructed condition (Fig. 6e). Our behavioral

data indicated decreases of both the asymptotic level and

the initial increase of error at block alterations in the even

blocks of the instructed group (dashed curves in right

panels of Fig. 5c and d). These results suggest that

long-term improvements of the internal models and the

predictive switch occur if explicit contextual information is

given. In simulations, performance of internal models also

gradually improved in the non-instructed condition across

blocks (magenta curves in Fig. 6b and d), but error at block

alterations did not decrease (Fig. 6f). These results corre-

spond to behavioral results indicating that asymptotic level

decreased to some degree (middle panel of Fig. 5c), but

that initial increase of error at block alteration did not

change from around 40� (middle panel of Fig. 5d).

Anterograde and retrograde interferences have been

suggested in adaptation to opposing kinematics and/or

dynamics. Anterograde interference is the negative influ-

ence of the preceding task on the subsequent task while

retrograde interference is a consequence of the subsequent

task disrupting memory in the preceding task (Robertson

et al. 2004). We found similar interferences in the

MOSAIC simulations. That is, the contamination of motor

commands from the internal model used in the previous

context (rightward arrows in Fig. 6) corresponds to

anterograde interference. The partial destruction of internal

models (degradation of ĥ) when they become modifiable

states in inappropriate contexts (downward arrows) corre-

sponds to retrograde interference. These interferences

occur when the responsibility signal does not rapidly

change in response to context changes.

Our simulation using the MOSAIC model could not

duplicate the following behavioral results. First, the in-

crease of errors at the beginning of each block in the in-

structed condition was small in the simulation (Fig. 6e) in

comparison to the behavioral result (e.g., Fig. 5a). This

suggests that the predictor in the simulation is more com-

plete than that in the behavioral data, and the responsibility

signal rapidly changed. Second, errors averaged within

each block tended to be larger in the even blocks than in

the odd blocks (Fig. 6e, f). However, the difference was

very small in comparison to the behavioral data (Fig. 4a,

b), and the simulation could not duplicate the difference in

slopes of error reduction between the conditions (curves in

Fig. 4a, b).

On questioning after the experiment, most of the non-

instructed subjects did not realize the rotations, and

attributed reasons of the error increase after the alterations

to loss of skill or knack during the rest periods (see

Supplementary Material). According to a previous study

(Vetter and Wolpert 2000), when a virtual reality system

shifted a perceived finger position gradually and alter-

nately upward or downward from the actual position,

subjects could adaptively track a moving target without

awareness of the shift. These suggest that switching

internal models in the non-instructed condition is based on

sensorimotor feedback that can be processed at the sub-

conscious level.

Although a systematic questioning was not done for the

instructed subjects, some subjects reported that they tried to

use the cognitive strategy to counteract the imposed rota-

tion (see ‘‘Methods’’ section) but that the strategy often

failed because they were required to start movements
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immediately after a target appears. Consistently with this

report, the trial-by-trial error of the instructed subjects

sometimes abruptly increased and became noisy, and the

number of detected outliers in the instructed group was

larger than in the non-instructed group (e.g., Fig. 3a, b).

We calculated correlation coefficients between the mea-

sured error in each trial and the error predicted by the

exponential model in 100 cases (10 sessions · 10 sub-

jects) and compared the coefficients between the instructed

and non-instructed groups. The coefficients in the in-

structed group were significantly smaller than those in the

non-instructed group (t(98) = 6.97, P < 0.0001), suggest-

ing that the model for trial-by-trial readaptation based on

sensorimotor feedback fits the error time courses of the

instructed subjects less than those of the non-instructed

subjects. The failure of the cognitive strategy and noisy

performance in the instructed group is consistent with a

study suggesting a conflict between the cognitive strategy

and implicit learning (Mazzoni and Krakauer 2006).

The reduction of the error during the early stage of each

block in the instructed condition was unlikely caused by

intentional cancellation of the rotation for the following

reasons. First, we could not find significant difference in

parameter b of the second block between the instructed

and the non-instructed groups (Tukey’s HSD post hoc test

at P < 0.05 level). If the subject could reduce the initial

error by using conscious cancellation, it would also be

possible in the second block but this was not possible,

suggesting that the interference could not be reduced

solely by such a strategy. Second, Osu et al. (2004) also

instructed subjects how to cancel the force fields by

presenting figures illustrating effects of the fields. How-

ever, significant interference could be identified between

adaptations to the opposing force field, suggesting the

interference could not be reduced by only the conscious

compensation. They also could not identify a significant

progress of the conscious compensation. Thus, the main

reason for the reduction in the error is probably the rapid

change of the responsibility signal as our simulation with

the MOSAIC model suggests.

Previous functional imaging studies (Imamizu et al.

2003, 2004) also supported the MOSAIC model and

suggested that a prefrontal region (Brodmann area 46)

contributes to the predictor while loops between the

parietal regions (Pisella et al. 2000) and the cerebellum

contribute to the estimator. The current behavioral study

in the context of previous computational (Wolpert et al.

1995; Wolpert and Kawato 1998; Kawato 1999) and

imaging studies (Imamizu et al. 2004) suggests that, to

achieve adaptation to multiple environments, a predictive

mechanism, possibly located in the frontal cortex, needs

to switch multiple internal models residing in the cere-

bellum.

References

Bock O, Schneider S, Bloomberg J (2001) Conditions for interference

versus facilitation during sequential sensorimotor adaptation.

Exp Brain Res 138:359–365

Brashers-Krug T, Shadmehr R, Bizzi E (1996) Consolidation in

human motor memory. Nature 382:252–255

Chatterjee S, Price B (1991) Regression analysis by example. Wiley,

New York

Cunningham HA, Welch RB (1994) Multiple concurrent visual-motor

mappings: implications for models of adaptation. J Exp Psychol

Hum Percept Perform 20:987–999

Gandolfo F, Mussa-Ivaldi FA, Bizzi E (1996) Motor learning by field

approximation. Proc Natl Acad Sci USA 93:3843–3846

Gomi H, Kawato M (1993) Recognition of manipulated objects by

motor learning with modular architecture networks. Neural Netw

6:485–497

Grubbs F (1969) Procedure for detecting outlying obserbations in

samples. Technometrics 11:1–21

Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B,

Yoshioka T, Kawato M (2000) Human cerebellar activity

reflecting an acquired internal model of a new tool. Nature

403:192–195

Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M (2003)

Modular organization of internal models of tools in the human

cerebellum. Proc Natl Acad Sci USA 100:5461–5466

Imamizu H, Kuroda T, Yoshioka T, Kawato M (2004) Functional

magnetic resonance imaging examination of two modular

architectures for switching multiple internal models. J Neurosci

24:1173–1181

Jacobs RA, Jordan MI, Nowlan SJ, Hinton GE (1991) Adaptive

mixture of local experts. Neural Comput 3:79–87

Kawato M (1999) Internal models for motor control and trajectory

planning. Curr Opin Neurobiol 9:718–727

Kawato M, Furukawa K, Suzuki R (1987) A hierarchical neural-

network model for control and learning of voluntary movement.

Biol Cybern 57:169–185

Krakauer JW, Ghilardi MF, Ghez C (1999) Independent learning of

internal models for kinematic and dynamic control of reaching.

Nat Neurosci 2:1026–1031

Lehmann EL (1975) Nonparametrics statistical methods based on

ranks. McGraw-Hill, New York

Mazzoni P, Krakauer JW (2006) An implicit plan overrides an

explicit strategy during visuomotor adaptation. J Neurosci

26:3642–3645

Miall RC, Jenkinson N, Kulkarni K (2004) Adaptation to rotated

visual feedback: a re-examination of motor interference. Exp

Brain Res 154:201–210

Osu R, Hirai S, Yoshioka T, Kawato M (2004) Random presentation

enables subjects to adapt to two opposing forces on the hand. Nat

Neurosci 7:111–112

Pisella L, Grea H, Tilikete C, Vighetto A, Desmurget M, Rode G,

Boisson D, Rossetti Y (2000) An ‘automatic pilot’ for the hand

in human posterior parietal cortex: toward reinterpreting optic

ataxia. Nat Neurosci 3:729–736

Robertson EM, Pascual-Leone A, Miall RC (2004) Current concepts

in procedural consolidation. Nat Rev Neurosci 5:576–582

Tong C, Wolpert DM, Flanagan JR (2002) Kinematics and

dynamics are not represented independently in motor working

memory: evidence from an interference study. J Neurosci

22:1108–1113

Vetter P, Wolpert DM (2000) The CNS updates its context estimate in

the absence of feedback. Neuroreport 11:3783–3786

Wada Y, Kawabata Y, Kotosaka S, Yamamoto K, Kitazawa S,

Kawato M (2003) Acquisition and contextual switching of

Exp Brain Res

123



multiple internal models for different viscous force fields.

Neurosci Res 46:319–331

Welch RB, Bridgeman B, Anand S, Browman KE (1993) Alternating

prism exposure causes dual adaptation and generalization to a

novel displacement. Percept Psychophys 54:195–204

Wolpert D, Kawato M (1998) Multiple paired forward and inverse

models for motor control. Neural Netw 11:1317–1329

Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for

sensorimotor integration. Science 269:1880–1882

Exp Brain Res

123


	Explicit contextual information selectively contributes �to predictive switching of internal models
	Abstract
	Introduction
	Methods
	Subjects
	Task and apparatus
	Procedure
	Analysis
	Simulations

	Results
	Behavioral results
	Simulation results

	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


