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Learning CPG-based biped locomotion with a policy gradient method
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Abstract

In this paper, we propose a learning framework for CPG-based biped locomotion with a policy gradient method. We demonstrate that
appropriate sensory feedback to adjust the rhythm of the CPG (Central Pattern Generator) can be learned using the proposed method within
a few hundred trials in simulations. We investigate linear stability of a periodic orbit of the acquired walking pattern considering its approximated
return map. Furthermore, we apply the controllers acquired in numerical simulations to our physical 5-link biped robot in order to empirically
evaluate the robustness of walking in the real environment. Experimental results demonstrate that the robot was able to successfully walk using
the acquired controllers even in the cases of an environmental change by placing a seesaw-like metal sheet on the ground and a parametric change
of the robot dynamics with an additional weight on a shank, which was not modeled in the numerical simulations.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, there has been a growing interest in biologically
inspired control approaches for biped locomotion using neural
oscillators (e.g., [1]) as a central pattern generator (CPG).
Notably, Taga [2] demonstrated the effectiveness of this
approach for biped locomotion to achieve the desired walking
behavior in unpredicted environments in numerical simulations.
Following this pioneering work, several attempts have been
made to explore neural oscillator based controllers for legged
locomotion [3,4]. Neural oscillators have desirable properties
such as entrainment through interaction with the environment.
However, in order to achieve the desired behavior of the
oscillators, much effort is required in manually tuning their
parameters. Our goal in this study is to develop an efficient
learning framework for CPG-based locomotion of biped robots.

As parameter optimization methods for CPG-based loco-
motion controllers, a genetic algorithm [5] and reinforcement
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learning [6] were applied to determine the open parameters
of the CPG considering high dimensional state space. How-
ever, these methods often require a large number of iterations
to obtain the solution, and typically suffer from high compu-
tational costs with an increase of dimensionality of the state
space. These undesirable features make it infeasible to directly
apply these methods to real robots in real-time implementation.

In this paper, we focus on learning appropriate sensory
feedback to the CPG in order to achieve the desired walking
behavior. The importance of sensory feedback to CPG in order
to achieve adaptation to the environment is pointed out in [2].
We propose a learning framework for a CPG-based biped
locomotion controller using a policy gradient reinforcement
learning method for a 5-link biped robot (Fig. 1). The policy
gradient method is a technique for maximizing an accumulated
reward with respect to the parameters of a stochastic
policy by trial-and-error in an unknown environment [7–11].
However, the policy gradient method also suffers from high
computational costs with an increase of dimensionality of the
state space when the use of function approximator with a large
number of parameters is desirable to represent a nonlinear
controller. Thus, in order to reduce the dimensionality of the
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Fig. 1. 5-link biped robot (left) and its model (right). x–z plane is defined as
“sagittal plane”.

state space used for learning, we only use partial physical states
of the robot in our proposed learning system, i.e., we do not
use internal states of the CPG and the rest of the states of the
robot for learning. As a result, we conceive of the proposed
learning framework as a partially observable Markov decision
process (POMDP). A general reinforcement learning approach,
for example, Q-learning, finds a deterministic optimal policy
that maximizes the values of all the states simultaneously
assuming that the environment has the Markov property [12].
However, as discussed in [13], stochastic policies often show
better performance than deterministic policies in POMDPs.
Moreover, the effectiveness of the policy gradient method in
POMDPs has been empirically demonstrated for a 4-legged
robot [14] and a passive-dynamics based biped robot [15].
Thus, we choose to use a policy gradient method for our
learning system among other possible reinforcement learning
methods.

This paper is organized as follows. In Section 2, we
introduce a central pattern generator which is used for
generation of walking behavior in this study. In Section 3,
we describe a policy gradient reinforcement learning method
for a CPG-based biped locomotion controller. In Section 4,
we present the proposed control architecture for our
5-link robot to achieve biped walking behavior. In Section 5,
first, we demonstrate the effectiveness of the proposed
learning framework by numerical simulations. Then, we
investigate linear stability of a periodic orbit of the acquired
walking pattern considering its approximated return map. In
Section 6, we present experimental results suggesting that
successful biped walking with our physical 5-link robot can be
achieved using the controller learned in numerical simulations.
Moreover, we analyze convergence properties to steady-state
walking with variations in initial conditions based on a
return map, and experimentally demonstrate the robustness
of the acquired walking against environmental changes and
parametric changes in the robot dynamics. In Section 7, we
summarize this paper and discuss the approaches of policy
search in motor learning and control. Finally, we address open
problems and future work.

2. Central pattern generator

The CPG-based controller is composed of a neural oscillator
model and a sensory feedback controller which maps the states
of the robot to the input to the neural oscillator model. In
Section 2.1, we present the neural oscillator model. Then,
in Section 2.2, we introduce sensory feedback to the neural
oscillator model.

2.1. Neural oscillator model

We use a neural oscillator model proposed by Matsuoka [1].
The oscillator dynamics of i-th unit are:

τCPG żi (t) = −zi (t) −

n∑
j=1

wi j q j (t) − βpi (t) + z0 + vi (t), (1)

τ ′

CPG ṗi (t) = −pi (t) + qi (t), (2)

qi (t) = max(0, zi (t)), (3)

where n is the number of neurons, zi (t) and pi (t) are internal
states of a CPG. τCPG and τ ′

CPG are time constants for the
internal states. wi j is a inhibitory synaptic weight from the j-th
neuron to the i-th neuron. z0 is a bias. vi (t) is a feedback signal
which will be defined in (4) below.

2.2. Sensory feedback

The feedback signal to the neural oscillator model vi (t) in
Eq. (1) is given by

vi (t) = vmax
i g(ai (t)), (4)

where g(ai ) =
2
π

arctan
(

π
2 ai

)
, and vmax

i is the maximum value
of the feedback signal. The output of the feedback controller
a = (a1, . . . , am)T is sampled from a stochastic policy:

π(x, a; Wµ, wσ )

=
1

(
√

2π)m |D(wσ )|
1
2

exp
(

−
1
2
(a − µ(x; Wµ))TD−1

× (wσ )(a − µ(x; Wµ))

)
, (5)

where x are partial states of the robot. Wµ is the m×k parameter
matrix, wσ is the m-dimensional parameter vector of the policy,
where m is the number of outputs, and k is the number of
parameters. µ(x; Wµ) is the mean vector of the policy. The
covariance matrix D is defined as D(wσ ) = ST(wσ )S(wσ ). We
can equivalently represent a by

a(t) = µ(x(t); Wµ) + S(wσ )n(t), (6)

where n(t) ∈ Rm is a noise vector and ni (t) is sampled from
the normal distribution with the mean of 0 and the variance of
1. Note that the matrix S(wσ ) must be chosen such that D(wσ )

is positive definite.

3. Learning sensory feedback to CPG with a policy
gradient method

We describe the use of a policy gradient method in order
to acquire a policy of the sensory feedback controller to the
neural oscillator model. In Section 3.1, we first define the value
function and temporal difference error (TD error) in continuous
time and space [16], which is used in the policy gradient
method. In Section 3.2, we describe the learning method to
improve the policy of the sensory feedback controller.



T. Matsubara et al. / Robotics and Autonomous Systems 54 (2006) 911–920 913
3.1. Learning the value function

Consider a continuous-time system which represents both
the robot and the CPG dynamics,

dxall(t)

dt
= f (xall(t), a(t)), (7)

where xall
∈ X ⊂ Rl consists of the state of the robot and the

CPG, and a ∈ A ⊂ Rm is the output of the feedback controller,
that is, input to the CPG. We denote the immediate reward as

r(t) = r(xall(t), a(t)). (8)

The value function of the state xall(t) based on a policy
π(xall , a) is defined as

V π (xall(t)) = E

{∫
∞

t
e−

s−t
τ r(xall(s), a(s))ds

∣∣∣∣ π}
, (9)

where τ is a time constant for discounting future rewards. The
consistency condition for the value function is given by the time
derivative of (9) as

dV π (xall(t))

dt
=

1
τ

V π (xall(t)) − r(t). (10)

We denote a current estimate of the value function as
V (xall(t)) = V (xall(t); wc), where wc is the parameter of
the function approximator. If the current estimate of the value
function V is perfect, it should satisfy the consistency condition
(10). If this condition is not satisfied, the prediction should be
adjusted to decrease the inconsistency

δ(t) = r(t) −
1
τ

V (t) + V̇ (t). (11)

This is the continuous-time counterpart of the TD error [16].
Because we consider a learning framework in POMDPs, i.e., we
observe only the partial state x of the state xall , the TD error
does not usually converge to zero. However, Kimura et al. [8]
suggested that the approximated value function can be useful
to reduce the variance of the gradient estimation in (13) even if
the consistency condition in (10) is not satisfied.

The update laws for the parameter vector of the value
function wc and the eligibility trace vector ec for wc are defined
respectively as

ẇc(t) = αδ(t)ec(t), ėc(t) = −
1
κc ec(t) +

∂Vwc

∂wc , (12)

where α is the learning rate and κc is the time constant of the
eligibility trace.

3.2. Learning a policy of the sensory feedback controller

In [8], Kimura et al. presented that by using TD error δ(t)
and eligibility trace vector ea(t), it is possible to obtain an
estimate of the gradient of the expected actual return Vt with
respect to the parameter vector wa in the limit of κa

= τ as

∂

∂wa E {Vt | πwa } = E{δ(t)ea(t)}, (13)
Fig. 2. Experimental setting.

where

Vt =

∫
∞

t
e−

s−t
τ r(s)ds, (14)

wa is the parameter vector of the policy πwa = π(x, a; wa),
and ea(t) is the eligibility trace vector for the parameter
vector wa . The parameter vector wa is represented as wa

=

(wµ
1

T
, . . . , wµ

m
T
, wσ T)T, where wµ

j is the j-th column vector of
the parameter matrix Wµ. The update laws for the parameter
vector of the policy wa and the eligibility trace vector ea(t) can
be derived respectively as

ẇa(t) = βδ(t)ea(t), ėa(t) = −
1
κa ea(t) +

∂ ln πwa

∂wa (15)

where β is the learning rate and κa is the time constant of the
eligibility trace. In the case of κa

= τ ≈ ∞, the actual return
used as a criteria for the policy improvement in this algorithm is
similar to the average reward criteria widely used in other policy
gradient methods [9–11]. (See Section 7.3 for more details.)

4. Control architecture for 5-link robot

In this paper, we use a planar 5-link biped robot (Fig. 1)
developed in [17]. The experimental setting is depicted in
Fig. 2. The height of the robot is 0.4 m and the total mass is
about 2 kg. The length of each link of the leg is 0.2 m. The
masses of the body, thigh and shank are 1.0 kg, 0.43 kg and
0.05 kg, respectively. The motion of the robot is constrained
within the sagittal plane which is defined as shown in Fig. 1
(right) by a tether boom. The hip joints are directly actuated by
direct drive motors, and the knee joints are driven by motors
through a wire transmission mechanism with a reduction ratio
of 2.0. These transmission mechanisms with low reduction
ratio provide high back drivability at the joints. Foot contact
with the ground is detected by foot switches. The robot is an
underactuated system having rounded soles with no ankles.
Thus, it is challenging to design a controller to achieve biped
locomotion with this robot since no actuation can be applied
between the stance leg and the ground unlike many of the
existing biped robots which have flat feet with ankle joint
actuation. In the following, we denote the left hip and knee
angles by θ l

hip and θ l
knee, respectively. Similar definitions are

also applied to the joint angles of the right leg.
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Fig. 3. Proposed control architecture for 5-link biped robot.
Fig. 3 illustrates our control architecture for the biped
robot, which consists of the CPG-based controller for the hip
joints and the state-machine controller for the knee joints.
Section 4.1 presents a CPG-based controller which generates
periodic walking patterns. Section 4.2 presents a state-machine
controller which makes foot clearance at appropriate timing
according to the state of the hip joint and the foot contact
information with the ground.

4.1. CPG-based controller for the hip joints

In the proposed control architecture, the hip joints of the
robot are driven by the CPG-based controller described in
Section 2. The hip joint controller is composed of four neurons
(i = 1, . . . , 4) in Eqs. (1)–(3): i = 1: extensor neuron for
left hip, i = 2: flexor neuron for left hip, i = 3: extensor
neuron for right hip, i = 4: flexor neuron for right hip. For the
sensory feedback (5), we consider the states of the hip joints
x = (θ l

hip + θp, θ̇
l
hip + θ̇p, θ

r
hip + θp, θ̇

r
hip + θ̇p)

T as the input
states. The target joint angle for the hip joint is determined by
the oscillator output qi :

θ̂ l
hip = −q1 + q2, θ̂r

hip = −q3 + q4. (16)

The torque output u at each hip joint is given by a PD controller:

uhip = K hip
p (θ̂hip − θhip) − K hip

d θ̇hip, (17)

where K hip
p is a position gain and K hip

d is a velocity gain.

4.2. State-machine controller for the knee joints

We design a state-machine controller for the knee joints as
depicted in Fig. 4. The state-machine controller changes the
pre-designed target joint angles for the knee joints according
to transition conditions defined by the hip joint angles and the
foot contact information with the ground. The torque command
to each knee joint is given by a PD controller:

uknee = K knee
p (θ̂knee − θknee) − K knee

d θ̇knee, (18)
Fig. 4. State transition 1 ∼ 4 in the state-machine controller for knee joints.

where K knee
p is a position gain and K knee

d is a velocity gain. We
define four target joint angles, θ1, . . . , θ4, for the state-machine
controller (Fig. 4). We use the hip joint angles and the foot
contact information to define the transition conditions of the
state-machine controller. The transition conditions defined by
the hip joint angles are given by θ l

hip − θr
hip < b or θr

hip − θ l
hip <

b, where b is a threshold of the transition conditions.

5. Numerical simulations

5.1. Simulation setup

In Section 5.1.1, we present function approximators for the
value function and policy of sensory feedback to CPG. In
Section 5.1.2, we describe reward function designed to achieve
biped walking though learning. In Section 5.1.3, we present the
parameter settings in the controller used for the simulations.
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Fig. 5. Accumulated reward at each trial: averaged by 50 experiments and
smoothed out by taking a 10-moving average. Error bar is the standard
deviation. Solid line: policy gradient method. Dash–dot line: value-function-
based RL.

5.1.1. Function approximator for the value function and the
policy

We use a normalized Gaussian Network (NGnet) [16] to
model the value function and the mean of the policy. This
function approximator was used in the authors’ previous studies
of reinforcement learning in continuous time and space, and
shown to be effective in the examples of a swing-up task of
an inverted pendulum and a dynamic stand-up behavior of
a real robot [16,18]. By this way, it is possible to achieve
smooth control compared to the tile-coding approach often used
in discrete reinforcement learning [12]. In addition, practical
feasibility of this function approximator was demonstrated for
real-time implementation of the control policy on a hardware
robot to achieve the desired behavior [18]. The variance of
the policy is modeled by a sigmoidal function [8]. The value
function is approximated with the NGnet:

V (x; wc) = wcTb(x) (19)

where b(x) = (b1(x), b2(x), . . . , bK (x))T,

bk(x) =
φk(x)

K∑
l=1

φl(x)

and φk(x) = e−‖sT
k (x−ck ) ‖

2
. (20)

K is the number of the basis functions, and wc is the parameter
vector of value function. The vectors ck and sk define the center
and the size of the k-th basis function, respectively. The mean µ

and the covariance matrix D of the policy are represented with
the NGnet and the sigmoidal function, respectively:

µ(x; Wµ) = WµTb(x), D(wσ ) = ST(wσ )S(wσ ), (21)

where S(wσ ) = diag(σ1, σ2, σ3, σ4),

σi =
1

1 + exp(−wσ
i )

and wσ
= (wσ

1 , wσ
2 , wσ

3 , wσ
4 )T. (22)

We locate basis functions φk(x) on a grid with an even
interval in each dimension of the input space (−π

3 ≤ θ l
hip +
θp ≤
π
3 , −3.0π ≤ θ̇ l

hip + θ̇p ≤ 3.0π, −π
3 ≤ θr

hip + θp ≤

π
3 , −3.0π ≤ θ̇r

hip + θ̇p ≤ 3.0π). We used 9216 (=12 × 8 ×

12 × 8) basis functions to approximate the value function and
the mean of the policy respectively.

5.1.2. Rewards
We used the following simple reward function:

r = kν max(0, ν), (23)

where the reward is designed to encourage forward progress
of the robot by giving a reward proportional to the forward
velocity of walking ν. In this study, the parameter for the reward
is chosen as kν = 0.05. The robot also receives a punishment
(negative reward) r = −1 for 0.5 s if it falls over.

5.1.3. Parameters for the controllers
Parameters of the neural oscillators used in (1)–(3) are

τCPG = 0.041, τ ′

CPG = 0.36, β = 2.5, z0 = 0.4, w12 =

w21 = w34 = w43 = 2.0, w13 = w31 = w24 = w42 = 1.0.
Initial values of the internal states are given by z1(0) = 0.05,
z2(0) = 0.05. We select the learning parameters as τ = 1.0,
α = 50, βµ

= 20, βσ
= 10, κc

= 0.1, κµ
= 1.0, κσ

= 1.0.
PD gains for hip joints are set to K hip

p = 4.0 N m/rad and

K hip
d = 0.07 N m s/rad, respectively. These CPG parameters

were roughly tuned to achieve some desirable natural frequency
and amplitude through numerical simulations. However, note
that as seen in Fig. 6, the robot cannot walk only with the
CPG, i.e., appropriate learned sensory feedback is necessary
for successful walking. Moreover, we will demonstrate that
choice of CPG parameters does not significantly affect the
performance of learning in our proposed framework (see
Section 5.2 below). Parameters of the state-machine are θ1 =

32◦, θ2 = 16◦, θ3 = 15◦, θ4 = 7.5◦ and b = 8.6◦. PD
gains for knee joints are chosen as K knee

p = 8.0 N m/rad and

K knee
d = 0.09 N m s/rad, respectively.

5.2. Simulation results

In the following simulations, the initial posture of the robot
is determined as θ l

hip = 5.5◦, θr
hip = −5.5◦, θp = 0.0◦, θ l

knee =

20.5◦, θr
knee = 0.0◦ (see the definition of each angle in Fig. 3)

and the initial velocity of the robot is randomly sampled from an
uniform distribution between 0.05 m/s and 0.20 m/s. In these
simulations, we define that a learning episode is successful
when the biped robot does not fall over for 10 successive trials.
We applied the policy gradient method with these settings to the
biped robot. Fig. 5 (solid line) shows an accumulated reward
at each trial with the policy gradient method. An appropriate
feedback controller of the CPG-based controller was acquired
in 181 trials (averaged over 50 experiments). Fig. 6(a) shows
the initial walking pattern before learning, where the robot falls
over after a few steps. Fig. 6(b) shows an acquired walking
pattern at the 1000-th trial with the learned sensory feedback
of the CPG-based controller.

As a comparison, we also implemented a value-function-
based reinforcement learning method proposed in [16]. The
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Fig. 6. Acquired biped walking pattern: (a) before learning, (b) after learning.
The arrow indicates the direction of walking.

result is also presented in Fig. 5 (dash–dot line). Although
the value-function-based RL could also acquire appropriate
biped walking controllers, it required a larger number of
trials compared with the policy gradient method (1064 trials
was required with the value-function-based RL on average).
Moreover, we observed that the learning was unstable with
higher learning rate in updating of policy parameters with
the value-function-based RL. The result is consistent to a
consideration that value-function-based reinforcement learning
methods are not suitable for POMDPs as pointed out in [13].
This point will be discussed in Section 7.3 in more detail.

We observed a large phase difference between the target
and actual trajectories in the hip joints while the knee joint
trajectories achieved good tracking of the target. This is due
to the choice of low PD gains for the hip joints. Despite this
large phase difference between the target and actual hip joint
trajectories, the robot could achieve successful walking. This
suggests that our method does not necessarily require very
accurate tracking with a high gain servo which is typically used
in model-based trajectory planning approaches [19–21].

In order to investigate sensitivity of learning against the
changes in the CPG parameters, we varied the CPG parameters
which characterize the frequency (τCPG, τ ′

CPG) and amplitude
(z0) from the values chosen above by ±25%, respectively. In
all cases, we could acquire successful walking within 1000
trials. We did not observe significant differences in the resultant
walking with the learned feedback controller even with these
varied CPG parameters. This suggests that careful tuning of
CPG parameters is not a prerequisite in our learning framework.

5.3. Linear stability of a periodic orbit in learned biped
walking

In this section, we analyze linear stability of a periodic orbit
in learned biped walking around a fixed point using a return
map [22]. The return map is defined as a mapping of the states
of the robot and CPG from the 4th step to the 6th step when
the right hip is in swinging phase and the angle is 0.2 rad. The
return map is an 18 dimensional mapping which consists of the
states of the robot and CPG except for the walking distance of
the robot. Initial velocity of the robot was randomly sampled
from an uniform distribution between 0.05 m/s and 0.15 m/s,
introducing perturbations in each dimension.

We analyzed the linearized return map which was approxi-
mated using 1500 sampled data, and confirmed all eigenvalues
were inside of the unit circle. The result implies that the peri-
odic biped walking is locally stable around the fixed point.

6. Hardware experiments

In this section, we implement the proposed control
architecture on the physical biped robot depicted in Fig. 1. We
use the same parameters for the CPG and state-machine and
also the same PD gains as used in the numerical simulations
presented in Section 5.1. In the state-machine controller, a low-
pass filter, with the time constant of 0.03 s, is used to avoid
discontinuous change in the target angles of the knee joint,
which is practically undesirable. To initiate locomotion in the
experiments, we first suspend the robot with the legs swinging
in the air, and then place the robot on the ground manually.
Thus, the initial condition of each run was not consistent.
Occasionally, the robot could not start walking or fell over after
a couple of steps when the timing was not appropriate.

6.1. Walking performance of the learned controller in the real
environment

We implemented ten feedback controllers acquired in the
numerical simulations, and then we confirmed that seven
controllers out of ten successfully achieved biped locomotion
with the physical robot. Fig. 7 shows the walking pattern
without a learned feedback controller, and Fig. 8 shows
snapshots of a walking pattern using one of the feedback
controllers. Fig. 11 presents trajectories of a successful walking
pattern at each joint in the right foot.

6.2. Convergence property from various initial conditions

The robot could achieve biped walking even though the
initial conditions in these experiments were not consistent. In
order to investigate the convergence property to steady-state
walking with variations in initial conditions, we analyze the
linear stability of a periodic orbit in learned biped walking
Fig. 7. Initial walking pattern without a feedback controller. The robot could not walk.
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Fig. 8. Successful walking pattern with a learned feedback controller in numerical simulation with 1000 trials.

Fig. 9. Example of an environmental change. Walking pattern on a seesaw-like metal sheet.

Fig. 10. Example of a parametric change of the robot dynamics. Walking pattern with an additional weight of 150 g on the right shank.
around a fixed point using its return map [22]. We consider a
one dimensional return map with respect to the successive step
length d defined as a distance between the right and left foot
when the right leg touches down with the ground. In Fig. 12, we
plot the return map obtained in the experiments. The absolute
value of the slope of the return map is 0.82, which is less
than 1. The result implies that walking with the physical robot
converges to steady-state walking even if the initial conditions
are not consistent.

6.3. Robustness of the learned controllers

We experimentally investigate the robustness of the learned
controller against environmental changes and parametric
changes in the robot dynamics. As an example of an
environmental change, we placed a seesaw-like metal sheet
with a slight change in the slope on the ground (Fig. 9). As
an example of a parametric change in the robot dynamics,
we added a weight (150 g) on the right shank (Fig. 10),
which is about 38% increase of right leg mass. Figs. 9 and
10 suggest the robustness of the learned walking against
environmental changes and parametric changes in the robot
dynamics, respectively.

7. Discussion

7.1. Summary

In this paper, we presented a learning framework for a CPG-
based biped walking controller with a policy gradient method.
Fig. 11. Joint angles and sensory feedback signals of successful walking with
the physical robot using a controller acquired in numerical simulations. The top
and second plots are joint trajectories of the right hip and knee, respectively.
The third and the bottom plots show sensory feedback signals corresponding to
the extensor and flexor neurons for the right hip joint, respectively.

Numerical simulations demonstrated that an appropriate
sensory feedback controller to the CPG could be acquired
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Fig. 12. The linearized return map of acquired walking with the physical robot.
d is a step length when the right leg touches down with the ground. The thick
line is the return map from dn to dn+1, and the thin line represents the identity
map.

with the proposed learning architecture to achieve the desired
walking behavior. We showed that the acquired walking was
a locally stable periodic orbit based on a linearized return
map around a fixed point. We also implemented the learned
controller on the physical 5-link biped robot. We analyzed
the convergence property of the learned walking to steady-
state walking with variations in initial conditions based on a
return map, and experimentally demonstrated the robustness
of the learned controller against environmental changes and
parametric changes in robot dynamics such as placing a seesaw-
like metal sheet on the ground and adding a weight. As a
immediate next step, we address improvement of the acquired
controller by additional learning with the physical robot.

7.2. Issues in motor skill learning with reinforcement learning

In this study, our general interest is in the acquisition of
motor skills or dynamic behavior of complex robotic systems
such as humanoid robots. This paper has focused on the
development of a learning framework for a simple biped robot
to achieve the desired walking behavior. Among learning motor
skill problems, in particular, learning biped locomotion is a
challenging task which involves dynamic interaction with an
environment and it is desirable that the controller be robust
enough to deal with uncertainties of the environment and
unexpected disturbances.

Model-based approaches for motion generation of biped
robots have been successfully demonstrated to be effective [19–
21]. However, they typically require precise modeling of
the dynamics of the robot and the structure of the
environment. Thus, we employed our proposed CPG-based
control framework with a policy gradient method which does
not require such precise models to achieve robust locomotion
in an unstructured environment. Our empirical results
demonstrated the effectiveness of the proposed approach.
However, in general, there are difficulties in the application of
the reinforcement learning framework to motor skill learning
with robotic systems. First, in motor control, it is desirable to
use smooth continuous actions, i.e., the output of the policy
should be smooth and continuously computed from the current
state which is typically measured by sensors in the real robotic
systems. Previously, in many applications of reinforcement
learning, discretization techniques have been widely used [12].
However, as pointed out in [16], coarse discretization may
result in poor performance, and fine discretization would
require a large number of states and iteration steps. Thus,
in order to deal with continuous state and action, we find it
useful to use function approximators. Moreover, the use of
algorithms derived in continuous time is also suitable for such
dynamical systems [16]. Second, when considering hardware
implementation of the policy for robot control, calculation
of motor commands needs to be done in real-time. Thus,
computationally efficient representation of the policy should be
considered. To our knowledge, there have been few successful
applications of a reinforcement learning framework to motor
skill learning with physical robotic systems [14,18] in which
the dimensionality of the systems is still relatively small.
In this research, we used a CPG-based controller to achieve
robust biped walking with a rather high dimensional system.
The use of a CPG-based controller also makes learning of
such a complex motor skill much simpler by introducing a
periodic rhythm. However, still other alternative approaches
and algorithms can be considered. In the following section, we
discuss several possible policy search approaches which might
be applicable to the learning problem in this paper.

7.3. Comparison to alternative policy search approaches

In this paper, we adopted a policy gradient method proposed
in [8] as a method for policy search in a CPG-based locomotion
controller. This section discusses possible alternative policy
search approaches, for example, genetic algorithms [5,23],
value-function-based reinforcement learning methods [12,16],
and other policy gradient algorithms such as GPOMDP [10]
and IState-GPOMDP [24].

Genetic algorithms (GAs) are an optimization method
inspired by evolution processes. This method is known to
be effective for complex search problems (typically discrete
problems) in a large space, and also was applied to policy
search in biped locomotion [5] and locomotion of a snake-
like robot [23]. However, the optimization process does not use
the gradient information which is useful to determine how to
improve the policy in a systematic manner. Also, there are a
number of open design parameters, for example, the number of
individuals and the probability of mutation, which need to be
determined somewhat in a heuristic manner. Moreover, there is
a problem of policy coding—it is not clear how to represent a
policy in an appropriate way for the given problem.

Value function based reinforcement learning (RL) methods
have been successfully applied to many policy search prob-
lems [16,18,25,26]. However, value function based RL assumes
MDPs (Markov decision process) in which all the states are
observable, and it is not suitable for POMDPs as pointed out
in [13]. In fact, we performed additional numerical simulations
to test a value function based RL for the locomotion task in the
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same simulation settings which is conceived of as a POMDP
(see the result in Fig. 5). However, the value function based RL1

needed a larger number of trials to acquire an appropriate feed-
back controller compared with the policy gradient method [8]
in this POMDP environment. There is still a possibility to con-
sider full state observation including all the robot states and
the internal states of the CPG to make the learning problem of
biped locomotion be an MDP. However, due to the significant
increase of dimensionality of the state space, it is computation-
ally too expensive for real-time implementation in a hardware
system in the current settings. These observations above indi-
cate that policy search algorithms which are capable of handling
the POMDP situation would be preferable.

Policy gradient methods are policy search techniques which
are suitable for POMDPs [7,8,10]. In this paper, we chose to
use the policy gradient algorithm proposed in [8] as a policy
search method, which has been empirically shown to be ef-
fective as a learning method for physical legged robotic sys-
tems [14,15] in POMDPs. We would like to mention that this
algorithm is essentially equivalent to another policy gradient
algorithm, GPOMDP, developed by Baxter [10]. Although ob-
jective functions used in Kimura’s algorithm (expected actual
return) and Baxter’s GPOMDP algorithm (average reward) are
different, [10] shows that the gradients of the expected actual re-
turn is proportional to the gradient of the average reward. Both
Kimura’s formulation and Baxter’s formulation obtain a gradi-
ent of the average reward with respect to the policy parame-
ters if the probability distribution of all the state and action is
known, i.e., the environment is completely known. However, in
practice, we need to estimate the environment’s dynamics from
sampled data when there is no prior knowledge of the environ-
ment. In such a case, Kimura’s algorithm which uses an ap-
proximated value function as the reward baseline (introduced
in [7]) is empirically shown to be advantageous in reducing the
variance of the estimation of the policy gradient [8].

Finally, we would like to mention the internal-state policy
gradient algorithm for POMDP (IState-GPOMDP) which has
internal states with memory as an extension of the GPOMDP
algorithm [24]. Conceptually, this framework has a similarity
to the structure of our learning system with the CPG in that
it contains internal states. Thus, there might be a potential
possibility to optimize the parameters of the learning system
including the mapping from the oscillator output to the torque
at hip joints, which was implemented by a pre-designed PD
controller in (17). However, learning additional parameters
would be computationally too expensive due to the complex
representation of the entire policy, and therefore would not be
suitable for real-time implementation in a hardware system in
the current settings.

Although policy gradient methods are generally considered
to be suitable for POMDPs, these methods find a local optimal
solution only within the parameter space of the state-dependent
policy designed in advance. In this study, we manually selected

1 We used the value function based RL in continuous time and state proposed
in [16] and also used it for the real robot control in [18].
the partial states (only hip joint states) for the policy from
all the states including the robot and CPG. Because of this
simplification, the real-time implementation was achieved in
the current settings. On the other hand, this simplification might
reduce the performance of the resultant policy acquired though
learning. One of the key factors for successful learning in
this study was the choice of those partial states selected by
our intuition, which are likely to be dominant states in our
proposed CPG-based biped locomotion controller. If a different
simplification is introduced for this learning task, for example
if CPG’s internal states are only used for the learning, acquired
controllers may not be good enough to achieve biped walking.

7.4. Open problems and future work

With the recent progress in the theoretical studies of policy
gradient methods and development of advanced algorithms, it
is possible to improve the policy for a given reward using a
policy gradient method towards a local optimal policy. One’s
hope is that the desired task or behavior can be achieved if
the reward is chosen appropriately. In this paper, we have
successively achieved learning CPG-based biped walking with
a robot which is considered as a high dimensional system
for learning using a policy gradient method by using simple
reward in (23). However, it is not clear how to choose a reward
which best describes the desired task. This remains still an open
problem not only in the policy gradient method but also in
the reinforcement learning framework in general. The direction
of our future work is towards development of an efficient
learning algorithm for integration of dynamic behaviors, e.g.,
combination of walking, balancing and reactive motions against
unexpected disturbances, in highly complex systems such as
full body humanoid robots addressing the problem above.
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