
Robotics and Autonomous Systems 36 (2001) 37–51

Acquisition of stand-up behavior by a real robot using
hierarchical reinforcement learning

Jun Morimoto a,b,∗, Kenji Doya b,c

a Kawato Dynamic Brain Project, ERATO, JST, 2-2-2 Hikaridai Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
b Graduate School of Information Science, Nara Institute of Science and Technology,

8916-5 Takayama-cho, Ikoma-shi, Nara 630-0101, Japan
c ATR International, CREST, JST, 2-2-2 Hikaridai Seika-cho, Soraku-gun, Kyoto 619-0288, Japan

Received 6 March 2000; received in revised form 2 February 2001; accepted 3 February 2001

Abstract

In this paper, we propose a hierarchical reinforcement learning architecture that realizes practical learning speed in real
hardware control tasks. In order to enable learning in a practical number of trials, we introduce a low-dimensional repre-
sentation of the state of the robot for higher-level planning. The upper level learns a discrete sequence of sub-goals in a
low-dimensional state space for achieving the main goal of the task. The lower-level modules learn local trajectories in the
original high-dimensional state space to achieve the sub-goal specified by the upper level.

We applied the hierarchical architecture to a three-link, two-joint robot for the task of learning to stand up by trial and error.
The upper-level learning was implemented by Q-learning, while the lower-level learning was implemented by a continuous
actor–critic method. The robot successfully learned to stand up within 750 trials in simulation and then in an additional 170
trials using real hardware. The effects of the setting of the search steps in the upper level and the use of a supplementary
reward for achieving sub-goals are also tested in simulation. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Reinforcement learning; Hierarchical; Real robot; Stand-up; Motor control

1. Introduction

Recently, there have been many attempts to ap-
ply reinforcement learning (RL) algorithms to the ac-
quisition of goal-directed behaviors in autonomous
robots. However, a crucial issue in applying RL to
real-world robot control is the curse of dimensional-
ity. For example, control of a humanoid robot easily
involves a forty- or higher-dimensional state space.
Thus, the usual way of quantizing the state space with
grids easily breaks down. We have recently devel-
oped RL algorithms for dealing with continuous-time,

∗ Corresponding author. Fax: +81-774-95-3001.
E-mail address: xmorimo@erato.atr.co.jp (J. Morimoto).

continuous-state control tasks without explicit quanti-
zation of state and time [6]. However, there is still a
need to develop methods for high-dimensional func-
tion approximation and for global exploration. The
speed of learning is crucial in applying RL to real
hardware control because, unlike in idealized simula-
tions, such non-stationary effects as sensor drift and
mechanical aging are not negligible and learning has
to be quick enough to keep track of such changes in
the environment.

In this paper, we propose a hierarchical RL archi-
tecture that realizes a practical learning speed in
high-dimensional control tasks. Hierarchical RL meth-
ods have been developed for creating reusable behav-
ioral modules [4,21,25], solving partially observable

0921-8890/01/$ – see front matter © 2001 Elsevier Science B.V. All rights reserved.
PII: S0 9 2 1 -8 8 90 (01)00113 -0

38 J. Morimoto, K. Doya / Robotics and Autonomous Systems 36 (2001) 37–51

Markov decision problems (POMDPs) [26], and for
improving learning speed [3,10].

Many hierarchical RL methods use coarse and fine
grain quantization of the state space. However, in a
high-dimensional state space, even the coarsest quan-
tization into two bins in each dimension would create
a prohibitive number of states. Thus, in designing a
hierarchical RL architecture in high-dimensional
space, it is essential to reduce the dimensions of the
state space [16].

In this study, we propose a hierarchical RL archi-
tecture in which the upper-level learner globally ex-
plores sequences of sub-goals in a low-dimensional
state space, while the lower-level learners optimize lo-
cal trajectories in the high-dimensional state space.

As a concrete example, we consider a “stand-up”
task for a two-joint, three-link robot (see Fig. 1). The
goal of the task is to find a path in a high-dimensional
state space that links a lying state to an upright state
under the constraints of the system dynamics. The
robot is a non-holonomic system, as there is no actua-
tor linking the robot to the ground, and thus trajectory
planning is non-trivial. The geometry of the robot is
such that there is no static solution; the robot has to
stand up dynamically by utilizing the momentum of
its body.

This paper is organized as follows. In Section 2,
we explain the proposed hierarchical RL method. In
Section 3, we show simulation results of the stand-up
task using the proposed method and compare the per-
formance with non-hierarchical RL. In Section 4, we
describe our real robot and system configuration and
show results of the stand-up task with a real robot us-
ing the proposed method. In Section 5, we discuss the
difference between our method and previous methods

Fig. 1. Robot configuration. θ0: pitch angle, θ1: hip joint angle,
θ2: knee joint angle, θm: the angle of the line from the center of
mass to the center of the foot.

in terms of hierarchical RL, RL using real robots, and
the stand-up task. Finally, we conclude this paper in
Section 6.

2. Hierarchical reinforcement learning

In this section, we propose a hierarchical RL ar-
chitecture for non-linear control problems. The ba-
sic idea is to decompose a non-linear problem in
a high-dimensional state space into two levels: a
non-linear problem in a lower-dimensional space and
nearly-linear problems in the high-dimensional space
(see Fig. 2).

2.1. Task decomposition by sub-goals

In the upper level, the learner deals with the entire
task. The reward for the upper-level learner is given
by the achievement of the entire task. In the lower
level, each learner deals with a sub-task. The reward
for the lower-level learner is given by the achieve-
ment of a given sub-goal. An action of the upper-level
learner is the selection of the next sub-goal for the
lower level. An action of the lower-level learner is the
command for the actuators. The upper-level learner
is activated when the lower-level learner achieves the
current sub-goal. Then, the upper-level learner takes a
new action, which is given as a new sub-goal for the
lower-level learner. The state variables in the lower

Fig. 2. Hierarchical reinforcement learning architecture.

J. Morimoto, K. Doya / Robotics and Autonomous Systems 36 (2001) 37–51 39

Table 1
Task decomposition by sub-goals

Level State Action Reward

Upper Abstract Setting sub-goals Task achievement
Low dimension

Lower Physical Actuator commands Sub-goal achievement
High dimension

level are the physical variables, while those in the up-
per level are lower-dimensional state variables (see
Table 1). The choice of low-dimensional state vari-
ables is an important issue in hierarchical RL. In gen-
eral, the use of task-oriented kinematic variables, such
as the positions of the end effector and the center of
the body mass, in the upper level would be appropri-
ate. In the stand-up task, we chose the angles of the
joints and the center of mass as the state variables.
In other words, we chose kinematic variables in the
upper level and dynamic variables in the lower level
as the input.

2.2. Upper-level learning

In the upper level, the learner explores the entire
relevant area of a low-dimensional sub-space of the
original high-dimensional state space. In order to fa-
cilitate global search, the state space is coarsely dis-
cretized and the actions are defined as transitions to
nearby states. We then use the Q(λ)-learning method
[20] to learn a sub-goal sequence to achieve the goal
of the entire task. Thus, a reward R(T) to the upper
level is given depending on the success or failure of
the entire task.

In the upper level, the action-value function
Q(X(T),U(T)) predicts the accumulated future re-
ward if the learner takes the action U(T) at the state
X(T). In Q(λ)-learning, the action-value function is
updated in two steps. First, all of the state-action pairs
are updated by

δ(T) = R(T)+ γV (X(T + 1))− V (X(T)), (1)

e(X,U)← γ λe(X,U), (2)

Q(X,U)← Q(X,U)+ αQe(X,U)δ(T), (3)

where V (X(T)) = maxUQ(X(T),U(T)) is the
state-value function and δ(T) is its prediction error,

γ = 0.5 is the discount factor of the action-value
function, e(X,U) is the eligibility trace, λ = 0.9 is
the decay rate of the eligibility trace, and αQ = 0.1
is the learning rate. Then, the value function for the
current state-action pair is updated by

δ′(T)=R(T)+ γV (X(T + 1))

−Q(X(T), U(T)), (4)

Q(X(T),U(T))

← Q(X(T),U(T))+ αQδ
′(T), (5)

e(X(T),U(T))← e(X(T),U(T))+ 1, (6)

where δ′(T) is the action-value prediction error.
In the stand-up task, we chose the posture of the

robot X = (θm, θ1, θ2) as the state variables (see
Fig. 1). The desired posture of the robot U(T) =
X(T −1)+�X is given as an action, which is sent to
the lower level as the next sub-goal. The upper-level
learner chooses an action using Boltzmman distribu-
tion [22]. Thus, we have

P(U(T) = a) = exp[βQ(X(T), a)]∑
b∈A(X)exp[βQ(X(T), b)]

, (7)

whereA(X) is the set of possible actions at state X and
β is a parameter that controls the randomness in the
action selection for exploration. We define the reward
for the upper-level learner as follows.

R(T) = Rmain + Rsub, (8)

Rmain =
{

1, on success of stand-up,
0, on failure,

(9)

Rsub =




1, final goal achieved,

0.25

(
Y

L
+ 1

)
, sub-goal achieved,

0, on failure,

(10)

40 J. Morimoto, K. Doya / Robotics and Autonomous Systems 36 (2001) 37–51

where Y is the height of the head of the robot at a
sub-goal posture and L is total length of the robot.
The final goal is the upright stand-up posture. When
the robot achieves a sub-goal, the upper-level learner
gets a reward of less than 0.5. Note that reaching the
final goal is a necessary but not sufficient condition of
successful stand-up because the robot may fall down
after passing through the final goal.

When the robot reaches the neighborhood of
a sub-goal, the next sub-goal is selected and the
action-value function is updated in the upper
level.

We consider that the stand-up task is accomplished
when the robot stands up and stays upright for more
than 2(T + 1) seconds. Otherwise (e.g. if the robot
falls down, or if a time limit has been reached before
the robot successfully stands up), we determine that
the robot has failed to stand up.

2.3. Lower-level learning

In the lower level, the learner explores local ar-
eas of the high-dimensional state space without dis-
cretization. The lower-level learner learns to achieve
the sub-goal specified by the upper level from any
given initial state. Because each sub-goal is defined
in the low-dimensional state space of the upper level,
the sub-goal is not a point but a hyper-plane in the
high-dimensional state space of the lower level. We use
the continuous TD(λ)-learning with the actor–critic
method [6] to learn the control command sequence.
In addition, we use an INGnet to implement the actor
and the critic [17] (see Appendix A). A reward r(t)

is given to the lower level by the achievement of the
sub-goal specified by the upper level [3].

In continuous actor–critic learning of the lower-level
learner, the critic learns the state-value function
V (x(t)) that predicts the accumulated future re-
ward at state x(t), while the actor learns the control
function uj (t) = umaxh(fj (x(t)) + σnj (t)) that
specifies a non-linear feedback control law. Here,
h(x) = (π/2) arctan((2/π)x) is a sigmoid function
to saturate output with maximum torque umax, σ is a
size of a noise term for exploration of the lower-level
learner, and nj (t) is low-pass filtered noise τnṅj (t) =
−nj (t) + Nj(t), where Nj(t) denotes normal Gaus-
sian noise and τn = 0.1 [s] is a time constant for the
low-pass filter. We use INGnets for the critic and the

actor. The output of the critic is given by

V (x(t)) =
∑
i

vibi(x(t)), (11)

where bi() is a basis function, and vi is a network
weight. The state-value prediction error δ(t) is calcu-
lated by

δ(t) = r(t)− 1

τ
V (x(t))+ dV (x(t))

dt
, (12)

where τ = 0.5 [s] is the time constant of the
state-value function. The update rule of the critic is

v̇i = αcδ(t) ei(t), (13)

where αc = 0.02 is the learning rate, and ei the eligi-
bility trace of each basis function. The update rule of
eligibility trace is

ėi (t) = − 1

κ
ei(t)+ bi(x(t)), (14)

where κ = 0.1 [s] is the time constant of eligibility.
The output of the actor is given by

fj (x(t)) =
∑
i

wijbi(x(t)), (15)

uj (x(t)) = umaxh(fj (x(t))+ σnj (t)), (16)

where bi() is the basis function, and wij is a network
weight. The update rule of the actor is

ẇij = αaδ(t)σnj (t)bi(x(t)), (17)

where αa = 0.02 is learning rate. The state-value pre-
diction error δ(t) is used as an effective reward that
signals the relative goodness of the current action u(t).

In a stand-up task, we chose the pitch and joint
angles θ = (θ0, θ1, θ2) and the corresponding angular
velocities θ̇ = (θ̇0, θ̇1, θ̇2) as the state variables x(t) =
(θ, θ̇). We chose torque u(t) = (τ1, τ2) for the two
joints as the action variables. The output torque is
the sum of two controllers, a linear servo controller
and a non-linear feedback controller fi(x), which is
acquired by the lower-level actor:

τj=umaxh

(
1

umax
(k(θ̂j−θj)−bθ̇j)+ fj (x)+ σnj

)
,

(18)

J. Morimoto, K. Doya / Robotics and Autonomous Systems 36 (2001) 37–51 41

where k = 0.26 [N m/deg] and b = 0.017 [N m s/deg]
are feedback gains, and we set the maximum torque
as umax = 24 [N m].

In this study, we used different lower-level learners
for different sub-goals. When the robot reaches the
neighborhood of a sub-goal (‖θ− θ̂‖ < 10 [deg]), the
upper-level learner switches the current lower-level
learner module to the next one according to the choice
of next sub-goals (see Fig. 2). Thus, one lower-level
actor takes control until either the robot achieves the
sub-goal, a time limit is reached, or the robot falls
down. We used two types of reward for the lower
level. One is given during the control according to the
distance from the current posture θ to the sub-goal
posture θ̂ (= U) given by the upper level

r(θ, θ̂) = exp

(
−‖θ− θ̂‖2

s2
θ

)
− 1, (19)

where sθ = 30 [deg] gives the width of the reward
function. Additional reward is given at the end of the
control by the distance from the current pitch and joint

angular velocity θ̇ to the desired values ˆ̇θ that are set
by the memory of successful trials

r(t) =


 exp

(
−‖θ̇(t)−

ˆ̇θ‖2
s2
θ̇

)
, sub-goal achieved,

−1.5, fall down,

(20)

where sθ̇ = 60 [deg/s] gives the width of the reward
function. If the time limit is reached, the lower-level
learner is not updated at the end of control. The desired

angular velocity ˆ̇θ is initialized at the first successful
stand-up as the angular velocity θ̇ when the learner

achieves the sub-goal area. It is then updated by ˆ̇θ←
η ˆ̇θ+ (1− η)θ̇ with η = 0.9 in subsequent successful
trials. Note that we set reward r(t) = 0 in the upper
part of (20) before the robot achieves the first stand-up.

3. Simulations

First, we show simulation results of the stand-up
task with a two-joint, three-link robot using the hier-
archical RL architecture. We then investigate the basic

properties of the hierarchical architecture in a simpli-
fied stand-up task with one joint. We show how the per-
formance changes with the action step size in the up-
per level. We also compare the performance between
the hierarchical RL architectures and non-hierarchical
RL architectures. Finally, we show the role of the
upper-level reward Rsub for reaching a sub-goal.

3.1. Stand-up task using a two-joint, three-link robot

We tested the performance of the hierarchical
RL architectures in the stand-up task by using the
two-joint, three-link robot (see Fig. 1). We used
a low-dimensional state X = (θm, θ1, θ2), where
0 � θm � 90, −150 � θ1 � 0, 0 � θ2 � 25
[deg] in the upper level and a high-dimensional state
x = (θ0, θ1, θ2, θ̇0, θ̇1, θ̇2), where −150 � θ1 � 150,
−150 � θ2 � 150 [deg] in the lower level. We chose
�θm = 30, �θ1 = 50, �θ2 = 25 [deg] as the action
step �X in the upper level. Each trial was started with
the robot lying on the ground, x = (90, 0, 0, 0, 0, 0)
[deg], and was continued for t < 2(T + 1) seconds
in simulated time, where T is the discrete time in the
upper level. When the robot fell down and hit its hip
or head on the ground, the trial was terminated and
restarted again. Each simulation was continued up to
1000 trials.

We set the exploration parameter as β = 0.2M(T),
where M(T) is the number of trials lasting no fewer
than T steps.

The size of the noise term was modulated as σ =
σs min[1,max[0, V1 − V (t)]]. V (t) is the lower-level
state value function and V1 = 0.5 is a exploration pa-
rameter for the lower-level learner. The maximal noise
level σs was also changed according to the sub-goal
and the number of trials m as

σs =




σ0, for final sub-goal,
σ1, otherwise if m � m1,
(m2 −m)σ1 + (m−m1)σ2

m2 −m1
,

if m1 < m < m2,

σ2, if m � m2.

(21)

The parameters were m1 = 300 [trial], m2 = 600
[trial], σ1 = 0.5, σ2 = 0.1, and σ0 = 0.01.

The physical structure and the parameters of the
robot are shown in Fig. 11 and Table 3. The physical
system was simulated by a dynamic simulator made

42 J. Morimoto, K. Doya / Robotics and Autonomous Systems 36 (2001) 37–51

Fig. 3. Time course of learning. Circles show 10th successful stand-up, upon which a simulation run was terminated. (a) Performance
index; (b) average number of sub-goals in each set of 50 trials.

by Boston Dynamics with a time step of 0.001 [s]. We
used the number of trials made before achieving 10
successful trials as the measure of the learning speed.

The robot successfully learned to stand up in 7 out
of 10 simulation runs. The average number of learn-
ing trials was 749, which took 30 minutes in sim-
ulated time (averaged over 7 successful runs). The
upper-level learner used 4.3 sub-goals (averaged over
7 successful runs) for successful stand-up.

Fig. 3(a) shows the time course of learning. The
vertical axis shows the performance index given by
the integral of the head height

∫ te
0 y(t) dt , where te

is terminal time of the trial. Fig. 3(b) shows the

Fig. 4. Example of a sub-goal sequence after 300 trials (top); example of a failed stand-up trajectory after 300 trials (bottom).

number of sub-goals used in each trial. In the first
stage of learning, the upper-level learner used only
a few sub-goals, but after the middle stage of learn-
ing, the number of sub-goals increased because the
lower-level learner learned to achieve sub-goals.

After about 300 trials, the upper-level learner
learned appropriate sub-goals for the first and sec-
ond steps, while the lower-level learner successfully
learned to achieve each sub-goal, as shown in Fig. 4.

After about 750 trials, the upper-level learner
learned appropriate sub-goals for successful stand-up,
while the lower-level learner learned to achieve each
sub-goal. The top images of Fig. 5 show an example

J. Morimoto, K. Doya / Robotics and Autonomous Systems 36 (2001) 37–51 43

Fig. 5. Example of a successful sub-goal sequence (top); example of a successful stand-up trajectory (bottom).

of a sub-goal sequence acquired in the upper level.
The bottom images of Fig. 5 show an example of a
stand-up trajectory acquired in the lower level. Each
learner successfully learned the appropriate action
sequence for the stand-up task.

3.2. The effect of step size in the upper level

To investigate the effect of the action step size, we
compared the upper-level learners with different �X.
For simplicity, we fixed θ2 to 0 [deg] by servo con-
trol (see Fig. 6) and chose action steps as �θ1 =
25, 30, 50 [deg] and �θm = 30 [deg]. Thus, we chose
X = (θm, θ1) and x = (θ0, θ1, θ̇0, θ̇1) as state vari-
ables in the upper and the lower levels, respectively.
Each simulation was continued up to 1000 trials. We

Fig. 6. One-joint, two-link robot configuration.

used the same parameters as in Section 3.1 for each
learning algorithm except for σ1 = 0.3.

Fig. 7 and Table 2 show the results of the learning to
stand-up with different �θ1. The robot achieved good
performance with �θ1 = 25 and 30 [deg] but poor
performance with �θ1 = 50 [deg]. The upper level
with smaller �θ1 used more sub-goals for standing
up. Fig. 8 shows examples of the stand-up trajecto-
ries and the sub-goal points in joint angle space with
different �θ1. The sub-goal locations with �θ1 = 20
[deg] and �θ1 = 30 [deg] were different, but both
were good via points for generating stand-up trajec-
tories. On the other hand, the sub-goal locations with
�θ1 = 50 [deg] lacked the important via point repre-
senting a maximum curvature of the stand-up trajec-
tory (see Fig. 8). Without this via point, the lower-level
learner had to learn a difficult sub-task and often failed
to acquire a part of the stand-up trajectories.

Thus, we showed that the proposed hierarchical
RL method was not so sensitive to the choice of

Table 2
Comparison with different �θ1

�θ1

[deg]
Success rate (%) Average over successful trials

Trials Time [min] Sub-goals

25 90 408 19 6.3
30 100 375 16 4.5
50 20 463 16 4

44 J. Morimoto, K. Doya / Robotics and Autonomous Systems 36 (2001) 37–51

Fig. 7. Comparison of the time course of learning with different �θ1. Circles show 10th successful stand-up, upon which a simulation
run was terminated. (a) Performance index, �θ1 = 25 [deg]; (b) average number of sub-goals in each set of 50 trials, �θ1 = 25 [deg];
(c) performance index, �θ1 = 30 [deg]; (d) average number of sub-goals in each set of 50 trials, �θ1 = 30 [deg]; (e) performance index,
�θ1 = 50 [deg]; (f) average number of sub-goals in each set of 50 trials, �θ1 = 30 [deg].

J. Morimoto, K. Doya / Robotics and Autonomous Systems 36 (2001) 37–51 45

Fig. 8. Stand-up trajectories and sub-goals using different �θ1.

�X but has a certain range of �X in which the
upper-level learner successfully acquired the appro-
priate sub-goals for stand-up.

3.3. Comparison between hierarchical and
plain architectures

We then compared the hierarchical RL architec-
ture with a non-hierarchical, plain RL architecture. We
again used a one-joint, two-link robot (see Fig. 6), and
compared the results in Section 3.2 with the results
of a plain continuous actor–critic architecture [6]. In
the plain architecture, the actor and the critic have to
learn a highly non-linear control function and value
function, respectively. In preliminary experiments, we
used a simple reward function such as the height of the
head for the plain architecture without success. Thus,
we prepared a hand-crafted reward function

r(y) =




0.3
(y
L

)
+ 0.3 sin(θm)

+0.4 exp

(
−
(
θ2

0 + θ2
1

s2
θ

+ θ̇2
0 + θ̇2

1

s2
θ̇

))
− 1,

during trial,

−1, the robot falls down (22)

for the plain architecture, where y is the height of the
head of the robot, L the total length of the robot, and
sθ = 60 [deg] and sθ̇ = 240 [deg/s] give the width of
the reward function. Each simulation was continued
up to 2000 trials. We used the same parameters in
Section 3.2 for the continuous TD(λ)-learning except

Fig. 9. Time course of learning with plain architecture. Circles
show 10th successful stand-up, upon which a simulation run was
terminated.

for m1 = 1000, m2 = 1500, and V1 = 0.0. We limited
the range of joint angle to −150 � θ1 � 0 for the
plain architecture to make the stand-up task easy.

The robot successfully learned to stand-up within
1685 trials, which took 56 minutes in simulated time
(averaged over 5 successful runs out of 10 simulation
runs). Fig. 9 shows the time course of learning with
the plain architecture. Compared to the robot with the
hierarchical RL architecture, about four times as many
learning trials were necessary with the plain RL archi-
tecture. Moreover, the robot with the hierarchical RL
architecture (with �θ1 = 25 and 30 [deg]) learned to
stand up in a more robust way than the one with the
plain architecture because the robot with the hierar-
chical architecture achieved about twice as many suc-
cessful runs as the robot with the plain architecture.

3.4. The role of sub-goal reward Rsub

The sub-goals chosen as the actions of the upper
level must satisfy two conditions:

1. they should be helpful for accomplishing a suc-
cessful stand-up;

2. each of them must be achievable by the lower-level
learner.

We used the rewards Rmain and Rsub to satisfy both
demands. Rmain is given only when the robot success-
fully stands up. This means that the robot cannot get
any reward in the early stage of learning if there is
only reward Rmain for the upper level. In such a case,
the robot needs many trials to learn the task. Thus, we

46 J. Morimoto, K. Doya / Robotics and Autonomous Systems 36 (2001) 37–51

Fig. 10. Time course of learning without Rsub. (a) Performance index; (b) average number of sub-goals in each set of 50 trials.

introduced a supplementary reward Rsub in the upper
level. Because of this reward, the upper-level learner
is encouraged to use sub-goals that can be achieved by
the lower-level learner, which avoids irrealizable rel-
evant sub-goals in the early stage of learning. To ver-
ify the effect of Rsub, we applied the hierarchical RL
method to the one-joint, two-link robot without Rsub.
We used the same parameters as those in Section 3.2
for each learning algorithm except for the size of the
noise term, which is always kept to σ = 0.3, in this
section.

Fig. 10(a) shows the time course of learning without
Rsub. Fig. 10(b) shows the time course of the sub-goals
used in each trial. The robot never learned to stand up
within 1000 trials in 10 simulation runs. This result
shows the usefulness of Rsub.

4. Real robot experiments

Next, we applied the hierarchical RL to a real robot.
As the initial condition for the real robot learning, we
used the sub-goal sequence and non-linear controllers
acquired by the simulation in Section 3.1. We then
applied the hierarchical RL to a real robot (see con-
figuration in Fig. 11).

We used a PC/AT with a Pentium 233 MHz CPU
and RT-Linux as the operating system for controlling
the robot (see Fig. 12). The time step of the lower-level
learning was �t = 0.01 [s], and that of the servo
control was �t = 0.001 [s].

Fig. 11. Real robot configuration.

The robot has an inclination sensor to detect the
pitch angle and the angular velocity of the link3 (see
Fig. 1) and two rotary encoders to detect joint angles
(θ1, θ2). We derived joint angular velocity (θ̇1, θ̇2) by
numerically differentiating the joint angles. We cal-
culated the pitch angle and angular velocity (θ0, θ̇0)

by using the above sensor data (see Fig. 1). We used
the same parameters used in Section 3.1 except for

J. Morimoto, K. Doya / Robotics and Autonomous Systems 36 (2001) 37–51 47

Fig. 12. System configuration.

Table 3
Physical parameters of the real robot

Length [m] Weight [kg] Inertia [kg m2]

Link1 0.40 0.85 0.064
Link2 0.15 3.5 0.11
Link3 0.15 0.46 0.011

the following parameters: learning rate of the critic
αc = 0.05, learning rate of the actor αa = 0.05, initial
amplitude of perturbation σ1 = 0.3, final amplitude
of perturbation σ2 = 0.05, initial time for scheduling
perturbation m1 = 0, and final time for scheduling
perturbation m2 = 150. The physical parameters of
the real robot are shown in Table 3.

We used the sub-goal sequence and non-linear con-
trollers acquired by the learning with 7 successful sim-
ulation runs as the initial setting for the real robot ex-
periments. Each experiment was continued up to 200
trials. The robot successfully learned to stand up in 6
out of 7 experiments within 164 trials (averaged over
6 successful runs). Fig. 13 shows the time course of
learning with the real robot, and Fig. 14 shows the

Fig. 15. Example of a stand-up trajectory using the real robot.

Fig. 13. Time course of learning with real robot. Circles show 10th
successful stand-up, upon which a simulation run was terminated.

Fig. 14. Example of a time course of a stand-up trajectory and a
sub-goal sequence (θ0: pitch angle, θ1, θ2: joint angle).

time course of a successful stand-up trajectory and a
sub-goal sequence. These results show that the pro-
posed hierarchical RL method enabled the real robot
to accomplish the stand-up task and that the sub-goal
sequence and non-linear controllers acquired by the
simulation is useful for the learning by the real robot
(see Fig. 15).

48 J. Morimoto, K. Doya / Robotics and Autonomous Systems 36 (2001) 37–51

5. Discussion

In this section, we summarize the achievement of
this study in relation to the previous studies of the
hierarchical RL, RL using real robots, and the stand-up
task for robots.

5.1. Hierarchical RL

Hierarchical RL methods have been developed for
several different goals, such as solving POMDPs, im-
proving learning speed, and creating reusable behav-
ioral modules. For example, hierarchical Q-learning
methods have been used for solving POMDPs by di-
viding the state space into several regions in which
each task is reduced to a Markov decision problem
(MDP) [26].

Our main interest is in improving the learning speed
of a single task, in selection of reduced variables in
the upper level, and in creating reusable behavioral
modules for multiple tasks. We focus on these topics
in the following sections.

5.1.1. Improving learning speed
Kimura and Kobayashi [10] used Q-learning in

the upper level and local linear actor–critic con-
trollers in the lower level. They applied their method
to a cart-pole swing-up task, but not faster than
non-hierarchical RL [5,6].

Dayan and Hinton [3] proposed the feudal RL
method which used multiple resolutions in space
and time. They showed that the method could ac-
complish the two-dimensional maze task faster than
non-hierarchical RL.

On the other hand, by using our proposed hierarchi-
cal RL, the robot successfully learned to stand-up in
the high-dimensional state space. Here, we summarize
the reasons for the successful learning of the stand-up
task by the hierarchical architecture, which can be
helpful in other tasks as well. First, the upper level de-
composed the original task into simplified sub-tasks.
Furthermore, the upper level reward of the success of
a sub-task (Rsub) encouraged the upper level to set
realizable sub-goals. Second, the dimension reduction
in the upper-level dramatically reduced the number of
state in high-dimensional state space. Third, the coarse
exploration in the upper level enabled the robot to ex-
plore efficiently in the entire state space and prevented

it from getting in stuck local optimum. Fourth, in the
hierarchical architecture, prior knowledge can be eas-
ily included. We set the appropriate size and direction
of action steps in the upper level and provided linear
feedback component in the lower level.

Although the proposed hierarchical RL method
was successfully applied to a robot with four- and
six-dimensional state space in Sections 3.1 and 3.2,
respectively, it remains to be tested how well it scales
with further increase in the dimension of the state
space.

5.1.2. Selection of reduced variables
In this study, we chose the angles of the joints

and the center of mass as the low-dimensional state
variables for the upper level. However, this strategy
of neglecting the velocity components has a limita-
tion that the dimension can be reduced at most to
the half of the original dimension. For systems with
much higher-dimensional state space, e.g., arms or
legs with excess degrees of freedom, we should con-
sider the use of task-oriented kinematic variables in
the upper level. For example, in manipulation task
with a multi-joint arm, the position of the end ef-
fector can be a good state vector in the upper level.
For another example, position of the center of mass
or the zero-moment point (ZMP) can be a good
higher-level representation in locomotion or posture
control task with multiple legs. How to select such
essential variables by learning remains as a subject of
future work.

In addition, we chose an appropriate step size �X in
the upper level, but a method of automatically choos-
ing and adapting step size is also a subject of future
work.

5.1.3. Using reusable behavioral modules and
abstract action

Singh [21] proposed compositional Q-learning
(CQ-L) in which each lower-level module was au-
tomatically adapted to manage each subtask. The
architecture of this learning method was similar to
the mixtures of experts [8]. A gating module stochas-
tically switches the lower level module, and a bias
module estimates the state-value for compositional
tasks. Each lower-level module can be reused in
several compositional tasks. Tham [25] proposed an
extended version of the CQ-L in which rewards can

J. Morimoto, K. Doya / Robotics and Autonomous Systems 36 (2001) 37–51 49

be defined not only at goal states but also at non-goal
states and each lower-level module can have more
than two Q-networks for learning behaviors of more
than two actuators. He applied the extended CQ-L to
non-linear control tasks using a simulated two-linked
manipulator.

Digney [4] proposed nested Q-learning in which a
hierarchical structure was also learned. In his method,
a state is detected as a sub-goal according to the
experience: non-typical reinforcement is given in
the state or the learner visits the state many times.
Each sub-task then becomes one of the actions that
the learner can choose as a primitive action. As a
result, sub-tasks were nested in original tasks; in
other words, the hierarchical structure was learned.
However, the CQ-L and the nested Q-learning are
suitable when the lower-level modules are reused in
several tasks and were not developed for improving
learning speed by focusing on a single task as in our
study.

Sutton et al. [23] developed a concept called option
which is a temporary abstract action. The option gives
an interface between MDP and semi-MDP, and a the-
oretical formulation for the hierarchical RL. We will
consider adapting this formulation to our method for
theoretical soundness in future work.

5.2. RL in real robots

Many studies of RL focus on theoretical aspects
and apply their method in a typical two-dimensional
maze. However, in order to apply RL to real world
problems, we should try to apply RL to realistic tasks
such as real robot control. Recently, there have been
several attempts to apply RL to real robots.

5.2.1. Navigation of wheeled mobile robots
Asada et al. [2,24] applied RL to soccer-playing

robots entered in the RoboCup [1] middle-size class.
Their robots successfully learned shooting and pass-
ing behaviors. Yamaguchi et al. [28] accomplished a
ball-pushing task using their mobile robot with RL.
Ortiz and Zufiria [19] applied RL to a goal-reaching
task using the NOMAD 200 mobile robot. Mataric
[14] investigated social behaviors of robots. A group
of four mobile robots successfully learned a foraging
task. However, these tasks did not have critical dy-
namic constraints as in our work.

5.2.2. Legged locomotion
Maes and Brooks [13] applied RL to the selection

of behaviors of a six legged robot by only consider-
ing an immediate reward. Kirchner [11] applied RL to
learn the appropriate leg motion of a six legged robot.
Yamada et al. [27] developed hybrid controller com-
posed of a linear control module, an RL module, and
a selection module for controlling a stilt-type biped
robot. Most of these studies dealt with stable limit
cycle behaviors. The novelty of our work is that the
task involves transient behavior under critical dynamic
constraints.

5.3. The stand-up task

Although the stand-up behavior is necessary for any
practical biped robot, there have not been so many
studies focused on the stand-up behavior due to the
difficulty in designing an appropriate controller.

Inaba et al. [7,9] developed a humanoid robot with
35 degrees of freedom that can stand up statically by
using a control scheme pre-programmed by the ex-
perimenter. Kuniyoshi and Nagakubo [12] proposed
a control strategy called action oriented control that
does not require a precise dynamical model of robots.
They applied their method to a dynamic stand-up task
for a humanoid robot by specifying several postures
and arranging them at appropriate time intervals cho-
sen by the experimenter. However, successful results
have only been obtained in simulation. Nakakuki and
Yamafuji [18] developed a two-joint, three-link robot
with curved contour. This robot can stand up dynami-
cally through oscillatory movement by using its curved
contour. However, the oscillatory movement is previ-
ously designed and not acquired by the learning. Fur-
thermore, the robot cannot stay at the upright position
because of its curved contour. Thus, the learning of
the dynamic stand-up task by using a real robot in our
study is a quite new result.

6. Conclusions

We proposed a hierarchical RL architecture that
uses a low-dimensional state representation in the up-
per level. The stand-up task was accomplished by the
hierarchical RL architecture using a real, two-joint,
three-link robot. We showed that the hierarchical RL

50 J. Morimoto, K. Doya / Robotics and Autonomous Systems 36 (2001) 37–51

architecture achieved the task much faster and more
robustly than a plain RL architecture. We also showed
that successful stand-up was not so sensitive to the
choice of the upper-level step size and that upper-level
reward Rsub was helpful for efficient exploration.

In this study, We used two-layered hierarchical ar-
chitecture. As an extension, the use of a hierarchical
architecture with three or more layers, and reusing
lower-level modules in the other tasks, are interesting
topics. We will incorporate these ideas in our hierar-
chical RL method as future work.

Acknowledgements

We would like to thank Mitsuo Kawato, Stefan
Schaal, Christopher G. Atkeson, Tsukasa Ogasawara,
Kazuyuki Samejima, Andrew G. Barto, and the anony-
mous reviewers for their helpful comments.

Appendix A. Normalized Gaussian
network (NGnet)

The normalized Gaussian basis function is repre-
sented by

bk(x) = ak(x)∑K
l=1 al(x)

, (A.1)

where

ak(x) = e−‖s
T
k (x−ck)‖2 (A.2)

is a Gaussian activation function [15]. The vectors ck
and sk define the center and the size of the kth basis
function, respectively. Note that if there is no neigh-
boring basis function, the shape of the basis functions
extend like sigmoid functions by the effect of normal-
ization.

In particular, we use an INGnet [17] to represent
a value function in the critic and a non-linear control
function in the actor. In INGnet, a new unit is allo-
cated if the error is larger than a threshold emax and
the activation of all existing units is smaller than a
threshold amin, i.e.,

|y(x)− ŷ(x)| > emax and max
k

ak(x) < amin.

(A.3)

The new unit is initialized with the weight wk = ŷ(x),
the center ck = x, and the size sk = diag(µi), where
ŷ(x) is a desired output, and µi is the inverse of the
radius of the basis function. In Sections 3 and 4, we
set the inverse of the radius of the basis function as
µθ = 0.035 [1/deg] for pitch and joint angle, andµθ̇ =
0.0087 [s/deg] for pitch and joint angular velocity. We
also set the error threshold and the activation threshold
as emax = 0.0 and amin = 0.4, respectively. Note that
when a new basis function is allocated, the shapes of
neighboring basis functions also change because of
the nature of normalized Gaussian basis functions.

References

[1] M. Asada, H. Kitano, I. Noda, M. Veloso, RoboCup: Today
and tomorrow — What we have learned, Artificial Intelligence
110 (1999) 193–214.

[2] M. Asada, E. Uchibe, K. Hosoda, Cooperative behavior
acquisition for mobile robots in dynamically changing
real worlds via vision-based reinforcement learning and
development, Artificial Intelligence 110 (1999) 275–292.

[3] P. Dayan, G.E. Hinton, Feudal reinforcement learning, in:
Advances in Neural Information Processing Systems, Vol. 5,
Morgan Kaufmann, San Francisco, CA, 1993, pp. 271–278.

[4] B.L. Digney, Learning hierarchical control structures for
multiple tasks and changing environments, in: Proceedings of
the Fifth Conference on the Simulation of Adaptive Behavior,
MIT Press, Cambridge, MA, 1998, pp. 321–330.

[5] K. Doya, Efficient nonlinear control with actor–tutor
architecture, in: M.C. Mozer, M.I. Jordan, T. Petsche (Eds.),
Advances in Neural Information Processing Systems, Vol. 9,
MIT Press, Cambridge, MA, 1997, pp. 1012–1018.

[6] K. Doya, Reinforcement learning in continuous time and
space, Neural Computation 12 (1) (2000) 219–245.

[7] M. Inaba, I. Igarashi, K. Kagami, I. Hirochika, A 35 DOF
humanoid that can coordinate arms and legs in standing
up, reaching and grasping an object, in: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’96), Osaka, Japan, Vol. 1, 1996, pp. 29–36.

[8] R.A. Jacobs, M.I. Jordan, Hierarchical mixtures of experts and
the EM algorithm, Neural Computation 6 (1994) 181–214.

[9] F. Kanehiro, M. Inaba, H. Inoue, Development of a two-armed
bipedal robot that can walk and carry objects, in: Proceedings
of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’96), Osaka, Japan, Vol. 1, 1996,
pp. 23–28.

[10] H. Kimura, S. Kobayashi, Efficient non-linear control by
combining Q-learning with local linear controllers, in:
Proceedings of the 16th International Conference on Machine
Learning, Morgan Kaufmann, San Francisco, CA, 1999,
pp. 210–219.

[11] F. Kirchner, Q-learning of complex behaviours on a
six-legged walking machine, in: Proceedings of the Second

J. Morimoto, K. Doya / Robotics and Autonomous Systems 36 (2001) 37–51 51

EUROMICRO Workshop on Advanced Mobile Robots, 1997,
pp. 51–58.

[12] Y. Kuniyoshi, A. Nagakubo, Humanoid as a research vehicle
into flexible complex interaction, in: Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’97), Grenoble, France, 1997.

[13] P. Maes, R.A. Brooks, Learning to coordinate behaviors, in:
Proceedings of AAAI’90, Boston, MA, 1990, pp. 796–802.

[14] M. Mataric, Learning social behaviors, Robotics and
Autonomous Systems 20 (1997) 191–204.

[15] J. Moody, C.J. Darken, Fast learning in networks of
locally-tuned processing units, Neural Computation 1 (1989)
281–294.

[16] J. Morimoto, K. Doya, Hierarchical reinforcement learning of
low-dimensional sub-goals and high-dimensional trajectories,
in: Proceedings of the Fifth International Conference on
Neural Information Processing, Burke, VA, Vol. 2, IOS Press,
Amsterdam, 1998, pp. 850–853.

[17] J. Morimoto, K. Doya, Reinforcement learning of dynamic
motor sequence: learning to stand up, in: Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’98), Victoria, BC, Vol. 3, Omni Press, 1998,
pp. 1721–1726.

[18] K. Nakakuki, K. Yamafuji, Motion control of a robot
composed of three serial-links with curved contour (2nd
report, several motions of the robot), Transactions of the Japan
Society of Mechanical Engineers, Part C 59 (559) (1993)
850–854.

[19] M. Ortiz, P. Zufiria, Evaluation of reinforcement learning
autonomous navigation systems for a NOMAD 200 mobile
robot, in: Proceedings of the Third IFAC Symposium
on Intelligent Autonomous Vehicles 1998 (IAV’98), 1998,
pp. 309–314.

[20] J. Peng, R. Williams, Incremental multi-step Q-learning,
Machine Learning 22 (1996) 283–290.

[21] S. Singh, Transfer of learning by composing solutions of
elemental sequential tasks, Machine Learning 8 (1992) 323–
339.

[22] R.S. Sutton, A.G. Barto, Reinforcement Learning: An
Introduction, MIT Press, Cambridge, MA, 1998.

[23] R.S. Sutton, D. Precup, S. Singh, Intra-option learning about
temporary abstract actions, in: Proceedings of the 15th
International Conference on Machine Learning, Madison, WI,
1998, pp. 556–564.

[24] Y. Takahashi, M. Asada, K. Hosoda, Reasonable performance
in less learning time by real robot based on incremental
state space segmentation, in: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS’96), Osaka, Japan, Vol. 3, 1996, pp. 1518–1524.

[25] C.K. Tham, Reinforcement learning of multiple tasks using a
hierarchical CMAC architecture, Robotics and Autonomous
Systems 15 (1995) 247–274.

[26] M. Wiering, J. Schmidhuber, HQ-learning, Adaptive Behavior
6 (2) (1997) 219–246.

[27] S. Yamada, A. Watanabe, M. Nakashima, Hybrid
reinforcement learning and its application to biped robot
control, in: Advances in Neural Information Processing
Systems, Vol. 10, 1998, pp. 1071–1077.

[28] T. Yamaguchi, M. Masubuchi, K. Fujihara, M. Yachica,
Realtime reinforcement learning for a real robot in the real
environment, in: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS’96),
Osaka, Japan, Vol. 3, 1996, pp. 1321–1327.

Jun Morimoto received his B.E. in
Computer-Controlled Mechanical Systems
from Osaka University in 1996, M.E. in
Information Science from Nara Institute
of Science and Technology in 1998, and
Ph.D. in Information Science from Nara
Institute of Science and Technology in
2001. He was a Research Assistant at
Kawato Dynamic Brain Project, ERATO,
JST in 1999. He is now a postdoctoral

fellow at the Robotics Institute, Carnegie Mellon University, Pitts-
burgh, Pennsylvania. He is a member of Japanese Neural Network
Society, and Robotics Society of Japan. He received Young In-
vestigator Award from Japanese Neural Network Society in 2000.
His research interests include reinforcement learning and robotics.

Kenji Doya received his B.S., M.S., and
Ph.D. in Mathematical Engineering from
University of Tokyo in 1984, 1986, and
1991, respectively. He was a Research As-
sociate at University of Tokyo in 1986, a
post-graduate researcher at the Department
of Biology, UCSD in 1991, and a Re-
search Associate of Howard Hughes Med-
ical Institute at Computational Neurobiol-
ogy Laboratory, Salk Institute in 1993. He
took the positions of a Senior Researcher

at ATR Human Information Processing Research Laboratories in
1994, the leader of Computational Neurobiology Group at Kawato
Dynamic Brain Project, ERATO, JST in 1996, and the leader of
Neuroinformatics Project at Information Sciences Division, ATR
International in 2000. He has been appointed as a visiting Associ-
ated Professor at Nara Institute of Science and Technology since
1995, and the Director of Metalearning, Neuromodulation, and
Emotion Research, CREST, JST since 1999. He is an Action Edi-
tor of Neural Networks and Neural Computation, a board member
of Japanese Neural Network Society, and a member of Society for
Neuroscience and International Neural Network Society. His re-
search interests include non-linear dynamics, reinforcement learn-
ing, the functions of the basal ganglia and the cerebellum, and the
roles of neuromodulators in metalearning.

