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Abstract—Biological systems seem to have a simpler but
more robust locomotion strategy than existing biped walking
controllers for humanoid robots. We show that a humanoid
robot can step and walk using simple sinusoidal desired joint
trajectories with their phase adjusted by a coupled oscillator
model. We use the center of pressure location and velocity
to detect the phase of the lateral robot dynamics. This phase
information is used to modulate the desired joint trajectories.
We do not explicitly use dynamical parameters of the humanoid
robot. We hypothesize that a similar mechanism may exist in
biological systems. We applied the proposed biologically inspired
control strategy to our newly developed human-sized humanoid
robot CB and a small size humanoid robot, enabling them to
generate successful stepping and walking patterns.

Index Terms—Biped Walking, Humanoid Robots, Central
Pattern Generator, Coupled Oscillator, Biologically Inspired Ap-
proach

I. INTRODUCTION

B IOLOGICAL systems seem to have a simpler but more
robust locomotion strategy [1] than existing biped walk-

ing controllers for humanoid robots (e.g. [2]). For examples,
[2] and [3] showed that the cat locomotion system can
generate walking pattern without using higher brain function.
An early study of biologically inspired approach to bipedal
locomotion [4] suggested that synchronization property of
neural system with periodic sensor inputs plays an important
role for robust locomotion control. After this leading study,
there is growing interest in biologically inspired locomotion
control utilizing coupled neural oscillators [5]–[8] or using
a phase oscillator model with phase reset methods [9], [10].
These studies make use of foot contact information, or ground
reaction forces in exploiting the entrainment property of the
neural or phase oscillator model.
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Similarly, since biped walking is a periodic movement, it has
been suggested that methods to synchronize biped controllers
with the robot dynamics are useful to generate stable walking
patterns. Several studies designed walking trajectories as a
function of a physical variable of the robot (e.g. ankle joint
angle) [11]–[13].

However, a neural oscillator model has complex dynamics
and many parameters to be selected [4], [5]. Other approaches
that has synchronization mechanisms usually require proper
gait design [9], [10], [12], [13].

In this study, we undertake the development of a simple
but robust biped controller by means of a coupled oscillator
system, which is said to exist in vertebrates and is widely
referred as central pattern generator (CPG) [14].

Many biped walking studies have emphasized that hu-
manoid robots have inverted pendulum dynamics, with the top
at the center of mass and the base at the center of pressure,
and proposed control strategies to stabilize the dynamics [15]–
[19].

We propose using the center of pressure to detect the phase
of the inverted pendulum dynamics. 1) We use simple periodic
functions (sinusoids) as desired joint trajectories. 2) We show
that synchronization of the desired trajectories at each joint
with the inverted pendulum dynamics can generate stepping
and walking. 3) Since our nominal gait patterns are sinusoids,
our approach does not need careful design of desired gait
trajectories. 4) We use smaller numbers of parameters than
existing neural oscillator approach, and compare to the neural
oscillator model, parameters used in our approach can be
easily selected since the physical meanings of the parameters
are quite simple.

To the best of our knowledge, this study is the first attempt
to apply an oscillator model to a human-sized humanoid robot
CB [20] (Fig.1(a)) for biped walking in a real environment. We
also apply our method to a small humanoid robot (Fig.1(b)).
First, we introduce our biologically inspired biped locomotion
strategy, which use modulated sinusoidal patterns via a cou-
pled oscillator model, described in Section II. In Section III,
we apply our proposed approach to the simulated robot model
(see Fig. 1(c)), and also show our experimental results.

II. MODULATION OF SINUSOIDAL PATTERNS BY A

COUPLED OSCILLATOR MODEL

Our biped control approach uses a coupled phase oscillator
model [21] to modulate sinusoidal patterns. The aim of using



(a) (b) (c)

Fig. 1. (a) Our human-sized hydraulic humanoid robot CB developed by
SARCOS [20]. height: 1.59 m, total weight: 95 kg. (b) Small humanoid robot
used in the experiment. (c) Simple 3D biped simulation model. The biped
model has ten degrees of freedom. height: 1.59 m, total weight: 95 kg.
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(b) Angular frequency

Fig. 2. Typical time profile of the coupled oscillator system. (a) Phase
difference Ψ = φr − φc. The phase difference converged to the analytically
derived value Ψ∗ depicted by dash dot line. (b) Angular frequencies ωr and
ωc. Angular frequency of each oscillator converged to the analytically derived
compromise frequency ω∗ .

the coupled phase oscillator model is to synchronize periodic
patterns generated by the controller with the dynamics of the
robot.

We also show a strategy to design nominal desired joint
angle. One of the simplest way to generate periodic pattern
at each joint is using only one sinusoidal basis function to
represent the desired joint angle. By only using one sinusoidal
basis function at each joint, we have smallest numbers of
parameters to represent periodic patterns at each joint. We
introduce our stepping and walking controllers that use the
desired joint angle represented by the sinusoidal function.

A. Coupled oscillator model

Here, we consider the behavior of the following dynamics
of the phase of a biped controller φc and the phase of the
robot dynamics φr:

φ̇c = ωc +Kc sin(φr − φc), (1)

φ̇r = ωr +Kr sin(φc − φr), (2)

where ωc > 0 and ωr > 0 are natural frequencies of the
controller and the robot dynamics, and K c, Kr are positive
coupling constants. We can find two fixed points if |ωc−ωr| <
Kc +Kr. There is no fixed point if |ωc − ωr| > Kc +Kr. A
saddle-node bifurcation occurs when |ωc − ωr| = Kc +Kr.

If |ωc − ωr| < Kc +Kr, the oscillators run with the phase
difference: Ψ∗ = φr−φc = sin−1((ωr−ωc)/(Kc +Kr)) and
the compromise frequency: ω∗ = (Krωc +Kcωr)/(Kc +Kr)
when they are entrained [21].

We showed the typical time profile of phase difference Φ =
φc − φr , angular frequencies ωc and ωr in Fig. 2. Although
usually the biped dynamics can not represented by the simple
phase dynamics (2), we can still detect the phase from the
robot dynamics as described in Section II-B. Then, we use
(1) to adjust phase of the controller under assumption that
the phase dynamics detected from the biped dynamics keeps
similar property to (2).

B. Phase detection from the robot dynamics

As previous studies have pointed out, controlling the in-
verted pendulum dynamics represented by the center of mass
and the center of pressure (Fig. 3(a)) is a major issue in
controlling biped robots. We consider the inverted pendulum
dynamics on lateral plane that has a four dimensional state
space x = (y, ẏ, ψr, ψ̇r), which depicted in Fig. 3(a).

To detect phase from the inverted pendulum dynamics, we
project the four-dimensional state space to a two-dimensional
state space. Then, convert the two-dimensional state space to
the phase space by using the function arctan, which widely
used as phase detector for radio wave decoding.

In this study, we consider the center of pressure y and the
velocity of the center of pressure ẏ as the variables in the
two-dimensional state space since detecting these values by
force sensors on soles is easy for our real robots. Therefore,
we detect the phase as

φr(x) = − arctan
(
ẏ

y

)
. (3)

C. Simplified COP detection

The center of pressure (COP) depends on a coordinate
system, and we need a kinematic model to detect COP.
Alternatively, we use an approximate center of pressure:

y =
yl

footF
l
z + yr

footF
r
z

F r
z + F l

z

, (4)

where F l
z and F r

z represent the left and right ground reaction
force respectively, and y l

foot and yr
foot are the lateral position

of each foot. We assume that feet are symmetrically placed
−yl

foot = yr
foot. Because we only use this center of pressure to

detect the phase of the robot dynamics φr(x) in equation (3),
the scale of the foot position y l

foot and yr
foot can be arbitrary.

We simply set yl
foot = −yr

foot = 1.0 m. This simplified COP
detection does not require the kinematic model.

When we derive the center of pressure from the sensor input,
we use a low-pass filter to eliminate sensor noise from force
sensors on soles.

Note that when the center of pressure come to an edge of
a sole, the detected φr(x) may have discontinuous change
because of discontinuous change of the velocity of the center
of pressure (see (3)). However, because we apply the low-
pass filter to the force sensor input, the filtered velocity of the
center of pressure do not have such undesirable discontinuous
change.



COP
0

COM

y

COP
0

COM

y

z

y

z

y

(a)

hip_p

knee_p

ankle_p

hip_r

ankle_r

hip_r

ankle_r

z

y

z

x

(b)

Fig. 3. (a) Inverted pendulum model represented by the center of pressure
(COP) and the center of mass (COM). (b) Stepping controller.

D. Phase coordination

In this study, we use two oscillators with phases φc i, where
i = 1, 2. We introduce coupling between the oscillators and
the phase of the robot dynamics φr(x) to regulate the desired
phase relationship between the oscillators as in (1):

φ̇c i = ωc +Kc sin((φr(x) − αi)− φc i), (5)

where αi is the desired phase difference. We use two differ-
ent phase differences, {α1, α2} = {−1/2π, 1/2π}, to make
symmetric patterns for a stepping movement by left and right
limbs (see section II-E2). Two parameters {ωc,Kc} need to
be selected to define the phase oscillator dynamics.

We empirically found that the natural frequency of a linear
pendulum with the length l can be a good candidate for the
natural frequency of the controller as ωc =

√
g/l, where g

denotes the acceleration due to the gravity and l denotes the
height of COM when a biped stand straight.

By considering the insight from the oscillator dynamics (1)
and (2), we need to use sufficiently large coupling constant
Kc to satisfy |ωc − ωr| < Kc +Kr for keeping fixed points.

E. Stepping controller for lateral movement

1) Side-to-side controller for lateral movement: First, we
introduce a controller to generate side-to-side movement. We
use the hip joints θhip r and the ankle joints θankle r (Fig.
3(b)) for the movement. Desired joint angles for each joint
are:

θd
hip r(φc) = Ar sin(φc) + θ̄r, (6)

θd
ankle r(φc) = −Ar sin(φc)− θ̄r, (7)

where Ar are the amplitudes of a sinusoidal function for side-
to-side movements at the hip and the ankle joints, and we use
an oscillator with the phase φc = φc 1. θ̄r defines the rest
posture of the hip, knee, and ankle joints. Two parameters
{Ar, θ̄r} need to be selected for the side-to-side controller.

2) Vertical foot movement to make clearance: To achieve
foot clearance, we generate vertical movement of the feet (Fig.
3(b)) by using simple sinusoidal trajectories:

θd
hip p(φc) = Ap sin(φc) + θ̄p, (8)

θd
knee p(φc) = −2Ap sin(φc)− 2θ̄p, (9)

θd
ankle p(φc) = −Ap sin(φc)− θ̄p, (10)

where Ap is the amplitude of a sinusoidal function to achieve
foot clearance, θ̄p defines the rest posture of the hip, knee,
and ankle joints. We use the oscillator with phase φc = φc 1

for right limb movement and use the oscillator with phase
φc = φc 2, which has phase difference φc 2 = φc 1 + π,
for left limb movement. Two parameters {Ap, θ̄p} need to be
selected for the controller for vertical foot movement.

Because the center of pressure is modulated by the joint
angle trajectories, the phase of the controller φc affects the
phase of the robot φr(x) in (3), through the controllers
introduced in (6)-(10).

F. Biped walking controller with additional sinusoids

For our biped walking controller, we introduce two addi-
tional oscillators φp

c i, where i = 1, 2. We then consider phase
dynamics:

φ̇p
c i =

{
ωc +Kp

c sin((φr(x)− αp
i )− φp

c i) (single support)
0 (double support)

(11)
We set the dynamics of the oscillator φ̇p

c i = 0 during
double support phase so that we can prevent internal force
generated by friction between the ground and the soles, while
we keep using the phase dynamics (5) . We use two different
phase differences, {αp

1, α
p
2} = {0.0, π}, to make symmetric

patterns for a forward movements by left and right limbs. We
empirically figured out that we can generate biped walking by
setting the coupling constant as K p

c = Kc/2.
To walk forward, the biped need to make forward step. To

make forward step at proper timing, we introduce an additional
sinusoidal trajectory that has 1/2π phase difference from the
sinusoidal trajectories for the stepping movement:

θd
hip s(φ

p
c) = Ah s sin(φp

c), (12)

θd
ankle s(φ

p
c) = −Aa s sin(φp

c), (13)

where Ah s and Aa s are amplitudes of sinusoidal functions
at the hip and the ankle joints for biped walking. We use
the phase φp

c = φp
c 1 which has 1/2π phase difference with

φc 1, that is phase of the oscillator for lateral movement, for
right limb and use the phase φp

c = φp
c 2 which has π phase

difference with φp
c 1. The desired nominal trajectories for hip

and ankle pitch joints in (8) and (10) become:

θd
hip p(φc, φ

p
c) ← θd

hip p(φc) + θd
hip s(φ

p
c), (14)

θd
ankle p(φc, φ

p
c) ← θd

ankle p(φc) + θd
ankle s(φ

p
c). (15)

Two parameters {Ah s, Aa s} need to be selected for the
controller for forward movements.

III. SIMULATION AND EXPERIMENTAL RESULT

We applied our proposed method to a simple 3D biped robot
model (Fig. 1(c)), our human-sized humanoid robot CB (Fig.
1(a)), and the small humanoid robot (Fig. 1(b)).



2
4

6
8

0

5
0

5

10

A_p [°]A_r [°]

ψ
r  [°

]

(a) Pendulum angle

2
4

6
8

0

5
0

1

2

3

A_p [°]A_r [°]

S
te

pp
in

g 
pe

rio
d 

[s
]

(b) Stepping period

Fig. 4. Comparison of using different amplitude parameters. (a) Pendulum
angle ψr in Fig. 3(a). Region has the value ψr = 10 represents that the
robot can not make single support phase with the corresponding parameter
selection. Region has the value ψr = 0 represents that the robot falls over
with the corresponding parameter selection. (b) Stepping period. Region has
the value 0 s represents that the robot can not make single support phase with
the corresponding parameter selection. Region has the value 3 s represents
that the robot falls over with the corresponding parameter selection.

A. Stepping movement

1) Application to the simulated biped model: We applied
our proposed method to the biped robot model.

As we proposed in section II-D, the natural frequency of the
controller is set as ωc =

√
g/l = 3.6 rad/s, and the coupling

constant is set as Kc = 10.0. Then, we compared different
parameter settings for the amplitude Ar in (6), (7) and Ap in
(8)-(10).

Figure 4 shows results of the comparison. Using large Ap

with small Ar result in falling over. On the other hand, using
small Ap with large Ar can not make single support phase.
By comparing Fig. 4(a) and 4(b), stepping movement that
has smaller pendulum angle ψr tends to have larger stepping
period.

A proper combination of the parameters Ar = 2.5◦ and
Ap = 5.0◦, which can make stepping movement without
falling over, generated a stepping movement with period 1.4 s.
Equivalently, average angular frequency φ̇av

c = 1
T (φc(T +t)−

φc(t)) of the stepping movement was φ̇av
c = 4.5 rad/s, where

T is a stepping period. Figure 5 shows successful stepping of
the simulated biped model.

To show how the coupled oscillator model in equation (1)
and (2) worked with the biped robot model, we tested a
different controller with a different natural frequency, ω c = 2.5
rad/s. Although the natural frequency was different, the mod-
ulated averaged frequency φ̇av

c = 3.9 rad/s was much closer
to the previous averaged frequency, φ̇av

c = 4.5 rad/s than the
selected natural frequency ωc = 2.5 rad/s.

By considering the compromise frequency ω ∗ introduced
in section II-A, this result indicates that the current coupling
constant Kc = 10.0 is large enough to make the controller
frequency close to the natural frequency of the robot dynamics.

Figure 6 shows trajectories of desired and actual hip joint
angles θd

hip r, θhip r (see Fig. 3(b)). Figure 6(a) represents
the result of without using a coupled oscillator model. The
desired trajectory is the original simple sinusoidal trajectory.

Figure 6(b) represents the result of using a coupled oscillator
model. This modulated trajectory made stepping movement
possible. Large tracking error appeared during single support
phase due to not using very large servo gain. This result
shows that our proposed method does not require accurate

(a) t=0.0 s (b) t=0.4 s (c) t=0.8 s

Fig. 5. Stepping movement using coupled oscillator.
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Fig. 6. Generated desired and actual trajectory at hip joint. (a) Not using
coupled oscillator, (b) Using coupled oscillator. Large tracking error appeared
during single support phase due to not using very large servo gain. The
result shows that our proposed method does not require accurate tracking
performance.

tracking performance. The desired trajectory is modulated by
the coupling with the phase of the robot dynamics φ r(x).

2) Application to human-sized humanoid robot: The pro-
posed stepping method was applied to the human-sized hu-
manoid robot CB.

The natural frequency of the controller is selected as ω c =
3.14 rad/sec and sufficiently large coupling constant is selected
as Kc = 9.4 by following the parameter selection approach
introduced in Section II-D.

We empirically figured out proper amplitude parameters
A r = 3.0◦, and Ap = 3.5◦, which can generate a stepping
movement.

Figure 7 shows successful stepping of the human-sized
humanoid robot.

3) Application to the small humanoid robot: We applied
the proposed stepping method to the small humanoid robot.

The natural frequency of the controller is selected as ω c =
6.28 rad/s and sufficiently large coupling constant is selected
as Kc = 9.4 by following the parameter selection approach
introduced in Section II-D.

We empirically figured out proper amplitude parameters
A r = 7.5◦ for hip, A r = 2.5◦ for ankle, and Ap = 3.5◦,
which can generate a stepping movement.

Figure 8 shows successful stepping of the small humanoid



Fig. 7. Successful stepping of our human-sized humanoid robot CB.

Fig. 8. Successful stepping of the small humanoid robot.

robot.

B. Biped walking

1) Application to simple biped model: We applied our
proposed method to generate walking movements by using
the simulated biped model.

The same parameters as the stepping controller for the
natural frequency of the controller ωc = 3.6 rad/s, and the
coupling constant Kc = 10.0 are used. We empirically figured
out proper amplitude parameters Ar = 2.5◦ and Ap = 6.0◦

for the walking task.
We compared different amplitude parameters As by setting

Ah s = As in (12) and Aa s = As/2 (13).
Figure 9 shows the results of the comparison. Walking

velocity was linearly increased according to the increase of
the amplitude parameter As. This is one of good properties of
the proposed walking controller since we can easily select the
amplitude parameter to achieve desired walking velocity.

On the other hand, the walking period did not show mono-
tonic change according to the increase of the amplitude A s

as in Fig. 9(b). Walking velocity can be increased by either
increase walking step or decrease walking period (increase
walking frequency). We can see that walking controller used
different strategies to increase walking speed with different
amplitude As.

Figure 10 shows the successful walking pattern generated
by our control approach. We showed that the simulated robot
model could walk by only using the simple sinusoidal trajec-
tory, which composed of at most only two sinusoidal basis
functions at each joint, modulated by the detected phase from
the center of pressure.
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Fig. 9. Comparison with different amplitude parameters As in (12) and
(13). The biped model falls over with the parameter As > 9.0◦. (a) Walking
speed. (b) Walking period.

2) Application to human-sized humanoid robot: We applied
our proposed walking method to the humanoid robot CB.

The same parameters as the stepping controller for the
natural frequency of the controller ωc = 3.14 rad/s, the
coupling constant Kc = 9.4, Ar = 3.0◦, and Ap = 3.5◦

are used.
We empirically figured out proper amplitude parameters

Ah s = 4.0◦ and Aa s = 2.0◦ for the walking task.
Figure 11 shows the successful walking pattern of our

humanoid robot. Our proposed method was able to generate
successful walking patterns even in the real environment.

Note that the black tube from the top of each photo in figure
11 is a hydraulic cable.

3) Application to the small humanoid robot: We applied
our proposed walking method to the small humanoid robot.

The same parameters as the stepping controller for the
natural frequency of the controller ωc = 6.28 rad/s, the
coupling constant Kc = 9.4, amplitudes A r = 7.5◦ for hip,
A r = 2.5◦ for ankle, and Ap = 3.5◦ are used.

We empirically figured out proper amplitude parameters
Ah s = 12.0◦ and Aa s = 8.0◦ for the walking task.

Figure 12 shows the successful walking pattern of the
small humanoid robot. Our proposed method was able to
generate successful walking patterns for robots of different
sizes. Because our method to design a biped walking controller
does not suffered from singularity problem at knee joints that
comes from using inverse kinematics, knees can straighten
during walking.

We calculated the ratio between the single support
phase and double support phase. The ratio was around
(Tdouble)/(Tdouble + Tsingle) × 100% = 25%, where Tdouble

is a period of time of double support phase and T single is
a period of time of single support phase in a walking cycle.
This ratio is similar to the ratio for adult human biped walking
20%−25% that depends on the age of the human subject [22],
[23]. This ratio is achieved by our proposed controller without
using pre-designed trajectories of the center of pressure.

We also tested robustness of our biped controller using four
different ground surfaces with different frictions. Each surface
also has different height. The four surfaces include carpet
with 0.0 mm (base level), plastic sheet with 2.0 mm, rubber
sheet with 3.5 mm, and metal sheet with 3.0 mm. Figure 13
shows successful results of walking over the different surfaces
without changing any parameter of the biped controller.



(a) t=0.00 s (b) t=0.30 s (c) t=0.57 s (d) t=0.93 s (e) t=1.23 s (f) t=1.53 s (g) t=1.87 s

Fig. 10. Successful walking pattern using simulated biped robot model. Walking speed is 0.22 m/sec.

Fig. 11. Successful walking pattern of our human-sized humanoid robot CB.

Fig. 12. Successful walking pattern of the small humanoid robot. Knees are stretched during walking.

IV. DISCUSSION

In this paper we presented a biologically inspired biped
locomotion strategy. Our method proposed the utilization of
the center of pressure position and velocity to detect the
phase of the lateral robot dynamics. Evidences in biological
locomotion studies support in part of our work [1], [24].

The detected phase of the robot dynamics was used to mod-
ulate sinusoidal joint trajectories. The modulated trajectories
enabled our robots to generate successful stepping and walking
patterns. Because the angular frequency in Equation (5) is
continuously changing during stepping and walking, not only
the frequency of the controller changes toward the resonant
frequency and excites the robot dynamics but also the time
course of the sinusoidal patterns are modulated.

We applied successfully our proposed control approach to
our newly developed human-sized humanoid robot CB and the

small humanoid robot.
In the future, we will consider using optimization methods

such as reinforcement learning or dynamic programming [25],
[26] to acquire a nonlinear feedback controller in order to
increase robustness of the walking controller.

APPENDIX

Here we describe our simulation setups. To follow the
desired trajectories, the torque output at each joint is given
by a PD servo controller:

τ = Kp(θd(φc)− θ) + Kd(θ̇
d
(φc)− θ̇), (16)

where θd(φc) ∈ R10 is the target joint angle vector, Kp

denotes the position gain matrix, and Kd denotes the velocity
gain matrix. Each element of the diagonal position gain matrix
Kp is set to 3000 and each element of the diagonal velocity
gain matrix Kd is set to 100.



Fig. 13. Successful walking pattern of the small humanoid robot over four different surfaces: (1) Gray carpet, (2) Transparent plastic sheet, (3) Black rubber
sheet, (4) Blue metal sheet.

We used the fourth-order Runge-Kutta method with a time
step of Δt = 0.0003 s to numerically integrate the biped
dynamics.

The vertical ground reaction force fz is simulated by a
spring-dumper model:

fz = −kz
pzcp − kz

d żcp, (17)

where kz
p = 30000 is the spring gain, kz

d = 1000 is the dumper
gain, and zcp denotes vertical position of a contact point.

The ground reaction force for horizontal directions f x and
fy are simulated by a viscose friction:

fx = −kx
d ẋcp, (18)

fy = −ky
d ẏcp, (19)

where kx
d = 2500 and ky

d = 2500 are dumper gains. xcp and
ycp are horizontal position of a contact point.
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