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Physically interacting individuals estimate the 
partner’s goal to enhance their movements
atsushi takagi1, 2* †, Gowrishankar Ganesh2, 3 †, toshinori Yoshioka2, Mitsuo Kawato2  
and etienne Burdet1, 4*

From a parent helping to guide their child during their first 
steps, to a therapist supporting a patient, physical assistance 
enabled by haptic interaction is a fundamental modus for 
improving motor abilities. However, what movement infor-
mation is exchanged between partners during haptic interac-
tion, and how this information is used to coordinate and assist 
others, remains unclear1. Here, we propose a model in which 
haptic information, provided by touch and proprioception2, 
enables interacting individuals to estimate the partner’s move-
ment goal and use it to improve their own motor performance. 
We use an empirical physical interaction task3 to show that 
our model can explain human behaviours better than existing 
models of interaction in literature4–8. Furthermore, we experi-
mentally verify our model by embodying it in a robot partner 
and checking that it induces the same improvements in motor 
performance and learning in a human individual as interact-
ing with a human partner. These results promise collaborative 
robots that provide human-like assistance, and suggest that 
movement goal exchange is the key to physical assistance.

Humans are adept at physically interacting with and assisting 
each other, from helping children to walk, to the incredible feats of 
balance in acrobatics, and to synchrony during the tango. For over a 
decade, physical coupling has been documented to promote partners 
to adopt specialized roles9–11 and enable pairs or dyads to improve 
in many joint tasks3,9,12,13. However, the underlying computational 
principle that enables movement coordination is still unknown1. 
The improvement in interacting partners has been shown not to be 
due to changes in attention or impedance of the interacting limbs3, 
and is absent when the interaction is not physical14,15 and when 
the interacting partners do not fully share control16. These results 
highlight the importance of haptics, the sensory modality related 
to tactile and proprioceptive senses2, during continuous physical 
interactions, and suggest that individuals jointly coordinate with a 
partner by exchanging information haptically. However, what infor-
mation is being exchanged, and how it is used to adapt one’s behav-
iour, remains unknown. We hypothesized that haptically interacting 
partners can estimate and exchange sensory information about the 
task goal and the uncertainty of this information with their partner, 
and tested this hypothesis against competing models of haptic inter-
action during an interactive target tracking task.

Specifically, we first simulated the mechanical dynamics and 
control behaviour of individual partners during an interactive task 
in which two individuals, connected by an elastic band, plan their 
movement to track a randomly moving target. We considered our 

proposed ‘interpersonal goal integration’ model against three well-
known models of interaction in literature that propose different 
information being exchanged between the partners. We compared 
the prediction of these four models with the empirical behaviour 
observed in our interactive tracking task to show that our model 
explains it best. Finally, we experimentally verified our model by 
embodying it in a robot partner and checking that the robot partner 
induces the same behaviour in a human individual as interacting 
with a human partner.

Our proposed ‘interpersonal goal integration’ model (blue panel 
in Fig. 1a) assumes that it is possible to estimate the partner’s tar-
get from the haptic forces, and use it to improve one’s own predic-
tion of the target’s movement. We compared this with models of 
interaction proposed in the literature. The ‘no computation’ model 
(red panel in Fig.  1a) proposes that the partners in a dyad track 
their targets independently without any exchange of haptic infor-
mation4, and that coordination is caused purely by the dynamics 
of their motion towards the target coupled by the elastic band. 
The ‘follow the better’ model assumes that the haptic forces enable 
one to estimate the partner’s performance to judge who is better 
at the tracking task, and switch to following the partner when he/
she is better. This model is motivated by previous work in collec-
tive decision-making in which the best partner’s decision is taken by 
the collective5,6. Finally, the ‘multi-sensory integration’ model pro-
poses that haptic forces enable one to estimate the partner’s position 
and track a weighted combination of the partner position and the 
target, according to their reliabilities. Such sensory integration of 
vision and haptics has been reported in individual subjects7,8, and  
could yield a better prediction of the randomly moving target if 
the partner is doing the same task. It should be noted that all four 
models have one observation variable, z, that represents what  
information partners use to plan their motion, and two free 
parameters that control the partners’ strengths and the jerkiness 
of their trajectories, which were selected through a sensitivity  
analysis to best reproduce the empirical data (see Methods and 
Supplementary Information).

The prediction by the four models were compared against 
empirical data3 obtained from the interactive tracking task (Fig. 1b; 
see Methods for details). Dyads completed 10 one-minute trials in 
our target tracking task. In half of the 10 trials, the partners tracked 
the target alone (‘alone trials’). In the other trials, partners were hap-
tically connected (‘connected trials’) by a computer-generated elas-
tic band (of stiffness 120 N m–1, such that the force vanishes when 
the partners’ hand positions coincide). The tracking errors e in the 
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‘alone trial’ and ec in the ‘connected trial’ were calculated as the root 
mean squared distance between the target and hand over one trial. 
As previously reported3, motor performance (defined as 1 – ec/e) was 
improved for both partners in connected trials, regardless of their 
difference in skill at the tracking task (see black data points and trace 
in Fig. 2). Motor performance was improved through practice both 
with a superior partner, who had a lower tracking error than one-
self at the task (one sample t-test, t(8)  =  13.5, P <  10−6; Fig. 2), and 
with an inferior partner, who had larger tracking error (t(8)  =  11.2, 
P <  10−5; Fig. 2). A model of haptic interaction should predict these 
improvements in motor performance during interaction.

The simulation of the ‘no computation’ model showed that 
although the inferior partner improved, the superior partner did 
not (Fig.  2, red trace). This demonstrates that the performance 
improvements in our interactive tracking task cannot be explained 
solely by the mechanical coupling of the two partners, and that 
partners were using haptic information to modulate their behaviour 
depending on the interaction with each other.

The ‘follow the better’ model (Fig.  2, green trace) was exam-
ined with a simulated dyad that could instantaneously judge and 
follow the partner nearer to the target (green panel in Fig.  1a).  
This mechanism predicted deterioration in tracking performance 
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Figure 1 | Computational framework to test four models of haptic interaction for comparison against experimental data. a, Control scheme of the four 
proposed models of interaction. A human tracking a visual target with their hand is modelled as a sensorimotor estimation problem. All four models used 
the same control formulation to send motor commands u to a point-mass model of the arm, and only the sensory information of the goal was modified. In 
the ‘no computation’ model, partners track the target as individuals in ‘alone trials’ while under the influence of the physical coupling. In ‘follow the better’, 
the position of the superior partner is followed if they are nearer to the target, otherwise the target is tracked. In ‘multi-sensory integration’, the weighted 
average of the target and partner’s positions is tracked. In ‘interpersonal goal integration’, a combination of the partner’s target and one’s own visual estimate 
of the target is tracked. For definitions of variables, please see Methods. b, Subjects each held the handle of their own robotic interface, and tracked the same 
randomly moving red target on their respective monitor with a white cursor representing their own hand position. Each subject could see the target, and only 
their own cursor on the computer screen. The partners’ hands were connected by a virtual elastic band in some ‘connected trials’ for haptic interaction.
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during interaction regardless of the partner’s error, which contra-
dicts the experimental data.

The ‘multi-sensory integration’ model was simulated with part-
ners who followed a weighted combination of the perceived target 
position and the partner’s position that was estimated from the hap-
tic forces (orange panel in Fig. 1a). This model also predicted con-
sistent deterioration in tracking performance and cannot explain 
the observed interaction behaviour (Fig. 2, orange trace).

Finally, in the ‘interpersonal goal integration’ model, we propose 
that the optimally weighted combination of the estimated partner’s 
target (that is, the partner’s movement goal) and one’s own target is 
tracked (blue panel in Fig.  1a). The partner’s target was estimated 
through an abstract representation of the partner’s tracking behaviour, 
which relates the partner’s movement in response to the movement of 
the target (see Methods). This model outperformed the other three 
models and explained the empirical data best, predicting motor per-
formance improvement for both the inferior and the superior part-
ners in the dyad (compare black data and blue model traces in Fig. 2).

Although our model captures the benefits of haptic interaction 
in simulation, can it really emulate the physical assistance provided 
by human partners during movement? To experimentally verify the 
‘interpersonal goal integration’ model’s ability to physically assist 
humans, we created a robot partner that embodied our model. We 
then assessed whether human users haptically interacting with it 
would also exhibit consistent improvements in motor performance. 
Twelve subjects interacted with the robot partner over three ses-
sions of 10 trials each, which consisted of an equal number of ‘con-
nected’ and ‘alone trials’. By modulating the robot’s performance  

across the three sessions, we were able to assess whether the sub-
jects could improve with a superior, similar and inferior robot 
partner. We observed that human users consistently improved 
their performance irrespective of the robot’s performance (Fig. 3a).  
They improved with a superior robot partner (t(11)  =   15.7, 
P <  10−8), with a similar one (t(11)  =   5.3, P <  0.001) and, criti-
cally, with an inferior robot partner as well (t(11) =  3.7, P <  0.005). 
A linear mixed-effects analysis (see Methods) revealed that these 
improvements were similar to those observed between human part-
ners (χ2(3) =  1.75, P >  0.62).

Although we have shown that a human partner and our robot 
partner improve a user’s motor performance during haptic inter-
action, can partners learn from this interactive practice and retain 
the performance improvements even without haptic assistance? 
To address this question, we measured the progression of track-
ing error across ‘alone trials’ in individuals who interacted with a 
human or our robot, and compared it with 10 additional solo sub-
jects who practised the same target-tracking task alone for the same 
duration. All subjects who occasionally interacted with a human 
or robot partner, and those who practised solo, displayed a large 
initial tracking error that exponentially converged after 10 trials 
(see Supplementary Fig. 2). First, the tracking error e from indi-
vidual subjects was fitted with an exponential function of the form 
e(T)  =  eL +  a exp(–λT), where a is a constant, λ is a learning rate and 
T represents the trial number. We then compared the error after 
learning, eL, across the subjects in the three conditions of: individu-
als interacting with a human partner, with our robot partner, and 
practising solo. The fit was done only for the ‘alone trials’ without 
haptic interacting forces (see Methods). A one-way ANOVA of eL 
with condition as a factor revealed a significant effect of the con-
dition on the error after learning (F(2,29) =  13.23, P <  10−4). Post-
hoc Tukey–Kramer tests revealed that the error after learning 
was significantly lower for subjects who had haptically interacted 
with a human (P <  0.005) and with our robot partner (P <  10−4), in 
comparison to the solo subjects. Furthermore, our robot partner 
improved motor learning as a human partner did, as the errors after 
learning were similar between the two conditions (P >  0.6).

Our robot partner’s ability to boost motor performance during, 
and to improve motor learning after haptic interaction with it, sup-
ports our hypothesis that physically interacting humans are able to 
acquire information about the target’s motion from the partner. This 
haptic information from the partner can be combined with one’s 
own visual information of the target for improved target estimation. 
Previous studies have shown that information across vision and 
haptics are weighted optimally by an individual subject7,8, but our 
computational model demonstrates an equivalent situation occur-
ring across partners. Such sharing of complete task information was 
not observed in verbally communicating partners during a joint 
decision-making task17, highlighting the fact that physical interac-
tion may provide complementary possibilities to verbal interaction 
for sharing sensory information across partners.

Although haptic forces do provide information about where 
a partner’s hand is, they do not provide direct information about 
where the partner wants their hand to go — that is, the partner’s tar-
get. During physical interaction, one must infer the partner’s target 
from their motion. The process of extracting the intention or goal 
of a visually observed action is described as action understanding 
in social neuroscience18. Our model, which proposes that humans 
extract a partner’s target or goal through the haptically estimated 
partner’s motion, suggests a form of haptically mediated action 
understanding18 during physical interaction. Previous studies have 
suggested specialized inference19, hierarchical predictive coding20 
and partner models21–24 as possible mechanisms for visual action 
understanding. Our model implementation simulates the partner’s 
target through one’s own forward model of the task and corresponds 
to modelling of a partner21–24. However, further studies are necessary  
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Figure 2 | Simulations of four representative models of haptic interaction 
reveal that the ‘interpersonal goal integration’ model has the most 
predictive power. Performance improvement during interaction as a 
function of the partner’s relative performance from experimental data is 
plotted in black (shaded region shows the 95% confidence interval). The 
predictions from the four models of haptic interaction are each plotted 
with the best model parameters that minimize the squared error from the 
experimental data (N =  18). Improvement is defined as 1 – ec/e, where e is 
the tracking error in an ‘alone trial’ and ec the tracking error in the preceding 
‘connected trial’. The horizontal axis plots the ratio of the partner’s alone 
error ep to own alone error e. ‘No computation’ (red trace) does not predict 
improvement for the superior partner. The ‘follow the better’ (green) 
and ‘multi-sensory integration’ (orange) mechanisms do not predict 
improvement for either partner. ‘Interpersonal goal integration’ (blue) 
predicts improvement for both the inferior and superior partners, and 
matches the experimental data best.
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∼ ∼= − + ̇− ̇F K h h D h h( ) ( ) (4)

In ‘alone trials’, when the subjects are not connected, the interaction force 
F =  0. The dynamics of the hand ≡ ̇ ̈h h hh [ , , ]Tare described, following equation (3), 
as

̇ = + ̇ + ̇u m F mh Ah B( / / ) (5)

Therefore, the control of the hand to track the target, described in equations (2) 
and (5), can be summarized by combining these two equations in the state 
equation

μ̇= + ̇ + ̇ +u m F mx Ax B( / / ) (6)

where x = h – t is the difference vector between the hand and the target.

Motion planning. Here, we describe the motion planning strategy of one 
individual tracking the target alone. To generate the motor command according to 
equation (1), the state of x must be estimated. The state x is observed through

ν ν σ σ= − + ∈ ≡ −ν νz h t E z E z, G(0, ), [( [ ]) ] (7)2

In general, with a state equation of the form of equation (6) and an observation 
z with noise

ν ∈ ≡ EG 0 N N z z( , ), [ ] (8)T

the state x̂ is estimated using the measurement with ẑ through minimization of 
the prediction error

ˆ−E z z[ ] (9)2

under the constraints of equation (6). This linear quadratic estimation can be 
computed in discrete time using an iterative Kalman filter algorithm29. Sensory 
delay in vision and proprioception can be compensated by integrating equation (6).

Interaction model. Which mechanism could be used to track the randomly 
moving target whilst being physically coupled to a partner? In the ‘no computation’ 
model, the target is tracked as in ‘alone trials’ while under the influence of the 
interaction force, yielding

ν= − +h tz (10)

The observed behaviours would be the by-product of the mechanical 
connection between two individuals performing their own task independently.

The ‘follow the better’ model suggests that the partner’s hand is tracked if it 
is nearer to the target than one’s own hand; otherwise, the target is tracked. We 
assume that the state of the partner’s hand is known to an individual from the 
interaction force in equation (4). The observation is dependent on







∼

∼= − | − | ≤ | − |
−

h t h t h t
h h

z if
otherwise

(11)

to clarify specifically how the partner is modelled by the central 
nervous system to estimate their movement goal.

Irrespective of the neural mechanism used by haptically interact-
ing individuals to estimate the partner’s target, our study clarifies 
how the sharing of movement goals can improve the motor perfor-
mance of both interacting partners, and yields a robot behaviour for 
human assistance. A fundamental issue with collaborative robots 
that work in contact with humans is to define robot behaviours that 
benefit the human user but do not interfere unnecessarily with the 
user’s movement25. The robot control algorithm that we propose 
continuously improves the performance of superior human part-
ners and corrects the movement of an inferior one. Furthermore, 
humans who practised with our robot learned the tracking task bet-
ter than those training alone for the same duration. These results 
promise collaborative robots that can provide human-like assistance 
for humans in manufacturing tasks25, in functional augmentation26 
and in rehabilitation27,28.

Methods
Dynamics of the tracking task. A model is developed to understand and  
simulate how two individuals connected by an elastic band plan their  
movement to track a randomly moving target. Here, we describe the  
dynamics of the task in one dimension.

To track a randomly moving target with position t, its trajectory must be 
estimated, then a motor command u must be generated to move the hand's 
position h to the target. The motor command has the form


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
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= −
−
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u L L L
h t
h t
h t

[ , , ] (1)p v a

which is the control law to move the hand towards the target, and L ≡ [Lp, Lv, La]  
is the vector of control gains for position, velocity and acceleration.

The target is assumed to be buffeted by Gaussian noise in its jerk, μ⃛ ≡t , 
yielding the second-order system
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where ≡ ̇ ̈t t tt [ , , ]Tand M ≡  E[ttT] is the covariance matrix. The hand is 
modelled as a point-mass m with dynamics

̈ = +mh u F (3)

where F is the interaction force from the elastic band, with stiffness K and 
damping D, that couples one’s own hand to a partner’s hand with position 

∼
h, thus
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Figure 3 | a robot partner embodying the ‘interpersonal goal integration’ model physically assists human users as human partners do. a, Performance 
improvement as a function of the partner’s relative performance (shaded region shows the 95% confidence interval). The same setup as Fig. 1b was used, 
but each partner interacted with a robot partner. The robot was programmed with a superior, similar and inferior performance (tracking error 2 cm lower, 
same and 3.5 cm higher than average human performance respectively). Humans interacting with the robot (blue trace) improved with all robot partners, 
exhibiting similar improvements to haptic interaction between humans (black trace). b, Error after learning, eL, from individual exponential fits of subjects 
(mean ±  s.e.m.) who practised solo (red bar, N =  10), and from ‘alone trials’ of subjects who practised with a human partner (black bar, N =  18) or a robot 
partner (blue bar, N =  12). Initially, subjects in all three conditions began with similar performance (see Methods).
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‘Multi-sensory integration’ proposes to track the statistically optimal 
combination of the partner’s position and one’s own visual estimate of the target
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= −
−

h t
h h

z (12)

where the partner’s hand position 
∼
h is known through the interaction force in 

equation (4).
Finally, the ‘interpersonal goal integration’ model proposes that the partner’s 

target is optimally combined with one’s own visual estimate, such that
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How is the partner’s target t̃ estimated? Individuals could use an abstract 
representation of the partner, who tracks the same target in a similar manner to 
oneself. An individual would consider that the partner carries out a tracking task 
similar to equation (6), and sends a motor command
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to move their hand’s position 
∼
h to their target position t̃ .

The partner’s state is estimated through the interaction force and the state of 
the individual’s hand. To estimate the partner’s target ˜ ≡ ˜ ˜̇ ˜̈t t tt [ , , ]T , their control law 
∼L must be identified. As ∼L is unknown, it is assumed to evolve according to noise 
through

∼ ∼ ∼̇ λ λ ̇ ̇≡ ∈ EL G 0 L L, ( , [ ]) (15)T

Thus, the abstract representation of the partner’s task x would include the  
states of his/her target, hand, control law, one’s own hand and the interaction  
force, yielding

∼ ∼˜≡ Fx t h L h( , , , , ) (16)

This abstract state evolves nonlinearly in time with ̇≡
˙

fx x( ), which is 
approximated by linearizing this function at every time instance and then used for 
linear quadratic estimation30.

To identify the partner’s control, the abstract state is approximated by assuming 
that the partner tracks the same target t. Specifically, the sensory information 
z ≡   (t, h, F) of one’s own target and hand positions and the interaction force is 
used; a linearization of f x( ) and the minimization of the squared estimation 
error ˆ−E z z[ ]2  provides an estimate for 

∼ ∼≡ Fx t h L h( , , , , ). After identifying 
the partner’s control ∼L, the observation ∼≡ h Fz L( , , ) is used to estimate 

∼ ∼˜≡ Fx t h L h( , , , , ), yielding t̃ .

Simulations. For each proposed model, we conducted a sensitivity analysis to 
compare the predictive power of each model of interaction over a parameter space. 
Two free parameters of the model were adjusted: σμ

2 , a multiplier for the Gaussian 
noise μ in the jerk in equation (2), and q>  0, a multiplier for the state cost Q in the 
controller. L will minimize

∫ +
∞

q u Ru tx Q x( ) d (17)T T
0

where the state cost qQ is positive semi-definite and control cost R >  0.
The parameter σμ

2  determines the frequency content of the simulated  
trajectory, and q modulates the strength of the partner’s controllers. σμ

2 was  
bound within a range that matched the spectrum of the trajectories in the data,  
and q was varied within the limits of human strength (see Supplementary 
Information for more details).

The squared distance from each model to the data was used as a metric for 
predictive power. Over the whole parameter space, the ‘interpersonal sensorimotor 
integration’ model had the most predictive power (Supplementary Fig. 1a).

Experiments. All 40 subjects described in the main paper gave informed consent 
for their participation in the experiments, which were conducted according to the 
principles in the Declaration of Helsinki and approved by the ethics committee at 
the Advanced Telecommunication Research Institute (www.atr.jp). The subjects 
tracked a moving target on the visual screen in consecutive 60-s trials. Details of 
the target function can be found in the previous study3. In the solo experiment, 
10 subjects completed 10 consecutive ‘alone trials’. In the interaction experiment, 
18 subjects completed 10 trials, of which half were ‘alone trials’ and half were 
‘connected trials’. The order of ‘alone trials’ (A) and ‘connected trials’ (C) followed 
one of two sequences: either ACACAACCAC or CACACCAACA. During 

‘connected trials’, the hands of the dyad were connected by a virtual compliant 
elastic band of stiffness K =  120 N m–1 and a small damping D =  7 N s m–1.

The human–robot experiment consisted of three sessions, each alternating 
‘connected’ and ‘alone trials’ for a total of 10 trials per session with a fixed 
sequence of CACACACACA. The robot’s performance was kept constant within 
each session, and 12 subjects experienced the sessions in the order of superior, 
similar and inferior robot performances (tracking error 2 cm lower than, same as, 
and 3.5 cm higher than average human performance, respectively). The human-
like robot control consisted of equations (6), (8) and (13) and was implemented 
in discrete time using a step size of dt =  0.005 s and with the parameters 
K =  120 N m–1, D =  7 N s m–1 and m =  1 kg. The sensory delay was set to 150 ms and 
was compensated by iterating the forward model of equation (6) in time.

Statistical significance for the better and worse partners in the interaction 
experiment and when interacting with superior, similar and inferior robot partners 
was tested using a one-sample t-test, of which all passed the Jarque–Bera normality 
test at the 5% significance level.

Statistical significance of the improvement in the experimental condition was 
tested using a one-sample t-test of the mean improvement of each subject. Data 
from the human–human and human–robot experiments were fitted using a linear 
mixed-effects model with improvement I =  1 −  e/ec as the dependent variable, and 
with the partner’s relative error E =  1 −  ep/e and E2 as predictors in the form

β β β ε= + + +I E E (18)i i0 1 2
2

where β0i is the intercept, β1 the slope and εi the unexplained variance of 
the improvement for each dyad i. We compared the difference in improvement 
between the human–human and human–robot by adding the condition factor 
C, labelling each datum as coming from the human–human or human–robot 
experiment, in the model

β β β β β β ε= + + + + + +I E E C EC E C( ) ( ) (19)i i0 1 2
2

3 4 5
2

and compared the two models from equations (18) and (19) using a likelihood 
ratio test.

Motor learning was estimated by an exponential fit (e(T) =  eL +  ae(−λT) where 
eL is error after learning and T is trial number) of the trials (only the ones without 
haptic forces) from all subjects. The error fit at T =  0 was estimated as the error in 
the first 5 s of the first trial, as subjects exhibited rapid motor learning in the first 
60 s of the tracking experiment. We conducted one-way analysis of variance on the 
baseline error (e(0) =  eL +  a) with condition as a factor, and found an insignificant 
difference in the baseline error of subjects in the solo, human–human and human–
robot conditions (F(2,29) =  0.71, P >  0.5). A one-way analysis of variance on eL 
with condition as the factor showed a significant effect (F(2,29) =  13.23, P <  10−4); a 
multiple comparisons Tukey–Kramer test revealed significant differences between 
the solo and human–human (P <  0.005) and solo and human–robot conditions 
(P <  10−4 ), whereas the human–human and human–robot error after learning was 
similar (P >  0.6).

Data availability. The data that support the findings of this study are available 
from the corresponding authors upon request.

Code availability. The code used for the simulations in this study is available from 
the corresponding authors upon request.
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