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W
e propose a model-based reinforcement
learning (RL) algorithm for biped walking
in which the robot learns to appropriately
modulate an observed walking pattern.
Via-points are detected from the observed

walking trajectories using the minimum jerk criterion. The
learning algorithm controls the via-points based on a learned
model of the Poincaré map of the periodic walking pattern.
The model maps from a state in the single support phase and
the controlled via-points to a state in the next single support
phase. We applied this approach to both a simulated robot
model and an actual biped robot. We show that successful
walking policies were acquired.

Sophisticated biped walking controllers have been pro-
posed in robotics [9], [17], [30], [10]. However, human-like
agility, robustness, and energy efficiency have not been
achieved. One possible approach is for the biped controller to
learn to walk as humans do. However, applying learning to
biped walking is difficult because biped robots usually have
many degrees of freedom and a high-dimensional state space.
Our solution to this problem is to modulate an observed
walking pattern that gives good adjustable parameters for the
biped controller. We select via-points from an observed walk-
ing trajectory and use them as control actions.

We use RL methods [24] to optimize biped walking con-
trollers. Because biped walking dynamics include contact and
collision between the robot and the ground, which make pre-
cise modeling of the dynamics difficult, RL has an advantage
that we do not require an exact model of the environment in
advance. We are using model-based RL, where we learn an
approximated model of a Poincaré map and then choose con-

trol actions based on a computed value function.
Several researchers have applied RL to biped locomotion

[18], [2]. Few studies deal with a physical robot because RL
methods often require large numbers of trials. The policy gra-
dient method [25] is one of the RL methods successfully
applied to learn biped walking on actual robots [1], [27].
However, [1] requires hours to learn a walking controller, and
[27] requires a mechanically stable robot. On the other hand,
[4] reported that a model-based approach to RL is able to
accomplish tasks much faster than without using knowledge of
the environment.

In this study, we use observed trajectories, such as those of
humans or other robots controlled by our learning algorithm or
other algorithms, as nominal trajectories. We show that the pro-
posed method can be applied to an actual robot [see Figure
1(a)]. First we use a simulated five-link biped robot, depicted
in Figure 1, to evaluate our proposed method. Physical para-
meters of the five-link simulated robot in Table 1 are selected
to model the actual biped robot fixed to a boom that con-
strains the robot to the sagittal plane. Our biped has a short
torso and round feet without ankle joints. Due to the round
feet and lack of ankles, controlling biped walking trajectories
with the popular zero moment point (ZMP) approach [9] is
difficult or impossible.

The article is organized as follows. In the following sec-
tion, we introduce our RL method for biped walking.
Then we show simulation results, approximately analyze the
local stability of the learned controller, an implementation
of the proposed method on the actual robot, and demon-
strate that the robot acquires a successful walking pattern
within 100 trials.
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Poincaré-Map-Based RL for Biped Locomotion
We improve biped walking controllers based on an approxi-
mated Poincaré map using a model-based RL framework [4],
[24]. The Poincaré map represents the locus of intersection of
the biped trajectory with a hyperplane in the full state space
(see Appendix I). In our case, we are interested in the system
state at two symmetric phase angles of the walking gait.

Modulating via-points affects the locus of intersection, and
our learned model reflects this effect. Given a learned map-
ping, we proceed to learn a corresponding value function for
states at phases φ = π/2π and φ = 3π/2 (see Figure 2),
where we define phase φ = 0 as the left foot touchdown.

The input state is defined as x = (ψ, ψ̇), where ψ denotes
the angle of the inverted pendulum dynamics represented by

the dynamics of the center of gravity
(CoG) and the center of pressure (CoP)
(see Figure 3). We use a human walking
pattern in [6] as the nominal trajectory
(see Figure 4). The action of the robot
u = θ act modulates the via-points of the
nominal trajectories:

θvp = θ̄vp + θ act, (1)

where θ̄vp denotes the nominal value of
the selected via-points. In this study, we
manually selected a via-point of the knee
joint to change foot placement. If we
assume that foot exchange occurs instanta-
neously, the mass of the swing leg is negli-
gible, the biped robot has point feet, the
distance between the CoG and the CoP is
fixed, and the angle ψ is small, the
approximate biped robot dynamics are
those of an inverted pendulum model:

ψ̈ = g
l
ψ, (2)

where l represents the fixed distance between the CoG and
the CoP and g denotes the acceleration due to gravity.
Because we can modulate the angle ψ by changing the
foot placement, we can expect that we can control the
state x = (ψ, ψ̇) at the Poincaré section by modulating the
selected via-point. Although we modulate the selected via-
point according to the pendulum state, behavior of the
biped model does not need to be precisely approximated
by the pendulum model since our RL method do not
explicitly use the model (2).

Representation of Biped Walking
Trajectories and the Low-Level Controller
We interpolated trajectories between the via-points by using
the minimum jerk criteria [7], [29] (see Figure 4 and Appen-
dix II). To follow the generated target trajectories, the torque
output at each joint is given by a servo controller:

τττ = Kp(θθθ
d(φ) − θθθ) + Kd(θ̇θθ

d
(φ) − θ̇θθ), (3)

where τττ is the joint torque, θθθ d(φ) ∈ R4 is the target joint
angle vector, Kp denotes the position gain matrix, and Kd

denotes the velocity gain matrix.
We reset the phase [28], [19] to φ = 0 at left foot touch-

down and to φ = π at right foot touchdown.

Figure 1. (a) Five link biped robot. (b) Simulated biped robot model.
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Trunk Thigh Shin
Mass (kg) 2.0 0.64 0.15
Length (m) 0.01 0.2 0.2
Inertia (×10−4[kg · m2]) 1.0 6.9 1.4

Table 1. Physical parameters 
of the five-link robot model.

Figure 2. Biped walking cycle: we update parameters and
select actions at Poincaré sections at phase φ = π/2 and
φ = 3π/2. L: left leg, R: right leg.
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Learning the Poincaré Map
We learn a model that predicts the state of the biped a half
cycle ahead, based on the current state and the modulated via-
points. We are predicting the location of the system in a Poin-
caré section at phase φ = 3π/2 based on the system’s location
in a Poincaré section at phase φ = π/2 (see Figure 2).

Because the state of the robot drastically changes at foot
touchdown (φ = 0, π ), we select the phases φ = π/2 and
φ = 3π/2 as Poincaré sections. For starting at phase
φ = π/2, we approximate this Poincaré map using a function
approximator with a parameter vector m,

x̂ 3π
2

= f̂(x π
2
,u π

2
;m), (4)

where the input state is defined as x = (ψ, ψ̇), and the action
of the robot is defined as u = θ act. There is a second model
mapping the state at 3π/2 to the state at π/2. We use recep-
tive field weighted regression (RFWR) [22] as the function
approximator (see Appendix III).

Learning the Value Function
In a stochastic RL framework, the basic goal is to find a sto-
chastic policy, a biped controller in this study,
πw(x,u) = p(u|x;w) that maximizes the expectation of the
discounted accumulated reward:

E {V (k)|πw} = E

{ ∞∑

i=k+1

γ i−(k+1) r( i)

∣∣∣∣∣πw

}
, (5)

where r ( i) denotes reward, V (k) is the actual return that rep-
resents an accumulated reward associated with one sample
path, w is the parameter vector of the policy πw , and
γ (0 ≤ γ < 1) is the discount factor. The value function for
the policy πw is defined as:

V πw(x) = E {V(k)|x(k) = x, πw}. (6)

In this framework, we evaluate the value function only at
φ(kn) = π/2 and φ(kn) = 3π/2, where kn denotes the time

step when the nth intersection with the Poincaré section is
occurred. Thus, we consider our learning framework has
model-based RL for a semi-Markov decision process (SMDP)
[26] (see Appendix IV). We use RFWR with a parameter
vector v as the function approximator to represent the value
function:

V̂ πw(kn) = V̂ πw(x(kn); v). (7)

By considering the deviation from (5), we can define the tem-
poral difference error [24], [26]:

Figure 4. Nominal joint-angle trajectories of the right leg observed from a human walking pattern and detected via-points repre-
sented by crosses (×). Nominal joint-angle trajectories for the left leg have π radians phase difference. A manually selected via-
point represented by a circle (◦) is modulated by the control output θact [see (1)] to change the foot placement. Note that the
amplitude of the human walking pattern is multiplied by 0.7.
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Figure 3. The biped robot dynamics are approximated as those
of an inverted pendulum and correspond to the dynamics of the
center of gravity (CoG) relative to the center of pressure (CoP).
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δ =
kn+1∑

j=kn+1

γ j−(kn+1) r( j)

+ γ kn+1−knV̂πw(kn+1) − V̂πw(kn). (8)

To update the value function, a desired output for RFWR is:

V̂ πw
d (x(kn)) = V̂ πw(x(kn); v) + αδ, (9)

where α is a learning rate.

Learning a Policy for Biped Locomotion
We use a stochastic policy to generate exploratory action. The
policy is represented by a Gaussian distribution:

πw(x,u) = N (µµµ(x;w),�), (10)

where µµµ(x;w) ∈ U ⊂ Rm denotes the mean of the model,
which is represented by RFWR. � denotes the covariance
matrix � = diag(σ 2

1 , σ 2
2 , · · · , σ 2

m). In this study, the number
of outputs is m = 1.

We derive the update rule for a policy by using the value
function and the estimated Poincaré map. The update rule is
the following:

1) Derive the gradient of the learned  Poincaré map
model: (∂ f̂(x,u)/∂u)|x=x(kn),u=u(kn) .

2) Derive the gradient of the approximated value function:
(∂V̂ πw(x)/∂x)|x=x(kn+1) .

3) To update the policy parameter w, compute a desired
output for RFWR as:

µµµd(x(kn)) = µµµ(x(kn);w) + β
∂V̂ πw(x)

∂x

∂ f̂(x,u)

∂u
, (11)

where β is a learning rate.
Since the goal of the learning system is to increase the

discounted accumulated reward, (5), by updating the para-
meter of the policy w, we use the gradient direction of the
approximated value function V̂ πw(x). But because the
direction (∂V̂ πw(x)/∂x) is represented in the state space, we
need to project the derived direction onto the action space
by using the learned Poincaré map f̂(x,u) as
(∂V̂πw(x)/∂x)× (∂ f̂(x,u)/∂u).

Figure 5. Schematic diagram of Poincaré-map-based RL. The inverted pendulum state (ψ, ψ̇) is detected at the section φ = π/2
and φ = 3π/2. The Poincaré map is approximated by the detected state and the state detected at the previous section. The gra-
dient of the approximated Poincaré map d f̂/du is estimated. The gradient of the approximated value function ∂V̂/∂x is estimat-
ed. The parameter vector w of the policy is updated by using the derived gradients. The via-points are modulated according to
the current policy. The minimum-jerk trajectory is generated using the modulated via-points and used as the desired trajectory
for the biped robot.
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We can consider the output u(kn) as an option in the
SMDP [26] initiated in state x(kn) at time kn when
φ(kn) = π/2 (or φ(kn) = 3π/2), and it terminates at time
kn+1 when φ(kn+1) = 3π/2 (or φ(kn+1) = π/2).

Figure 5 shows schematic diagram of the Poincaré-map-
based RL method.

The learning performance can depend on the observed
trajectories. Since we only evaluate current performance and
update parameters at the Poincaré section, the amount of cal-
culation can be reduced, but the observed trajectories are
required to be good enough to generate at least two steps ini-
tially so that our algorithm can evaluate and update the para-
meters. We scaled the human walking pattern in order to
satisfy this requirement (see Figure 4).

Local Stability Analysis of
a Learned Biped Controller
We approximately analyze the local stability of the acquired
policy around a fixed point x∗ in terms of the  Poincaré map,
the mapping from a Poincaré section at phase φ = π/2 to
phase φ = 3π/2 (see Figure 2).

We estimate the Jacobian matrix of the Poincaré map at
the Poincaré sections,and check if the maximum eigenvalue is
inside of the unit circle [3], [8]. Because we use differentiable
functions as function approximators, we can estimate the Jaco-
bian matrix J as follows:

J = df

dx

∣∣∣∣
x=x∗

= ∂f

∂x
+ ∂f

∂u

∂u(x)

∂x
. (12)

Simulation
We applied the proposed method to the five-link simulated
robot [see Figure 1(b)]. We used a manually generated initial
step to get the pattern started. We set the walking period to
T = 1.0 s. A trial is terminated after 20 steps or after the robot
falls. Figure 6(a) shows the walking pattern before learning.

We numerically integrate the dynamics of the biped model
with a time step of � t = 0.001s. Each element of the diago-
nal position gain matrix Kp in (3) is set to 4.0 except for the
knee joint of the stance leg, which is set to 9.0, and each ele-
ment of the diagonal velocity gain matrix Kd is set to 0.1.

The control cost is defined as r(k) =
−(1/4)

∑4
j=1 0.2τ 2

j (k)� t . On each transition from phase
φ = π/2 (or φ = 3π/2) to phase φ = 3π/2 (or φ = π/2),
the robot gets a positive reward (0.1). If the height of the body
goes below 0.38 m, the robot is given a negative reward (−1)
and the trial is terminated.

We varied the element of the covariance matrix � in (10)
according to the trial as σ = 0.2 ((50 − N trial)/50)+0.002 for
N trial ≤ 50 and σ = 0.002 for N trial > 50, where N trial

denotes the number of trials. The learning rates are set as
α = 0.2 (9) and β = 0.1 (11).

A successful trial occurred when the robot continuously
walked for more than 20 steps. We use the accumulated
reward of each transition from phase φ = π/2 (or φ = 3π/2)
to phase φ = 3π/2 (or φ = π/2), averaged over the number

of the transitions, to show progress of the learning process.
Figure 7 shows the accumulated reward at each trial averaged
over ten simulation runs. Walking controllers were acquired
within 100 trials.

The shape of the approximated values function is shown in
Figure 8(a). The approximate value function has two local
minima. One is located at a position corresponding to a nega-
tive angle ψ and negative angular velocity ψ̇ because this state
leads the robot to fall backward. The other is located at a posi-
tion corresponding to a positive value of  ψ and a positive
angular velocity ψ̇ because this state leads the robot to fall for-
ward. The maximum value of the value function is located at

Figure 6. Acquired biped walking pattern. (a) Before learning.
(b) After learning.

(a)

(b)

Figure 7. Accumulated reward at each trial: We averaged ten
simulation runs and present standard deviations as well.
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a position corresponding to a negative value of ψ and a posi-
tive angular velocity ψ̇ , which leads to successful walking.

The shape of the acquired policy is shown in Figure 8(b).
The policy increases θ act [ see (1)] to bend the knee if the angu-
lar velocity ψ̇ is too small for a successful walk. By bending the
knee, the angle ψ increases on touchdown. As the angle ψ
increases, the acceleration of the angle ψ̈ increases [see (2)]. As a
result, successful walking is achieved by using the learned policy.

The learned walking pattern is shown in Figure 6(b).
Figure 9(a) shows a phase diagram of a successful walking
pattern in the state space x = (ψ, ψ̇) after learning. A
gradual increase of the walking speed can be observed.
Figure 9(b) shows the loci of the walking trajectory in
the Poincaré section. The walking trajectory after learn-
ing converges to to a fixed point in the  Poincaré section
after a few steps.

So far, we have used the round foot model depicted in
Figure 10(a). Because many biped walking robots, includ-
ing humanoid robots, have flat feet, we also applied the
proposed method to a simulated robot that has flat feet
[see Figure 10(b)]. Figure 11(a) shows the walking pattern
before learning. We used a different initial step for the flat
footed model. The other simulation settings were the
same as the round footed model. Figure 11(b) shows the
walking pattern generated by an acquired policy. The
robot model could learn biped walking controllers in dif-
ferent environments (i.e., with two different feet shapes)
without explicit knowledge of the foot shape. This result
demonstrates an advantage of using RL in the design of
controllers for biped walking.

We verified that the maximum eigenvalue of the Jaco-
bian matrix J in (12) is always inside of the unit circle

after 100 trials in ten simulation runs.
Equivalently, we showed that the simu-
lated  biped robot could acquire locally
stable controllers by using our proposed
learning framework. The fixed point x∗

is estimated by averaging the state x in
the  Poincaré section for ten steps start-
ing at the tenth step.

Implementation
on the Physical Robot
We applied the proposed model-based RL
scheme to a biped robot [see Figure 1(a)].
We used a walking pattern generated by a
previously designed state machine con-
troller [21] run on the same robot as the
nominal walking pattern (see Figure 12).
We created via-points in this nominal
walking pattern and manually selected via-
points that correspond to foot placement. 

Figure 8. (a) Shape of acquired value function. (b) Shape of acquired policy.
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As before, on each transition from phase
φ = π/2 (or φ = 3π/2) to phase φ = 3π/2 (or
φ = π/2), the robot gets a reward of 0.1, if the
height of the body remains above 0.38 m during
the past half cycle. The robot gets punishment (a
negative reward of −1) if it falls down.

We changed the covariance matrix � in
(10)  depending on the trial number:
σ = 0.1 ((50 − N trial)/50) + 0.01 for N trial ≤ 50
and σ = 0.01 for N trial > 50.We set the walk-
ing period to T = 0.84 s. A trial was terminat-
ed after 30 steps or after the robot falls. We
use the predesigned state machine for the ini-
tial six steps.

We also used a phase resetting method for
the real robot experiment. We reset the phase
to φ = φreset at left foot touchdown and to
φ = π + φreset at right foot touchdown, where
φreset = 0.3 rad.

Figure 13 shows a biped walking pattern
before learning. The robot fell over with the nominal walk-
ing pattern. Figure 14 shows a biped walking pattern after
learning. After 100 trials, the robot acquired a policy that
generated a biped walking pattern. We applied the acquired
controller to a different ground surface. Even on a metal sur-
face, the robot successfully walked using the learned biped
walking policy (see Figure 15).  

Figure 16 shows joint angle trajectories of the actual robot.
The robot generated a stable periodic pattern after 100 trials.
During each step, the robot straightened its leg, which is
uncommon in the popular ZMP approach due to the necessi-
ty of avoiding singularities.

Figure 11. Acquired biped walking pattern with flat feet. (a)
Before learning. (b) After learning.

(a)

(b)

Figure 12. Nominal joint angle trajectories and detected via-points represented by crosses (×). Manually selected via-points repre-
sented by circles (◦) are modulated by control output θ act. Each selected via-point is equally modulated by the control output θ act.
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Figure 17 shows the accumulated reward at each trial using
the real robot. The robot learned a walking controller within
100 trials.

Conclusions
In this study, we proposed Poincaré-map-based RL and
applied the proposed method to biped locomotion. The
simulated robot acquired a biped walking controller using
the observed human walking pattern as the nominal tra-
jectory. We also applied the proposed approach to a physi-
cal biped robot and acquired a policy, which successfully
generated a walking pattern. 

Automatic selection of the via-points to be used as control
actions is part of our future work. We will develop a method
to evaluate the contribution of each via-point to predict the
state at next Poincaré section. Automatic relevance determina-
tion (ARD) [20] is a candidate approach to select relevant via-
points to predict the next state.

In our previous work, we proposed a trajectory optimiza-
tion method for biped locomotion [15], [16] based on differ-
ential dynamic programming [5], [11]. We are now
considering combining this trajectory optimization method
with the proposed RL method.

Figure 13. Biped walking pattern before learning.

(a) (b) (c) (d) (e)

Because biped walking dynamics
include contact and collision
between the robot and the
ground, which make precise
modeling of the dynamics difficult,
RL has an advantage that we do
not require an exact model of the
environment in advance.

Figure 14. Biped walking pattern after learning.
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Appendix I

Poincaré-Maps
Here we consider the dynamics ż = g(z) of a state vector
z ∈ Rn. The  Poincaré map is a mapping from an n − 1
dimensional surface S defined in the state space to itself [23].
If z(kn) ∈ S is the n-th intersection, then the  Poincaré map 
f is defined by

z(kn+1) = f(z(kn)). (13)

Suppose that z∗ is a fixed point of g. We can evaluate the
local stability of the periodic orbit near this fixed point. In our
study, we assumed that we can represent the biped walking
dynamics by using simple pendulum dynamics with the

dynamics of the phase φ of the controller. The state of these
dynamics were z = (ψ, ψ̇, φ) and the section S was defined
at φ = (π/2) and φ = (3π/2). Therefore, the state of the
learning system was x = (ψ, ψ̇).

Appendix II

Minimum-Jerk Trajectories and Via-Point Detection
We used minimum-jerk trajectories to represent our desired
joint trajectories. A minimum-jerk trajectory is a fifth-order
spline function that minimizes the criterion:

∫ t f

ts

(
d3θ( t)

d t3

)2

d t, (14)

Figure 15. Biped walking on a metal surface.

(a) (b) (c) (d) (e)

Figure 16. Joint angle trajectories after learning on the real robot.
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where jerk was defined as third order derivative of a trajectory
d3θ( t)/d t3, ts is start time and t f is end time of the trajectory.
This minimum-jerk criterion was originally defined in Carte-
sian space and used to fit human arm movements [7]. The
minimum-jerk criterion defined in joint space was used to
generate arm movement of a serial-link robot for the kendama
and tennis serve tasks [14], [12]. Application of minimum-jerk
trajectories with via-point to RL was studied in [13].

The minimum-jerk trajectory has the form:

x( t) = c 0 + c 1 t + c 2 t2 + c 3 t3 + c 4 t4 + c 5 t5, (15)

ẋ( t) = c 1 + 2 c 2 t + 3 c 3 t2 + 4 c 4 t3 + 5 c 5 t4, (16)

ẍ( t) = 2 c 2 + 6 c 3 t + 12 c 4 t2 + 20 c 5 t3, (17)

where parameters c i ( i = 0, . . . , 5) are derived from the six
boundary conditions at the initial and terminal times.

In this study, via-points detected from an observed trajectory
represent initial and terminal boundary conditions.

The via-points are detected by the algorithm proposed
in [29]:

1) Detect two via-points from the initial and terminal
point of observed trajectory.

2) Generate a minimum-jerk trajectory using the detected
via-points.

3) Check the error between the minimum-jerk trajectory
and the observed trajectory at each point. If the error is
smaller than a given threshold, terminate the algorithm.

4) Detect the time that has the maximum error and use
the state x( t ), ẋ( t ), ẍ( t ) at the detected time t as the
newly detected via-point. Go to step 2.

Appendix III

Function Approximator
We used Receptive Field Weighted Regression (RFWR) [22]
as the function approximator for the policy, the value func-

tion, and the estimated Poincaré map. We approximate a tar-
get function g(x) with

ĝ(x) =
∑N b

i=1 a i(x)h i(x)
∑N b

i=1 a i(x)
, (18)

h i(x) =wT
i x̃ i, (19)

a i(x) = exp
(

−1
2
(x − c i)

TD i(x − c i)

)
, (20)

where c i is the center of the i-th basis function, D i is the dis-
tance metric of the i-th basis function, N b is the number of
basis functions, and x̃ i = ((x − c i)

T, 1)T is the augmented
state. The update rule for the parameter w is given by 

wi ← wi + a i(x)Pi x̃i(g(x) − h i(x)), (21)

where

P i ← 1
λ

(
P i − P ix̃ ix̃T

i P i
λ
a i

+ x̃T
i P ix̃ i

)
, (22)

and λ = 0.999 is the forgetting factor.
In this study, we allocate a new basis function if the activa-

tion of all existing units is smaller than a threshold amin, i.e.,

max
i

a i(x) < amin, (23)

where amin = exp(− 1
2 ). We initially align basis functions

a i(x) at even intervals in each dimension of the input space
x = (ψ, ψ̇) (see Figure 3). The ranges of the input space’s
states are −0.5 rad ≤ ψ ≤ 0.5 rad and −1.0 rad/sec
≤ ψ̇ ≤ 4.0 rad/s. Initial number of basis functions is 
225(=15 × 15) for approximating the policy and the value
function. We put one basis function at the origin for approx-
imating the Poincaré map. We set the distance metric D i to
D i = diag(400, 25) for the policy and the value function,
and D i = diag(625, 6.25, 225) for the Poincaré map. The
centers of the basis functions c i and the distance metrics of
the basis functions D i are fixed during learning.

Appendix IV

RL for Semi-Markov Decision Processes
Since the output of the policy is changed only at the  Poincaré
section, our method can be considered as a learning scheme
for a policy to output a proper option for a Semi-Markov
Decision Process (SMDP). The term option is introduced in
[26] to represent temporally extended courses of action in
SMDPs. An option consist of three components I, η, and ρ,
where I denotes an input set, η denotes a policy, and ρ
defines terminal condition. In our study, ρ is defined at a
Poincaré section, η is a modulated desired trajectory generated
by minimum-jerk criteria with a PD servo controller (3). The
input set I is also defined at a Poincaré section.

Figure 17. Accumulated reward at each trial using the physical
robot. We filtered the data with a moving average of 20 trials.
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