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Abstract— This paper proposes a robot interface design
method by which we can control humanoid end-effector move-
ments with such a low-dimensional input device as a gamepad.
In our proposed method, first, the numbers of movement trajec-
tories to accomplish different tasks are generated using a sim-
ulated robot model and stored in a database. Second, a human
user demonstrates the current task-related behavior. Third, the
corresponding stored movements for the demonstrated human
behavior are sparsely extracted by a sparse coding method.
Finally, the sparsely extracted movement bases are linearly
combined to generate a novel movement to accomplish a new
target task where the linear weight parameters are modulated
by the gamepad. We easily generated such complicated hand
movements as spiral motions on a small humanoid robot with
our proposed interface.

I. INTRODUCTION

As robotic technologies continue to progress, robots are
expected to support daily human activities, engage in manu-
facturing, and assist disaster-recovery efforts. To use robotic
devices for supporting human activities, we must properly
design an interface that connects human users and robots.
Using vision systems to monitor human gestures for recog-
nizing user intentions is a popular approach [1], [2], [3]. A
hand movement recognition device such as a Wii controller
has also been used as a robot interface [4]. Measuring
myoelectric signals is another promising approach to design
an intuitive interface to control robotic devices [5], [6],
[7]. Brain machine interfaces are also getting attention as
a potentially very useful robot control interface [8], [9].

On the other hand, one of the most popular interfaces to
control high-dimensional systems is a gamepad. Using such
a low-dimensional input device as a gamepad to control high-
dimensional systems, including in-game characters, is a very
common interface implementation.

Interestingly, users do not need to spend a significant
amount of time for training to achieve a certain skill level
to properly control the in-game characters. This is probably
because the design that connects the input device to the high-
dimensional system is proper. The development of an proper
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robot interface, which allows users to control a complicated
robotic device without significant effort, is critical.

To develop such a useful robot interface, we need to
find proper constraints to connect low-dimensional input
devices with a robot system. In previous studies, manifold
learning methods, e.g., [10], [11], have been used to find
low-dimensional representations of high-dimensional human
movements as proper constraints [12], [13], [14], [15], [16],
[17]. However, in these previous approaches, since an appro-
priate low-dimensional manifold needs to be extracted for
each target behavior, they are not suitable for generating a
wide variety of movements.

On the other hand, task-space control is a standard ap-
proach to generate high-dimensional whole-body humanoid
movements that correspond to task-relevant end-effector tra-
jectories [18], [19], [20]. However, it is not very easy to
generate three-dimensional task-space hand movements by
a gamepad when users need to generate complicated hand
trajectories. In addition, since users need to continuously
control a humanoid end-effector using the input device,
generating fast movements is also difficult.

In this paper, we consider a different approach for a robot
interface design. We adopt the ideas of movement primi-
tives [21] or motor tapes [22] to generate robot movements.
Previous studies showed that these approaches are useful for
generating a variety of movements from previously learned
motions to adapt to the surrounding environments and the
given tasks [23], [22]. In our approach, we first store differ-
ent trajectories as basis movements that can be considered
movement primitives. Then we use a sparse coding approach
by which a newly observed movement is represented with
sparsely selected basis trajectories. By linearly combining
the selected basis trajectories, users can generate different
types of movements, where the combinations of the bases is
determined using a low-dimensional input device such as a
gamepad.

This paper is organized as follows. In Section II, we
explain our strategy for constructing a low-dimensional inter-
face for humanoid end-effector control with a sparse coding
approach. In Section III, we introduce our experimental
setups that are composed of a small humanoid robot platform
and a low-dimensional input device. In Section IV, we show
our experimental results using the simulations and a real
humanoid robot. We also present control performances with
a designed humanoid interface, which we compare with a
standard task-space control interface.
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Fig. 1. Schematic diagram of our proposed framework. In our proposed method, 1) numbers of movement trajectories to accomplish different tasks
are generated with a simulated robot model and 2) stored in a database; 3) human user demonstrates current task-related behavior; 4), 5) corresponding
stored movements and parameters to demonstrated behavior are sparsely extracted by a sparse coding method; 6), 7) sparsely extracted movement bases
are linearly combined to generate novel movement to accomplish a new target task where linear weights for combinations are controlled by gamepad.

II. METHODS

Here we introduce our interface design method for hu-
manoid end-effector control. Figure 1 shows the interface
design strategy. First, we present how we store basis move-
ments into a database by using a simulated environment.
Second, we introduce how to extract basis movement tra-
jectories from the stored movements. Finally, we describe
how to generate humanoid end-effector movements by using
a low-dimensional input device such as a gamepad based on
the extracted bases.

A. Storing movement bases

We first store numbers of end-effector movement trajecto-
ries in a movement database by using a simulated humanoid
robot model. It is easy to design wide variety of movements
for accomplish different tasks in a simulated environment.
We then solve inverse kinematics problems to generate
corresponding joint movements when we control a humanoid
platform. A simulated robot generates numbers of task-
related hand movements and these end-effector trajectories
are stored as movement bases. Here we assume that we have
N trajectory bases, where each end-effector trajectory basis
has m sample points. Then, the movement basis storage can
be represented as:

D = [b1,b2, . . . ,bN ] , (1)

where bi ∈ Rm denotes each trajectory basis.

B. Extracting movement bases

We then linearly combine end-effector trajectory basis,
where the trajectories are sparsely extracted from the move-
ment database. For selecting these basis, we consider using a

sparse coding method based on L1-norm regularization [24].
Concretely, we solve a sparse linear regression problem:

x∗ = argminx||y −Dx||22 + λ||x||1, (2)

where x denotes weight parameter vector and y denotes an
observed hand-movement trajectory of a human demonstra-
tor. Sparsity of the solution depends on the parameter λ. x∗

denotes optimized weight parameter.

C. Generating movements by constructed interface

Finally, we generate task-related end-effector movements
by controlling the weight parameters that correspond to the
extracted basis trajectories. To control the weight parameters,
we use low-dimensional input device such as a gamepad. By
using the modified weight parameters, end-effector move-
ment trajectories are represented as:

ỹ = Dx̃, (3)

where
x̃ = x∗ +∆x (4)

denotes the modified input parameter vector composed of
the parameter find in the reconstruction process x∗ in (2)
and the low-dimensional control input ∆x. ỹ denotes the
newly generated robot movement trajectory.

III. EXPERIMENTAL SETUPS

A. Small humanoid robot platform and Low-dimensional
input device

We use a 25-DOF small humanoid platform (see also
Fig. 2(A)) to evaluate our proposed interface design method.
As an input device, we use a gamepad which has two of
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Fig. 3. An example of the stored spiral trajectories that are used in our experiment, and corresponding robot postures.

Fig. 2. (A) 25-DOF small humanoid platform, (B) Low-dimensional input
device. The device has two of two-DOF analog joysticks.

two-DOF analog joysticks (see also Fig. 2(B)). The analog
joystick inputs were used to determine the parameter inputs
∆x in (4). Then, a trajectory composed of the linearly
combined bases was used to control the small humanoid
platform.

B. Constructing spiral movement database

We constructed end-effector movement database using
a simulation environment of the small humanoid platform
depicted in Fig. 2(A). In this study, we consider generating
complicated hand movements such as spiral trajectories. In
our experiment, 96 spiral trajectories are generated in the
simulated environments, where the spirals with four different
sizes, three different length, and eight different rotation
angles were considered, i.e., 4 × 3 × 8 = 96. Then, the
generated trajectories were stored and represented in a matrix
from D in (1). Figure 3 shows an example of the stored
spiral trajectories that were used in our experiment, and

corresponding robot postures.

C. Spiral movement demonstration

From the constructed movement database, we sparsely ex-
tracted four movement bases by observing a hand movement
y demonstrated by a human user. As examples, a human
user demonstrated three different types of spiral motions as
depicted in Figs. 4(A),(D) and (G). Then, for each observed
spiral movement, corresponding trajectories in the movement
database are sparsely selected by the basis selection method
presented in (2). The four movement bases are selected
based on the absolute value of the element of the optimized
parameter vector x∗ in (2). Note that we used lambda
parameter λ = 0.001 so that less than ten movement bases
were sparsely selected from the database which includes 96
bases. In other words, based on the absolute value of the
element of the optimized parameter vector, we finally chose
the four bases from the less than ten bases selected by the
sparse coding method.

D. Spiral movement generation

The parameters for the selected basis trajectories are
controlled to generate modified spiral movements. These
parameters were controlled by using the gamepad (see also
Fig.2(B)). The two of the two-DOF joysticks were assigned
to control the selected four parameters. We show that the
small humanoid platform can generate similar but different
spiral hand movements from the observed spiral trajectories
by controlling parameters with using the gamepad. We then
also show that we can control the small humanoid robot to
generate the modulated spiral movement.
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Fig. 4. Generated spiral movements. (A)-(C) correspond to first observed movement, (D)-(F) correspond to second observed movement, (G)-(I) correspond
to third observed movement. (A),(D),(G): Demonstrated and reconstructed spirals. Demonstrated movements were measured by using Visualeyez real-time
motion capture system (Phoenix Technologies Inc.). (B),(E),(H): Selected basis end-effector trajectories. (C),(F),(I): Modulated spirals by using proposed
interface.

IV. RESULTS

A. Generating spiral movements

We first showed that we were able to generate spiral move-
ments by using the low-dimensional input device. Figure 4
shows the results of the interface construction procedure.
Human user demonstrated different spiral movements that
have three different shapes (see also Figs. 4 (A),(D) and (G)).
For each demonstrated movement, the four movement bases
were selected by using (2) (see also Figs. 4 (B),(E) and (H))
and the corresponding parameters were controlled by using
the gamepad. In Figs. 4(C),(F) and (I), modulated spirals
are presented for each different demonstrated movement. By
using the constructed robot interface, we showed that the
user was able to easily control the end effector of the small
humanoid robot by using the gamepad input device based on
the sparsely selected basis trajectories. Figure 5 shows the
real humanoid robot movement when the robot generated the
modulated spiral movement which is presented in Fig.4(C).

B. Spiral movement control to generate a desired trajectory

We then showed that the constructed humanoid interface
were able to be used to follow a target spiral movement by
controlling the small humanoid robot with using the gamepad
input device. Although generating a spiral movement by

using the constructed robot interface was easy, still, some
training trials were necessary for a user to follow the target
spirals. We show the learning performance of a user to
generate a target spiral movement in Fig. 6. Within 30
trials, humanoid end-effector control performance was much
improved, where each trial only takes around one second.

As a comparison, we also asked the same subject to gen-
erate a target spiral movement by using an control interface
by which the hand position in a cartesian coordinate were
directory controlled by the two-DOF analog joystick. Figure
7 shows the comparison of the generated spiral movements.
As in Figure 7(B), direct control of the hand position for
generating the spiral trajectory by using the gamepad was
very difficult while, as in Fig.7(A), it was easy to generate
spiral end-effector movement to follow the target trajectory
by using the proposed interface. These results clearly show
that our proposed approach was much easier to be used
to generate a complicated end-effector trajectory such as a
spiral movement.

V. CONCLUSIONS
We proposed a humanoid interface design method. We

showed that we can easily generate spiral hand movements
on a small humanoid platform by using the gamepad input
device. Humanoid robot movements were controlled by the
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Fig. 5. Generated spiral movements on real humanoid platform. Red disks represent end-effector positions.

Fig. 6. Spiral control performance using the proposed interface. Within
30 trials, humanoid end-effector control performance was much improved,
where each trial only takes around one second. Mean and standard deviation
of errors for every five trials are plotted.

Fig. 7. Comparison of the generated spiral movements. This results clearly
show that our proposed approach was much easier to be used to generate a
complicated end-effector movement such as a spiral trajectory. (A)Proposed.
(B)Control interface by which the hand position in a Cartesian coordinate
were directory controlled by the two-DOF analog joystick.

combined basis motion trajectories, where the parameters to
combine each basis were determined by the input command
specified with the gamepad. The basis trajectories were
sparsely extracted from the stored spiral trajectories by using
the sparse coding method. Different spiral movements were
successfully generated by using the constructed interface.
Since the stored basis trajectories were generated in the simu-
lated humanoid robot system, it would not be always suitable
to code the observed human movements. In such case,
we can possibly use a dictionary learning method [25] to
adapt the stored basis motion to observed human movement
trajectories. Therefore, in our future study, we consider using
this kind of adaptation mechanism to refine the stored basis
trajectories to properly represent observed human behaviors.

ACKNOWLEDGMENT

This is the results carried out under MIC-SCOPE. Part of
this research was supported by SRPBS, AMED/MEXT. This
research was also partially supported by MEXT KAKENHI
grant Number 23120004, ImPACT Program of Council for
Science, Technology and Innovation, and NEDO.

REFERENCES

[1] H. Do, C. Mouser, Y. Gu, W. Sheng, S. Honarvar, and T. Chen,
“An open platform telepresence robot with natural human interface,”
in Cyber Technology in Automation, Control and Intelligent Systems
(CYBER), 2013 IEEE 3rd Annual International Conference on, May
2013, pp. 81–86.

[2] J. T. C. Tan and T. Inamura, “Sigverse - a cloud computing architecture
simulation platform for social human-robot interaction,” pp. 1310–
1315, 2012.

1820



[3] R. Yan, K. P. Tee, Y. Chua, and H. Tang, “A gesture recognition
system using localist attractor networks for human-robot interaction,”
in Robotics and Biomimetics (ROBIO), 2010 IEEE International
Conference on, Dec 2010, pp. 1217–1222.

[4] D. Balakrishna, P. Sailaja, R. Rao, and B. Indurkhya, “A novel human
robot interaction using the wiimote,” in Robotics and Biomimetics
(ROBIO), 2010 IEEE International Conference on, Dec 2010, pp. 645–
650.

[5] T. Matsubara, S. Hyon, and J. Morimoto, “Learning and adaptation
of a stylistic myoelectric interface: Emg-based robotic control with
individual user differences,” in Robotics and Biomimetics (ROBIO),
2011 IEEE International Conference on, Dec 2011, pp. 390–395.

[6] K. Kiguchi and Y. Hayashi, “An emg-based control for an upper-limb
power-assist exoskeleton robot,” Systems, Man, and Cybernetics, Part
B: Cybernetics, IEEE Transactions on, vol. 42, no. 4, pp. 1064–1071,
Aug 2012.

[7] J. Furukawa, T. Noda, T. Teramae, and J. Morimoto, “An emg-
driven weight support system with pneumatic artificial muscles,” IEEE
Systems Journal, vol. PP, no. 99, pp. 1–9, 2014.

[8] J. Zhao, Q. Meng, W. Li, M. Li, F. Sun, and G. Chen, “An
openvibe-based brainwave control system for cerebot,” in Robotics
and Biomimetics (ROBIO), 2013 IEEE International Conference on,
Dec 2013, pp. 1169–1174.

[9] T. Noda, N. Sugimoto, J. Furukawa, M. Sato, S. Hyon, and J. Mori-
moto, “Brain-controlled exoskeleton robot for bmi rehabilitation,” in
IEEE-RAS International Conference on Humanoid Robots, 2012, pp.
21–27.

[10] P. Dollar, S. Belongie, and V. Rabaud, “Learning to traverse image
manifolds,” in Proceedings of NIPS, 2006, pp. 361–368.

[11] P. Dollar, V. Rabaud, and S. Belongie, “Non-isometric manifold
learning: Analysis and an algorithm,” in Proceedings of the 24th
international conference on Machine learning, 2007.

[12] K. Tatani and Y. Nakamura, “Dimensionality reduction and repro-
duction with hierarchical nlpca neural networks-extracting common
space of multiple humanoid motion patterns,” in Proceedings of IEEE
International Conference on Robotics and Automation, 2003, pp.
1927–1932.

[13] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popović, “Style-
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