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a b s t r a c t

The ability to predict human motion is crucial in several contexts such as human tracking by computer
vision and the synthesis of human-like computer graphics. Previous work has focused on off-line
processes with well-segmented data; however, many applications such as robotics require real-time
control with efficient computation. In this paper, we propose a novel approach called real-time stylistic
prediction for whole-body human motions to satisfy these requirements. This approach uses a novel
generative model to represent a whole-body human motion including rhythmic motion (e.g., walking)
and discretemotion (e.g., jumping). The generativemodel is composed of a low-dimensional state (phase)
dynamics and a two-factor observation model, allowing it to capture the diversity of motion styles
in humans. A real-time adaptation algorithm was derived to estimate both state variables and style
parameter of the model from non-stationary unlabeled sequential observations. Moreover, with a simple
modification, the algorithm allows real-time adaptation even from incomplete (partial) observations.
Based on the estimated state and style, a future motion sequence can be accurately predicted. In our
implementation, it takes less than 15ms for both adaptation and prediction at each observation. Our real-
time stylistic prediction was evaluated for human walking, running, and jumping behaviors.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last decade, a considerable number of studies have
been conducted on learning the generative models of human
motion formodeling, prediction, and recognition (Howe, Leventon,
& Freeman, 2000; Li, Wang, & Shum, 2002; Ormoneit, Sidenbladh,
Blank & Hastie, 2001; Pavlovic, Rehg & MacCormick, 2000;
Sidenbladh, Black & Fleet, 2000; Urtasun, Fleet, & Fua, 2006;
Urtasun, Fleet, Hertzmann & Fua, 2005;Wang, Fleet, & Hertzmann,
2008). A significant limitation of these methodologies is that they
cannot explicitly consider the natural variations of humanmotions
in the generative model, widely referred to as style (Brand &
Hertzmann, 2000; Grochow, Martin, Hertzmann & Popovic, 2004;
Hsu, Pulli, & Popovic, 2005; Shapiro, Cao, & Faloutsos, 2006; Taylor
&Hinton, 2009; Torresani, Hackney & Bregler, 2006;Wang, Fleet, &
Hertzmann, 2007). For example, as illustrated in Fig. 1, even for an
individual, each walking motion sequence has a distinct walking
style. These differences can be much larger between different
individuals. Therefore, to achieve highly accurate prediction for
a newly observed motion sequence, adaptation of the generative
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model to the motion sequence by capturing the style of the
sequence is necessary.

While most previous studies have focused on off-line processes
with well-segmented data, many robotics applications (e.g.,
human–robot interaction (Onishi, Luo, Odashima, Hirano, Tahara
& Mukai, 2007), imitation learning by humanoids (Ijspeert,
Nakanishi, & Schaal, 2002; Inamura, Toshima, & Nakamura, 2002;
Riley, Ude, Wada, & Atkeson, 2003) and powered suits (Fukuda,
Tsuji, Kaneko, & Otsuka, 2003; Kawamoto, Kanbe, & Sankai,
2003)) require real-time control with high accuracy and efficient
computation in the prediction procedure.

In this paper, we propose a novel approach called real-time
stylistic prediction for whole-body human motions. Unlike previous
studies (Brand & Hertzmann, 2000; Taylor & Hinton, 2009; Wang
et al., 2007), as illustrated in Fig. 2, in our approach the generative
model adapts to a newly observed motion sequence by estimating
its style by a real-time process. Being able to perform this process
in real-time is based on (1) the simple structure of the generative
model and (2) the adaptation algorithm which requires small
computational effort. We propose a generative model for whole-
body human motion that is composed of a low-dimensional state
(phase) dynamics and a two-factor (phase dependent observation
bases and style parameter) observation model to capture the
diversity of motion styles in humans. We also present a learning
procedure to acquire themodel from a variety ofmotion sequences

http://dx.doi.org/10.1016/j.neunet.2011.08.008
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
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Fig. 1. Illustration of style in humanmotion sequences. Ten walking phase-aligned
sequences by two individuals are overwritten in order of phase. The style inwalking
behavior is considered as a control variable for the spatial variations.

including a diversity of motion styles. A real-time adaptation
algorithmwas derived using an on-line Expectation-Maximization
(EM) algorithm for computationally efficient inference of both the
corresponding state variables and the style parameter from non-
stationary unlabeled sequential observations. Moreover, with a
simple modification, the algorithm allows real-time adaptation
even from incomplete (partial) observations. Such applicability of
the adaptation algorithm for partial observations is very important
in a practical sense because we often meet situations where
some elements of the observations are missing due to the limited
number of sensors available or occlusions (Chai & Hodgins, 2005).
Based on the estimated state and style, the generative model can
accurately predict a future motion sequence.

On the other hand, most of the existing models that explicitly
estimate the style of motion can achieve neither real-time adapta-
tion nor non-stationary motion estimation since the inference al-
gorithm requires large computational effort (Brand & Hertzmann,
2000; Ormoneit et al., 2001; Sidenbladh et al., 2000; Taylor & Hin-
ton, 2009; Urtasun & Fua, 2004; Wang et al., 2007).

The organization of this paper is as follows. In Section 2,
we present a novel generative model to represent a whole-
body human motion including rhythmic motion (e.g., walking)
and discrete motion (e.g., jumping). We also present a learning
procedure to acquire themodel from a variety ofmotion sequences
including a diversity of motion styles. In Section 3, a real-time
adaptation algorithm is derived by applying an approximated
EM algorithm to the generative model. Moreover, we present a
simple modification in the adaptation algorithm, which allows
real-time adaptation even from incomplete (partial) observations.
A real-time prediction method of future motion sequence based
on the estimated state and style is also presented. In Section 4,
the effectiveness of our real-time stylistic prediction is validated
for human walking, running, and jumping behaviors with motion
capture data. Section 5 concludes this paper.

2. Learning generative model

This section describes the proposed generative model and a
learning procedure for the model with a stylistic data set.

2.1. Generative model for whole-body human motions

We first define the notation of the proposed generative model.
x ∈ Rd is the state variable, y ∈ RD is the observation and the prob-
ability distribution p(yt |xt;w) is the observationmodel. p(xt+1|xt)
is the state-transition probability distribution. The parameter vec-
tor w ∈ RJ is an additional latent variable that controls the spa-
tial variation of observations. We call this the style parameter. Its
graphical model is depicted in Fig. 3. For periodic and discrete mo-
tions, we explicitly define the state variable x as

xt = [φt ωt ]
T
=


[ψt ψ̇t ]

T (Rhythmic)
[pt ṗt ]T (Discrete).

(1)

That is, we define the state variable x by phaseφ as a point on a one
dimensional sphere in two dimensional Euclidean space φ ≡ ψ ∈
observation
Estimation

Walking Running Striding

Real-time Adaptation for Style non-Stationary Motion Sequence

Fig. 2. Illustration of the real-time adaptation and prediction of the generative
model for a non-stationary motion sequence with styles (walking behaviors). The
test sequence consists of three motions, walking, running and striding generated
by different individuals. The solid human figure is as observed and the dashed one
is the predicted motion as a result of adaptation of the generative model to the
observation sequence. The adaptation is achieved by on-line EM incrementallywith
little computation at each observation. For all motions, themodel is rapidly adapted
to the style of the recent test sequence since the time-forgetting factor effectively
forgets past observations.

S ⊂ R2 and its velocityω ≡ ψ̇ to represent its periodicity of rhyth-
micmotions, similar to Ormoneit et al. (2001) and Urtasun and Fua
(2004). We also define the phase φ as a point on a one dimensional
closed line segmentφ ≡ p ∈ L for discretemotions to represent its
non-periodicity (discreteness). The explicit use of these assump-
tions in the generative model yields the low-dimensional state
variable x. Moreover, as presented in the next section, it allows a
simple learning algorithm for the generative model from data.

Based on the above assumptions, we conclude that the state-
transition model and the observation model are modeled by
Gaussian distributions as:

p(xt+1|xt) = N (µx(xt),Σx(xt)), (2)

p(yt |zt;w) = N (µy(zt;w),Σy(zt;w)), (3)

where

zt = g(xt) =

[cos(φt) sin(φt)]

T (Rhythmic)
φt (Discrete) (4)

and the observation model is defined as a probabilistic mapping
from a phase φt (as zt ) to an observation yt . The velocity of phase
ωt governs the temporal variation of the time-series, that is, it
controls the velocity of human motions generated by the model.
For rhythmic motions, zt = g(φt) ∈ R2 represents a point on a
manifold S in R2 where the radius is r = 1 and the angle is φt .
This state representation allows us to approximately measure the
geodesic distance between points on S as the Euclidean distance in
R2. For discrete motions, zt is the equivalent of φt .1

2.2. Learning procedure with a stylistic data set

The learning procedure assumes we have multiple human
motion sequences including a diversity of motion styles. Let Ys

=

[ys1 · · · y
s
C(s)]

T
∈ RC(s)×D denote a time-invariant motion sequence

with a distinct style, where s ∈ {1, 2, . . . , S} is the style index
in which each value indicates a corresponding distinct style, c ∈
{1, 2, . . . , C(s)} is the content index that corresponds to the phase

1 For the case of a discrete motion, zt is a scalar; however, it is kept as a vector
notation for simplicity of the overall description.
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Fig. 3. A generative model representing time series data for a human motion. The
state variable is defined as xt = [φt ωt ] where the phase φ of the state variable
is defined as a point on one dimensional sphere in two dimensional Euclidean
space φ ≡ ψ ∈ S ⊂ R2 and as a point on one dimensional closed line segment
φ ≡ p ∈ L for rhythmic and discrete motions, respectively. The observation
yt is conditionally independent from all other variables given the state xt . xt+1
is conditionally independent given the state xt . w is the style parameter vector
invariant for the time.

and ysc ∈ RD is an observation with the style indexed by s and
content c. In the following, let us assume that a set of training
sequences D = {Y1, . . . , YS

} is given for learning a generative
model as a stylistic data set. The learning procedure is composed of
the following three steps: (1)Data alignment byphase information,
(2) Extraction of observation bases, (3) Learning generative model
from the bases. These three steps achieve learning of a compact
generative model of a human motion that can represent large
stylistic variations, where both the state variables and the style
parameters of the generative model can be low-dimensional.

2.2.1. Data alignment by phase information
For the subsequent steps, we align all motion sequences in a

stylistic data set by phase. We introduce data alignment strategies
for rhythmic and discrete motions.
Rhythmicmotions:Weutilize auto-correlative and cross-correlative
coefficients for the alignment process. First, wemaximize the auto-
correlative coefficient for identifying the period T of each sequence
as: T s

← argmaxj As(j), where As(j) =
∑N

n ysn
Tysn+j is the auto-

correlative coefficient with the self-index shift j in phase with a
style indexed by s. Next, we maximize the cross-correlative coef-
ficient to find the optimal cross-index shift h in phase as: hs

←

argmaxj C s(j), where C s(j) =
∑N

n ybn
Tys

j+rd( nT
s

Tb
)
, and index b is the

style index corresponding to the sequence that has the shortest pe-
riod. T b is the period of the shortest period indexed by b. The func-
tion rd(·) is a round-off function. The above procedures yield an
aligned data matrix:

Yall
a =


y1
rd(h1+ T1

Tb
)
· · · y1rd(h1+T1)

...
. . .

...

yS
rd(hS+ TS

Tb
)
· · · ySrd(hS+T S )

 (5)

where Yall
a = [Y

1
a · · · Y

S
a]

T
∈ RDS×C and Ys

a ∈ RC×D. Note that each
row of the matrix Yall

a are the observations corresponding to the
same value of the phase φ. Each column indicates a corresponding
motion sequence indexed by s.
Discrete motions:We align eachmotion sequence Ys from the same
starting point φ = 0 to the goal point φ = 1. The aligned data
matrix Yall

a can be obtained by simply setting T s as the duration of
motion and hs

= 0 in Eq. (5) for all s.

2.2.2. Extraction of observation bases
Since the aligned data matrix Yall

a is a rectangular matrix, Sin-
gular Value Decomposition (SVD) based matrix factorization can
be applied to extract observation bases. By applying the factoriza-
tion, we can form a style-content factorialmodel (referred to as the
asymmetric bilinear model in Tenenbaum and Freeman (2000)).
Let Yall
a

VT be an S × DC matrix stacked from DS × C Matrix
Yall
a . Then, SVD for this matrix leads to the following factorial

representation as

Yall
a

VT
= USVT

≈ WỸ. (6)

We define the style parameter matrix W = [w1
· · ·wS

]
T
∈ RS×J

to be the first J (≤S) rows of U, and the content parameter matrix
Ỹ = ([Ȳ1

· · · ȲJ
]
T )VT ∈ RJ×DC to be the first J columns of SVT . As

a result, we can obtain an approximated form as Ys
a ≈

∑J
j=1w

s
j Ȳ

j.
The obtainedmatrix Ȳj

∈ RC×D is named the j-th observation basis,
and the vectorws

∈ RJ is the s-th style parameter vector.

2.2.3. Learning generative model
With the extracted observation bases Ȳj for all j, we can learn

the generative model. Since each point of an observation basis
corresponds to a value of phase on S ⊂ R2 (or L), we learn a
mapping between ȳj and z using all data of each basis. Here we
utilize Gaussian process regression (Rasmussen & Williams, 2006)
because it allows us to derive an analytically tractable predictive
distribution and to learn hyperparameters by maximization of the
marginalized likelihood.

Each basis Ȳj is independently modeled as a Gaussian process
as

p(Ȳj
|Z,βj) ∝ exp


−

1
2
Tr((Kj

y)
−1Ȳj(Ȳj)T )


(7)

where Z is the phase-aligned matrix corresponding to Ȳj and Kj
y ∈

RC×C is the gram matrix in which (p, q) entry is kjy(zp, zq) =

β
j
1 exp(−

β
j
2
2 ‖zp − zq‖2) + δzp,zq/β

j
3, and the hyperparameter is

represented as βj
= {β

j
1, β

j
2, β

j
3}. With the above settings, the

predictive distribution of the j-th observation basis ȳj∗ given a
novel input z∗ can be easily derived as

p(ȳj∗|z∗, Ȳj, Z) = N (µ̄j(z∗), Σ̄ j(z∗)) (8)

where

µ̄j(z∗) = (Ȳj)T (Kj
y)
−1kj

y(z
∗), (9)

Σ̄ j(z∗) = (kjy(z
∗, z∗)− kj

y(z
∗)T (Kj

y)
−1kj

y(z
∗))I, (10)

and kj
y(z∗) = [k

j
y(z∗, z1) · · · k

j
y(z∗, zC )]T (Rasmussen & Williams,

2006). The predictive distribution for observation y∗ given a novel
input z∗ with a style parameter vector ws can be written with
the standard result of a Gaussian distribution and invariant linear
transformation as

p(y∗|z∗, Ȳ1:J , Z;ws) = N (µy(z∗;ws),Σy(z∗;ws)) (11)

where

µy(z∗;ws) =

J−
j=1

ws
j µ̄

j(z∗), (12)

Σy(z∗;ws) =

J−
j=1

(ws
j )

2Σ̄ j(z∗). (13)

This predictive distribution is set as the observation model
p(yt |xt;w) of the generative model in Eq. (3).

The state transition model p(xt+1|xt) of the generative model
in Eq. (2) is simply modeled under the assumption that all data are
observed with a fixed sampling rate as p(xt+1|xt) = N (Axt ,Q)
where the state transitionmatrix isA =


1 1
0 1


and the covariance

matrix of process noise Q should be set appropriately for the data
by hand. The mean and variance of the state transition model are
written as µx(xt) = Axt ,Σx(xt) = Q, respectively.
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3. Real-time stylistic prediction

In this section, we derive a real-time adaptation algorithm for
the generative model to a newly observed test sequence by using
an approximated EM algorithm, i.e., the algorithm that estimates
a time-series of state variables X̂ = [x̂1 · · · x̂T ]T and the style
parameter vector ŵ from a portion of the test sequence Ŷ =
[ŷ1 · · · ŷT ]T in an on-line manner. In Section 3.1, we start from the
derivation of off-line (batch) computations of E-step and M-step
by introducing simple approximations. This gives us an efficient
computation for the adaptation of the generative model for a
test sequence. In Section 3.2, the derived algorithm is further
extended to a fully recursive, time-forgetting and computationally
efficient on-line algorithm by a modification of the likelihood as
suggested by Sato and Ishii (2000). Section 3.3 describes how we
can achieve real-time stylistic prediction of a test sequence with
the generative model and the adaptation algorithm. Section 3.4
presents a modification of the adaptation algorithm to allow real-
time adaptation even from incomplete (partial) observations.

3.1. Estimation of state variables and style parameters by using an
approximated EM algorithm

To derive an efficient adaptation algorithm for the generative
model to a test sequence, we fit the EM algorithm to the
problem with simple approximations. The EM alternates between
optimizing a distribution over the state variables (the E-step) and
optimizing the style parameters given the posterior distribution
obtained by the E-step (the M-step) (Dempster, Laird, & Rubin,
1977; Ghahramani & Hinton, 1996; Shumway & Stoffer, 1982).
Introducing a distribution over state variables as Q(X̂), a lower
bound of the log-likelihood F (Q, ŵ) given observations Ŷ can be
derived from the likelihood L(Ŷ|ŵ). The E-step holds the style
parameters fixed and sets Q to be the posterior distribution over
the state variables:

Qk+1(X̂)← argmax
Q

F (Q, ŵk) = p(X̂|Ŷ, ŵk). (14)

This maximizes F w.r.t. Q turning the lower bound of the
log-likelihood into the likelihood as F (Q, ŵ) = L(Ŷ|ŵ). The M-
step holds the distribution fixed and computes the style param-
eters that maximizes F as ŵk+1 ← argmaxŵ F (Qk+1, ŵ) =
argmaxŵ


X̂ Qk+1(X̂) log p(X̂, Ŷ|ŵ)dX̂. Therefore, the E-step in

k-th iteration calculates the posterior of the state variable X as
p(X̂|Ŷ, ŵk), and the M-step updates the new style parameter ŵk+1
with the posterior. This alternative procedure typically converges
to a locally optimal point through a small number of iterations.

Analytical computations of the E-step and M-step for our gen-
erative model, however, are intractable due to the nonlinearity in
observation bases against phase. Here, we introduce simple ap-
proximations to create analytical solutions for both steps. Under
the assumption that all observation bases are smooth functions
over the phase variable φ, the E-step can be approximately calcu-
lated in the same way as the Extended Kalman Filter (EKF) (Ko &
Fox, 2008). Thus, we approximate Q ≈ N (X̂) to obtain an analyti-
cal computation of the E-step. Subsequently, the analytical compu-
tation of theM-step is derivedwith the following approximation as

ŵk+1 ← argmax
ŵ

∫
X̂
p(X̂|Ŷ; ŵk) log p(X̂, Ŷ; ŵ)dX̂

≈ argmax
ŵ

T−
t=2

log p(ŷt |x̂pm,t; ŵ) (15)

where X̂pm is the mean of the posterior distribution as X̂pm =
X̂ X̂p(X̂|Ŷ; ŵk)dX̂ which is obtained by the E-step. The details of

the derived adaptation algorithm are presented in Appendix.
3.2. On-line implementation of the proposed estimation method

Here we present an on-line implementation of the proposed
estimation method. As suggested by Sato and Ishii (2000), we
introduce a time-forgetting factor in our likelihood in Eq. (15).
This yields a recursive, time-forgetting on-line EM algorithm, in
which both the E-step and M-step can be calculated at each new
observation with little computation.

In the on-line EM algorithm, the weighted mean is defined as

⟨⟨f (x)⟩⟩T ≡ ηT
T−

t=1


T∏

s=t+1

λs


f (xt) (16)

where ηT ≡ {
∑T

t=1{
∏T

s=t+1 λs}}
−1 and the parameter λs (0 ≤ λs

≤ 1) is a time-dependent forgetting factor which is introduced for
forgetting the effect of the past observations. ηT is a normalized
coefficient and plays a role similar to a learning rate. This weighted
mean ⟨⟨·⟩⟩i has a step-wise equation

⟨⟨f (x)⟩⟩T = (1− ηT )⟨⟨f (x)⟩⟩T−1 + ηT f (xT ) (17)

where ηT = {1 + λT/ηT−1}−1. Introducing the above weighted
mean in the computation of the EM algorithm yields an on-line
EM algorithm. i.e., a recursive, time-forgetting on-line adaptation
algorithm. If we set λs = λ < 1.0, this can be applied for non-
stationarymotion sequences with styles. The details of the derived
on-line adaptation algorithm are presented in Appendix.

3.3. Stylistic prediction of future observations

With the generativemodel inwhich both the state variables and
the style parameter are estimated from a given test sequence, we
could predict its future states and observations by the following
simple algorithm.Given aportion of a test sequenceuntil time t , we
can estimate the expectation of the corresponding state variable
x̂t and the estimated value of the style parameter ŵt . One-step
ahead prediction of the expectation of state variable x̂t+1|t can be
obtained by x̂t+1|t =


p(xt+1|x̂t)xt+1dxt+1 = Ax̂t . Corresponding

estimation of observation ŷt+1|t is then obtained from ẑt+1|t =
g(φ̂t+1|t) and Eq. (3) as ŷt+1|t =


p(yt+1|ẑt+1|t; ŵt)yt+1dyt+1 =

µ(ẑt+1|t; ŵt). With these calculations, stylistic prediction by
identifying the style of the test sequence can be achieved.
Executing the prediction recursively, it is possible to achieve
multiple-step ahead predictions of future states and observations.

3.4. Adaptation from incomplete (partial) observations

In this section, we present a modification in the adaptation
algorithm so that it allows real-time adaptation even from
incomplete (partial) observations. In a practical sense, such
applicability of the adaptation algorithm to partial observations
is very important because we often meet situations where some
elements of the observations are missing due to the limited
number of sensors available or occlusions. Our approach is inspired
by a model for dealing with packet losses in a wireless network
with the Kalman filter (Liu & Goldsmith, 2004).

For simplicity (but without loss of generality), we divide an
observation into two parts as y = [y̌T , ỳT ]T where y̌ ∈ RD−Dm are
observable elements and ỳ ∈ RDm aremissing observations, that is,
we assume that the index of missing elements in the observation
is known. To manage suchmissing observations for the adaptation
algorithm, we modify the observation model in Eq. (3) as

p
[

y̌
ỳ

]
t

 zt;w
= N

[
µ̌y(zt;w)
µ̀y(zt;w)

]
,

[
R11 R12
R21 R22 + σpIm

]
(18)
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where µy = [µ̌
T
y , µ̀

T
y ]

T is the mean, R =

R11 R12
R21 R22


is the co-

variance matrix, R11 is R(D−Dm)×(D−Dm), R12 = RT
21 is R(D−Dm)×Dm

and R22 is RDm×Dm matrices. As indicated in Liu and Goldsmith
(2004), in the above model, the missing observations ỳ can be rep-
resented by setting σp → ∞ in Eq. (18). With this setting, an
adaptation algorithm for the partial observation can be derived by
introducing the following modifications in the fully observable
case (see Appendix) as

y→ y̌, µy → µ̌y, (19)

H→ Ȟ, R→ R11 (20)

where H =

Ȟ
H̀


and Ȟ is R(D−Dm)×Dm , H̀ is RDm×Dm matrices. The

derivation is based on a formula of the inverse of a partitionedma-
trix (Liu & Goldsmith, 2004).

The derived adaptation algorithm allows us to adapt the
generativemodel ofwhole-bodyhumanmotions to a test sequence
from partially observed information.

4. Experimental results

In this section, we validate the effectiveness of our real-
time stylistic prediction method for human motions using data
captured by amotion capture system. Section 4.1 first presents the
effectiveness for rhythmic motions such as walking and running
behaviors in comparison with several on-line prediction methods
with respect to computational costs and prediction accuracy. Its
real-time calculability and applicability for partial observations are
also validated through experiments. In Section 4.2, the proposed
method is applied to discrete motions such as forward and
vertical jumping behaviors to demonstrate the effectiveness of the
proposed method for several kinds of behaviors.

4.1. Stylistic prediction for walking motions

We first learned a generative model from a collection of mo-
tion sequences. The data were taken from the CMU Graphics Lab’s
motion capture database (http://mocap.cs.cmu.edu). Each obser-
vation yt = [qT

t rTt vTt ]
T
∈ R62 was down-sampled to 60 Hz, and

focused on full-body joint Euler angles qt ∈ R56. To obtain a di-
versity of walking styles for this experiment, we selected several
motion sequences of walking, running and striding motions cap-
tured from four subjects (subject-A, B, C, D).2 More specifically,
we selected eight walking sequences and one striding sequence of
subject-A, four running sequences of subject-B, two running se-
quences and one walking sequence of subject-C, and one running
sequence of subject-D.3 The training sequences for model learning
were chosen as six walking sequences and one striding sequence
of subject-A, three running sequences of subject-B and two run-
ning sequences of subject-C. The dimension of the style parameter
vector was set as J = 4 with a guide of the spectrum of singular
values obtained. The estimated observation bases with the above
settings are plotted in Fig. 4(e).

4.1.1. Verification of the learned generative model
First, we verified the learned generative model for stylistic

prediction using the batch EM algorithm. For several segmented

2 The correspondence of the subjects to the labels in the CMU motion capture
database is subject-A:08 subject-B:35, subject-C:02 and subject-D:16.
3 {08_01–08_09, 35_20–35_23, 02_01–02_03, 16_35}.amc. Training sequences

contain {08_02–08_08, 35_20–35_22, 02_02–02_02 }.amc.
test sequences, the prediction accuracy of the adapted generative
model was evaluated. The adaptation was executed with the EM
algorithm using a portion of the test sequence, which was set as
0.0–2.0 s (120 frames) for walking and 0.0–1.0 s (60 frames) for
running, based on their motion frequencies. Another portion for
0.5 s (30 frames) was then used as the ground truth for evaluation
of the prediction accuracy. Test sequences were set as a striding
sequence of subject-A, a running sequence of subject-B, a walking
sequence of subject-C, and a running sequence of subject-D. Note
that none of the test sequences were included in the training
sequences, and no motion sequence of subject-D was included in
the training sequences, i.e., subject-D was a completely unknown
subject for the generative model. As a criterion for evaluation of
the predictive accuracy, we used the average prediction error:
Eoff
rms =

1
GD

∑G+i
t=i+1 ‖yt − ŷt|i‖2, where G is the number of predicted

frames, D is the dimension of observation and i is the index
of the terminal point of the test sequence used for adaptation.
In all cases, the EM procedure converged within 10 iterations.
Fig. 4(a)–(d) illustrates the result of the stylistic prediction for the
test sequences compared with the ground truth. Each predicted
pose is very similar to the ground truth for all cases including
the unknown subject. The estimated style parameters are plotted
in Fig. 4(f). As shown in (f), the estimated style parameters were
largely different due to the distinct style of each test sequence,
producing high accuracy predictions. The average prediction error
for all test sequences Eoff

rms = 1.68 with J = 1 is 58% reduced by
using J = 4 as Eoff

rms = 0.71. These results verified the learned
generative model for stylistic prediction.

4.1.2. Real-time stylistic prediction
Next, we evaluated our real-time stylistic prediction method

with the derived adaptation algorithm and the learned generative
model. As a non-stationary motion sequence with styles, a test
sequence was prepared successively uniting three different test
sequences. In this experiment, the adaptation procedure and
prediction at each observation approximately required less than
15 ms in our Matlab implementation on a PC (Intel(R) Core-i7 CPU
3.33 GHz), i.e., about 13 ms for the E-step, 0.2 ms for the M-step
and 0.5ms for one-step ahead prediction of observation. Compared
with the average walking period T = 1.2 s this processing
time would be relatively short and effective enough for real-time
prediction.

We compared the prediction performance of our proposed
methodwith standard on-line predictionmethods. Specifically, we
compared it with recursive least square linear regression (RLS)
with a time-forgetting factor λ (Haykin, 2002) and with Radial
Basis Function Networks (Bishop, 1995) with a time-forgetting
factor as standard approaches for on-line function approximation.
For the RBFs, principal component analysis (PCA) was applied
separately for each test sequence and obtained a low-dimensional
subspace (RBFs + PCA). The basis was located on a grid with an
even interval in each dimension of 3-dimensional feature space
obtained by PCA.We used 1000 (=10×10×10) basis functions in
this experiment. As a nonparametric approach, we implemented a
particle filter as used in Sidenbladh et al. (2000) andOrmoneit et al.
(2001). In this approach, the required posterior density function
is represented by a set of random samples {[xk wk

]
T
}
K
k=1 with

associated weights mk as p(xt ,wt |y1:T ) ≈
∑K

k=1 m
kδ([x w]T −

[xkt wk
t ]

T ) where K is the number of particles. As the number
of samples becomes very large, this approximation becomes an
equivalent representation of the posterior in the sense of an
optimal Bayesian estimate. The proposal distribution for random
sampling of particles and the likelihood model were set by the
state-transition model and the observation model of our proposed
model as in Eq. (3). The transitionmodel of the style parameterwas
newly set aswt+1 ∼ N (wt , σwI).

http://mocap.cs.cmu.edu
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Fig. 4. Results of off-line stylistic prediction for human walking and running sequences. (a)–(b) show the prediction results where solid-lines indicate the ground truth in
each frame and dash-lines show the predicted pose. The observation bases are shown in (e). The estimated style parameterw for test sequences is plotted in (f) where each
wj corresponds to Ȳj for all j. (a) Shows the prediction results for a striding-style walking sequence, (b) shows the results for a running sequence and (c) shows a normal
walking sequence. These sequences seem to have different motion styles and such differences in motion style are captured by the estimated style parameters as shown in
(f) to achieve the predictions with high accuracy. (d) Also shows the results for a running sequence which seems to be a slightly different motion style from (b). Such a small
difference in motion style is also captured by the estimated style parameters as in shown (f).
Table 1
Prediction results for non-stationary humanwalking data in ourMatlab implemen-
tation on a PC (Intel(R) Core-i7 CPU 3.33 GHz).

Method Time (s) Eon
rms

Proposed 0.01 0.85
RLS 2.00× 10−4 1.76
RBFs+ PCA 0.09 1.40
PF (K = 500) 0.13 1.73 (0.05)
PF (K = 10,000) 105 1.23 (0.05)

The performance of the stylistic prediction was evaluated by
the on-line average prediction error Eon

rms =
1
T

∑T
i=1{

1
GD

∑G+i
t=i+1 ‖

yt − ŷt|i‖2}, where G is the number of predicted frames, D is
the dimension of observation, T is the number of total frames of
the test sequence and i is the index of the observed frame. The
predicted pose ŷi|i is ŷi|i = µ(x̂i; ŵi)where, x̂i and ŵi are estimated
by the adaptation algorithm using sequential observation until yi.

Table 1 shows the average prediction error in predictions (G =
25 frames). At each observation for a test sequence, adaptation
and prediction were executed. Then, the prediction performance
was evaluated by the average prediction error Eon

rms for all cases.
For the proposed method, the time-forgetting factor was set as
λ = 0.8 so that the learning algorithm can quickly adapt to newly
acquired data while old data is properly discarded. For the RLS
and RBFs + PCA, the forgetting factor was set as λ = 0.95. Since
the number of parameters required in these methods are much
larger than the proposed method, the larger forgetting factor is
necessary to properly evaluate the likelihood for the parameters.
From Table 1, the proposed method showed the best performance
among all methods in terms of both computational cost and
prediction accuracy. The results of these comparisons suggest
that it is impossible to represent human motion by well-known
linear dynamics. Moreover, while the use of non-linear dynamics
represented by RBFs potentially captures the non-linearity; the
high-dimensionality resulting from the use of non-linear function
approximators makes it difficult to achieve successful modeling
with a modest amount of data obtained in on-line. A particle
filtering approach can be competitive in terms of prediction
Table 2
Prediction from partial observations.

Missing portions Eon
rms

(1) One arm 0.87
(2) One leg 0.91
(3) One leg and one arm 0.91

performancewith a huge number of particles; however, it requires
prohibitive computational cost for real-time processes.

4.1.3. Prediction from partial observation
We also evaluated our prediction method for partial obser-

vations. For this experiment, three conditions were considered
(1) missing one arm, (2) missing one leg, and (3) missing both one
arm and one leg.4 For such scenarios, the proposedmethodwas ap-
plied for predictions and the results evaluated by the on-line pre-
diction error using the non-stationarymotion sequencewith styles
as a test sequence. Table 2 shows the experimental results. In all
cases, the prediction performancewas notmuch impaired bymiss-
ing data. These results suggest the effectiveness of the proposed
method for partial observations. Fig. 5 depicts prediction results
for partial observations.

For further validation of the proposed method for partial
observations, we also applied the method to a different data
set from the CMU motion capture database, which has been
used in Lawrence (2007) and Taylor, Hinton, and Roweis (2006).
We prepared 31 motion sequences of one subject (composed of
walking and running) as training data and also prepared one
walking sequence as test data.5 As in Lawrence (2007), the test
sequence was modified in the two ways: (1) missing right leg and
(2) missing upper body. The prediction accuracy was evaluated by

4 One arm includes 7 DoFs: radius(1), wrist(2), hand(1), finger(1), thumb(2). One
leg includes 7 DoFs: femur(3), tibia(1), foot(2), toes(1).
5 The training data was composed of {35_1–17, 19–26 and 30–34}.amc, and the

motion sequence 35_29.amc was used as test data.
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a

b

Fig. 5. Results of predictions for walking behaviors from partial observations (Left-
leg information is missing). Solid-lines indicate the ground truth in each frame
and dash-lines show the predicted pose. (a) Shows the result for a striding-style
walking sequence and (b) shows the result for a running sequence. For both cases,
even though the style of each sequence is largely different and left-leg information
is missing, the predicted poses are very similar to the ground truth.

root mean square error of the missing joint angles averaged over
60 frames.

Fig. 6 shows the evaluation results of the on-line predictions.
Each line was obtained by applying a zero-phase shift low-pass
filter with 1.5 cut-off frequency to the result of the on-line
predictions. The dimension of the style parameter vector was set
as J = 2, and the time-forgetting factor was set as λ = 0.8. Fig. 6
indicates that, for both (1) and (2), our method rapidly converged
at around 0.4 s and resulted in good prediction accuracy of missing
body movements. As presented in Lawrence (2007) and Taylor
et al. (2006), for this data set, the prediction of the missing upper
body is easier than that of the missing lower limb. Note that only
our proposed method is able to achieve the adaptation and the
prediction on-line in real time.

4.2. Stylistic prediction for jumping motions

Next, we evaluated the proposed method for jumping motions.
Again, the data were taken from the CMU database with the
same setting of walkingmotions described in the previous section.
To include a diversity of jumping motion styles (e.g., forward
or vertical) in this experiment, we selected several motion
sequences of jumping motions captured from two subjects
(subject-E, F). More specifically, we selected seven jumping
sequences of subject-E and two jumping sequences of subject-F.6
The dimension of the style parameter vector was set manually as
J = 6 by considering the range of singular values.

Using the learned generative model, we applied on-line
prediction to two test sequences. For validation, the first 60 frames
were utilized for on-line adaptation of the style and state variables,

6 The correspondence of the subjects to the label in the CMU motion
capture database is subject-E:13 subject-F:16. Training sequences contain
{13_11, 13_13, 13_19, 13_39–13_42, 16_01–16_02}.amc. Test sequences contain
{13_32, 13_40}.amc.
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Fig. 6. Results of the on-line predictions of missing body movements. The graph
indicates the root mean square error of the missing joint angles averaged over 60
future frames at each observation. ‘‘right leg’’ and ‘‘upper body’’ indicate the the
cases of (1) missing right leg and (2) missing upper body in the test sequence,
respectively. For the both cases, ourmethod rapidly converged and resulted in good
prediction accuracy of missing body movements.

a
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Fig. 7. Results of predictions for jumping motions. Two test sequences were used
for validation. Initial motion sequences before takeoff are used for adaptation, and
then future motion sequences after takeoff are predicted and compared with the
ground truth to calculate prediction errors. Solid-lines indicate the ground truth
in each frame and dash-lines show the predicted pose. (a) Shows the result for
a vertical jumping motion after a deep squat motion. (b) Shows the result for a
forward jumping motion with a large arm swing. The proposed method captured
these motion-sequence specific features well in the predicted poses.

and then future observations were predicted and validated based
on the average prediction errors Eoff

rms (G = 30 frames) for both
cases. As a result, the errors were 0.97 and 1.05, and these values
were significantly small compared with the standard deviations
of both test sequences at 6.09 and 3.50. Fig. 7 depicts snapshots
of both predictions and the ground truth. For both cases, each
predicted pose is very similar to the ground truth.More concretely,
in Fig. 7, (a) shows the result for a vertical jumping motion where
the hips and knees are used for a vertical jump, while (b) shows the
result for a forward jumping motion where the arms swing more
than the hips and knees. The proposed method captured these
motion-sequence specific features verywell in the predicted poses.
These results verified the effectiveness of our prediction method
even for discrete motions, and suggests the applicability of this
method for a wide range of human motions.
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5. Conclusions

In this paper, we proposed a novel approach called real-time
stylistic prediction for modeling and predicting human motions.
Our algorithm can be run in real-time and manage non-stationary
motion sequences with styles by capturing the style on-line with
relatively little computation. Moreover, the algorithm allows real-
time adaptation even from incomplete (partial) observations. Its
effectiveness was demonstrated on motion capture data.

In the proposed approach, human motions are modeled by a
generative model which is composed of a low-dimensional state
(phase) dynamics and a two-factor (phase dependent observation
bases and style parameter) observation model designed for
capturing the diversity of motion styles in humans. To achieve
higher prediction accuracy, a more complex model as the state
dynamics (e.g., nonlinear state transitions or factorized bymultiple
variables) would be necessary. The proposed approach can
incorporate such a complex state dynamics by extending both the
adaptation and prediction algorithms. For example, a nonlinear
state transition model can be incorporated in the proposed
approach. In such a case, the adaptation algorithm is derived with
the linearization of the state transition about the current mean
of the state variable, and the prediction algorithm is executed by
nonlinear regression at each time evolution. Thus, with complex
state dynamics, the adaptation and prediction algorithms require
additional computational effort which makes it difficult to be
implemented in real time. Therefore, there is the trade-off between
the prediction accuracy and the computational effort required in
adaptation and prediction algorithms.

The ability to predict human motion is crucial in several
contexts such as human tracking by computer vision and the
synthesis of human-like computer graphics. Previous work has
focused on off-line processes with well-segmented data; thus,
many applications such as robotics require real-time control with
efficient computation. The proposed method could be applied
to these applications. Our future work will address real robotics
applications such as human–robot interaction, imitation learning
by humanoids and powered suits.

Our algorithm has free parameters such as time-forgetting and
dimension of style parameter. Our future work will also address
setting them by a relevant determination from data.
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Appendix A. Derived EM steps

E-step

xt|t−1 = Ax̂t−1 (A.1)

Σx,t|t−1 = AΣ̂x,t−1AT
+ Q (A.2)

Ht|t−1 =
∂µ(x; ŵt−1)

∂x


x=xt|t−1

(A.3)

Kt = Σx,t|t−1HT
t|t−1 · (Ht|t−1Σx,t|t−1HT

t|t−1 + R) (A.4)

x̂t = xt|t−1 + Kt(yt − µ(xt|t−1; ŵt−1)) (A.5)

Σ̂x,t = (I− KtHt|t−1)Σx,t|t−1. (A.6)
M-step

ŵt = ⟨vTv⟩−1t ⟨v
Ty⟩t , (A.7)

where,

vt = [µ̄1(x̂t) · · · µ̄J(x̂t)] (A.8)

⟨·⟩T =
1
T

T−
t=1

(·t). (A.9)

On-line M-step

ŵt = ⟨⟨µ
Tµ⟩⟩

−1
t ⟨⟨µ

Ty⟩⟩t (A.10)

⟨⟨µTµ⟩⟩t = (1− ηt)⟨⟨µ
Tµ⟩⟩t−1 + ηtµ(x̂t)

Tµ(x̂t) (A.11)

⟨⟨µTy⟩⟩t = (1− ηt)⟨⟨µ
Ty⟩⟩t−1 + ηtµ(x̂t)

Tyt (A.12)

ηt =


1+

λt

ηt−1

−1
(A.13)

where

µ(xt|t−1) = [µ1(xt|t−1) · · ·µJ(xt|t−1)] (A.14)

µ(x̂t) = [µ1(x̂t) · · ·µJ(x̂t)] (A.15)

⟨·⟩T =
1
T

T−
t=1

(·t) (A.16)

⟨⟨·⟩⟩T = ηT

T−
t=1


T∏

s=t+1

λs


(·t) (A.17)

ηT =


T−

t=1


T∏

s=t+1

λs

−1
. (A.18)

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at doi:10.1016/j.neunet.2011.08.008.
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