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Abstract

Humans can effortlessly perceive an object they encounter for the first time in a possibly cluttered scene and memorize
its appearance for later recognition. Such performance is still difficult to achieve with artificial vision systems because it
is not clear how to define the concept of objectness in its full generality. In this paper we propose a paradigm that inte-
grates the robot’s manipulation and sensing capabilities to detect a new, previously unknown object and learn its visual
appearance. By making use of the robot’s manipulation capabilities and force sensing, we introduce additional information
that can be utilized to reliably separate unknown objects from the background. Once an object has been identified, the
robot can continuously manipulate it to accumulate more information about it and learn its complete visual appearance.
We demonstrate the feasibility of the proposed approach by applying it to the problem of autonomous learning of visual

representations for viewpoint-independent object recognition on a humanoid robot.
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I Introduction

The human ability to discern an object from its back-
ground is not innate but rather acquired during the
development of a child (Fitzpatrick, Needham, Natale,
& Metta, 2008). From birth on, children are constantly
exposed to events caused by the effects of their own
actions. The information thus gained can be utilized to
evolve the agent’s perceptual judgements, including the
way in which objects are perceived. Studies about
human object perception revealed that object percep-
tion and recognition continuously improve with age
(Nishimura, Scherf, & Behrmann, 2009). For example,
three-dimensional shapes can be recognized already by
3- to 4-month-old infants (Kraebel, West, &
Gerhardstein, 2007). On the other hand, the ability to
generalize the acquired knowledge to different view-
points in order to recognize objects is acquired much
later in adolescence (Jiittner, Miiller, & Rentschler,
2006). Such insights can help us develop an artificial
system for object learning and recognition. In this
paper we propose a paradigm that operationalizes the
idea of active exploration for learning of visual repre-
sentations for object recognition.

Many successful systems for object recognition have
been developed in recent years, but a comprehensive

theory of human object perception remains elusive
(Peissig & Tarr, 2007). Segmentation of unknown
objects from the background, which is required by
many object recognition systems before classification,
is easily resolved by humans, but this task is still diffi-
cult to implement on artificial vision systems, mainly
because it is hard to define what exactly constitutes an
object. The meaning of the word “object” is very broad
and dependent on semantics and context (Feldman,
2003). While many different principles can be found,
e.g. closure, connectedness (Palmer & Rock, 1994),
bilateral symmetry (Li & Kleeman, 2011), co-planarity
and co-linearity of contours (Kraft et al., 2008), etc.,
counterexamples can be found for each of them.
Hence, such basic principles can only be used to gener-
ate hypotheses about the existence of objects in
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two-dimensional images, but additional processes are
needed to confirm or reject such hypotheses.

The ecological approach to perception (Gibson,
1979) emphasizes the role of movement. If object
manipulability is taken into account, it is much easier
to define the concept of object than when only visual
characteristics are used (Feldman, 2003). It has been
shown that 3- to 5-month-old infants cannot use the
Gestalt principle of perceptual organization to distin-
guish overlapping objects (Spelke, 1990). In contrast,
they perceive two objects as separate units if one object
moves relative to the other, even when they touch
throughout the motion (Spelke, 1990). Based on the
concept of object manipulability, we can define objects
as physical entities that are manipulable and whose fea-
tures move in unison when an agent manipulates them.
This definition encompasses many physical objects,
including for example objects that afford pushing
actions. In this paper we show how to exploit this defi-
nition in order to learn appearance-based object models
that can be used for object recognition. We take the
view that visual learning should not be studied in isola-
tion, but should rather involve an agent that actively
exploits its manipulation and sensing capabilities.

An early proposal to exploit robot manipulations
such as pushing to acquire visual models for recognition
was reported by Metta and Fitzpatrick (2003) and
Fitzpatrick and Metta (2003). This research focused on
the early development of a humanoid robot’s visuomo-
tor system and the authors did not attempt to integrate
the idea with state of the art approaches to object recog-
nition. Ude, Omrcen, and Cheng (2008), Welke, Issac,
Schiebener, Asfour, and Dillmann (2010), Krainin,
Henry, Ren, and Fox (2011) and Browatzki, Tikhano,
Metta, Biiltho, and Wallraven (2012) studied the acqui-
sition of visual models of objects held in the robot’s
hand. In these works, the authors sidestepped the prob-
lem of grasping unknown objects by placing them into
the robot’s hand. They showed that by having a more
accurate control over the object than in the case of
pushing, object snapshots from different viewpoints
could be systematically acquired. Kraft et al. (2008)
proposed an approach to generate grasp hypotheses for
unknown objects using a mid-level feature representa-
tion. They used motion coherency to accumulate fea-
tures in a three-dimensional model. It is also possible to
move the robot around the object to acquire additional
object views (Foissotte, Stasse, Wieber, Escande, &
Kheddar, 2010), but in this case the object does not
move differently from the rest of the scene, thus motion
cannot be used as a cue for segmentation.

Similar to our work, Li and Kleeman (2011) used
pushing to disambiguate objects from the background.
The detection of bilateral symmetry formed the basis to
generate the initial object hypotheses. Motion caused
by pushing was used to segment objects from the

background also by Kenney, Buckley, and Brock
(2009). The developed system relied on background
models, which is a problem for active vision systems
that are usually mounted on humanoid robots. We pro-
posed to generate hypotheses about the existence of
objects in the scene using feature ensembles that form
planar surfaces. This work was published in a prelimi-
nary form by Stergarsek Kuzmi¢ and Ude (2010) and
Schiebener, Ude, Morimoto, Asfour, and Dillmann
(2011). Here we discuss our work in the context of
developmental robotics and propose a complete frame-
work for autonomous object learning and recognition,
which enables the robot to acquire multiview object
representations.

A number of systems based on RGB-D and other
range cameras, where active manipulation was used to
discern objects from the background, have been devel-
oped in the past. The main aim of these systems were
different manipulation tasks rather than visual learn-
ing. Tsikos and Bajcsy (1991) developed arguably the
first robotic system that used pushing to support seg-
mentation of flat objects. More recently, Chang, Smith,
and Fox (2012) and Gupta and Sukhatme (2012) dealt
with the problem of singulation of unknown objects from
a pile. They used feature proximity in three-dimensional
point clouds to generate the initial object hypotheses,
which were then used to generate pushing actions with
the goal of separating an object to make grasping easier.

The main contribution of this paper is a new, inte-
grated approach to object segmentation, learning and
recognition based on an active perception paradigm.
By exploiting its manipulation capabilities, a robot can
generate additional information that enables it to
autonomously segment, learn and recognize previously
unknown objects. We integrated active robot manipula-
tion with state-of-the-art techniques for visual process-
ing, which resulted in a powerful object learning and
recognition system with significant improvements over
current systems that use only passive vision or systems
with active cameras but no manipulation capabilities.

I.] System overview

Although many papers on image segmentation contain
statements such as “‘segmentation is an important pre-
processing step for object recognition”, the practical
usefulness of low-level segmentation algorithms for the
purpose of object recognition has been questionable up
to now (Roth & Ommer, 2006). This is due to many
ambiguities in natural images that can lead to different
segmentation results. In this paper we propose an inter-
active approach that resolves such ambiguities and
makes low-level segmentation viable both for learning
of visual models and for object recognition. Since the
most successful current object recognition approaches
are based on statistical methods, we developed a system
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Figure 1. A diagram showing the general structure of our approach to discovering new objects and learning their appearance.

that integrates object manipulation with statistical tech-
niques such as random sampling consensus (RANSAC)
(Fischler & Bolles, 1981), bag-of-features (Csurka,
Dance, Fan, Willamowski, & Bray, 2004) and support
vector machines (SVMs) (Crammer & Singer, 2001).
This way autonomous object learning and recognition
can be realized in a robust way.

Our approach to object segmentation and learning
consists of two main phases, as depicted in Figure 1. In
the first phase the aim is to discover an unknown object
in a possibly cluttered environment. Initial hypotheses
are generated by exploiting simple principles including
surface regularity and feature proximity. We use scale-
invariant feature transform (SIFT) (Lowe, 1999) and
color maximally stable extremal regions (MSER)
(Forssen, 2007) as visual features for the estimation of
visible surfaces. However, surface regularity and feature
proximity are not sufficient to reliably segregate objects
in cluttered scenes. Our robot therefore verifies the ini-
tial hypotheses by attempting to push the hypothetical
object. If the hypothetical object features move as a
rigid body after being pushed, then a physical object
has been detected with high probability. RANSAC pro-
vides the basis both for surface detection and motion
verification.

The verification is based on the assumed motion
model, which is in our system three-dimensional rigid
body motion. In most cases pushing results in a planar
object motion, but this fact is not used in the developed
system because there are situations in which this
assumption is not true, e.g. when the object tumbles
after being pushed. By considering full three-
dimensional rigid-body motion, we also enable further
extensions of the system, e.g. in-hand object manipula-
tion as proposed by Ude et al. (2008), Kraft et al.
(2008) and Krainin et al. (2011).

In the second phase, the robot repeatedly pushes the
object to first add additional features to the object
model that were not part of the initial hypothesis, e.g.
because they belong to a different boundary surface

Figure 2. The humanoid robot CB-i pushing an object during
the autonomous learning of its appearance.

than the hypothesis, and second to acquire additional
snapshots from different viewpoints. The robot plans
suitable pushing movements to induce the rotational
object motion and interchangeably uses both of its
arms to keep the object in front of itself, which is essen-
tial to acquire snapshots from different viewpoints.
Force sensing is used to prevent uncontrolled collisions
with other objects in the scene. In this way the robot
autonomously acquires multiple snapshots of the object
that can be used to learn a bag-of-features-type model
(Csurka et al., 2004) of the object’s visual appearance.
When the task is to recognize an object, the first
phase, i.e. object discovery, is exactly the same as when
learning its model. After the initial object hypothesis
has been verified by pushing, additional features that
moved in unison with the initial hypothesis, but were
not part of it, can be added to the verified object
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Figure 3. The humanoid robot ARMAR-IIl interactively
discovers objects that can typically be found in a kitchen
environment, segments them and learns their visual appearance.

features. The accumulated features can then be used as
input to the learned classifier for object recognition.

In our experiments we used two humanoid robots,
CB-i (Cheng et al., 2007) and ARMAR-III (Asfour et
al., 2006). They are shown in Figures 2 and 3, respec-
tively. Both robots are equipped with an active stereo
vision system and can perform standard oculomotor
behaviors including saccadic movements and smooth
pursuit (Shibata, Vijayakumar, Conradt, & Schaal,
2001). The eye and head movements are necessary to
keep the pushed object within the robot’s field of view.
This is important to enlarge the area that can be used
for learning. We applied active calibration procedures
(Ude & Oztop, 2009) to account for the changing
robot configuration and thus enable three-dimensional
vision. In this respect the developed system is more
flexible than previous vision systems for interactive
object learning, which used systems with fixed eyes,
thus severely limiting the available field of view.

2 Generating object hypotheses

As explained in the introduction, it has not yet been pos-
sible to find a fully general definition of object unity (or
objectness). We therefore designed various heuristics to
generate initial hypotheses about the possible locations
of objects in the scene (phase 1 in Figure 1). Any ambi-
guities can be resolved later in the verification phase.
The basic idea of our approach to generating object
hypotheses is to search for regular shapes in the acquired
stereo images. Most common household objects consist,
at least partially, of regular geometric shapes such as
planes, spheres and cylinders. Thus, the detection of
such a shape is a strong indication about the existence of
an object. To be able to push it, the robot just needs a

hint about its pose. The position of one of the bordering
surfaces is sufficient for this purpose.

From stereo images we first extract Harris interest
points (Harris & Stephens, 1988), which are points
where the brightness of the image changes significantly
in all directions. We use a calibrated stereo camera sys-
tem to determine correspondences for these points and
calculate their three-dimensional positions. The relative
uniqueness of Harris interest points and the fact that
we only need to search along the epipolar line to find
correspondences lead to an almost error-free stereo
matching. As a consequence, the obtained three-
dimensional points are reliable and precise.

The disadvantage of Harris interest points is that
they appear only sparsely on surfaces that are not
highly textured. To obtain a complementary feature
type for less textured regions of the image, we use
maximally stable extremal color regions (Forssen,
2007), which are an extension of the concept of MSER
(Matas, Chum, Urba, & Pajdla, 2004) to colors. A
color MSER is characterized by having a single color
that is very different from the colors of the surrounding
area. Stereo matching can be implemented using these
regions, providing three-dimensional points in less-
textured areas of the image. The estimated positions of
color MSER features are usually less precise than those
obtained using Harris interest points,! but still useful
for object detection.

The process described above results in a set of three-
dimensional points in all parts of the image, regardless
whether they contain textured or single-colored patches.
These points are used to search for underlying geo-
metric structures. In Appendix A we describe how some
surfaces typical for household environments, e.g.
planes, spheres and cylinders, can be detected using a
RANSAC algorithm (Fischler & Bolles, 1981). Figure 4
shows some typical scenes and the detected surfaces.

2.1 Hypothesis selection

The algorithms of Appendix A find regular shapes
within a set of three-dimensional points acquired by
stereo vision. Among these shapes, we select the one
that contains the largest number of feature points. This
shape is added to the set of initial object hypotheses if
the number of its feature points is large enough, and
the points belonging to it are removed from the overall
set. All three algorithms are then again applied to the
remaining point set, the best found hypothesis is saved,
its points removed and so on. This process is repeated
until no more regular shapes with a sufficient number
of points are found. The leftover points are clustered by
spatial proximity using the x-means algorithm (Pelleg &
Moore, 2000). This way we can detect objects with irre-
gular shapes as long as they contain a sufficient number
of feature points. Point clusters are used as object
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Figure 4. Initial object hypothesis generation. In the top row, the left image shows all three-dimensional points resulting from the
stereo matching of Harris interest points and color MSERs. The right image depicts the object hypotheses that were generated from
these points. The extracted features are shown with differently colored crosses to indicate which of the hypotheses they belong to.
The bottom row shows the initial hypotheses that were generated for two different settings. Objects are well separated in the left
image scene, hence it is relatively easy to create object hypotheses. If the scene is as cluttered as in the right image, purely vision-
based approaches reach their limits and hypotheses become more likely to include features from different objects.

hypotheses if they contain enough feature points and
the point density within their area is high.

Among the generated hypotheses we select the one
containing the maximal number of points because
hypotheses that contain more points are easier to re-
localize after the push. For this purpose, we first check
whether the object hypothesis can be reached by one of
the robot’s arms. If not, the hypothesis with the second
largest number of points is selected, its reachability
checked and so on.

Even if the object hypothesis is reachable, we still
cannot guarantee that the robot will actually succeed in
pushing the object. For example, it can happen that the
object is not accessible due to other objects in its neigh-
borhood. This problem can only be solved by a motion
planner, but the application of a motion planner
requires the system to compute a complete three-
dimensional reconstruction of the scene, which is diffi-
cult in presence of unknown objects. We therefore do
not attempt to solve the accessibility problem in its full
generality. Instead we ensure that the robot properly
reacts in case of collisions while moving the arm
towards the initial pushing configuration, which is done
by force sensing (see Appendix B). If pushing is not

successful, the robot simply computes a new pushing
hypothesis and tries to push the object from a different
side or it starts exploring another object hypothesis.

3 Hypothesis verification by
manipulation

As discussed in the introduction, as long as there is no
exact definition of objectness, we can only use heuristics
to find sets of feature points that could belong to a phys-
ical object. Such object hypotheses must be validated to
confirm whether or not the detected features really origi-
nate from a physical object (phase 2 in Figure 1). In case
of confirmation, the robot starts acquiring a more com-
plete description of the object’s visual appearance. In
our system, the robot verifies the existence of an object
by physically interacting with the hypothetical object
features. By applying actions that cause the features to
move, we can check whether the detected features moved
according to the assumed motion model, which is in our
system the rigid body motion. Pushing is the simplest
way to move an object, especially if there is no informa-
tion about its exact size and shape, which are usually
necessary for reliable grasp planning.
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Figure 5. Reachability values on a pushing path for the left
hand of ARMAR-III. Dark red dots indicate low, bright yellow
dots high reachability values.

The first decision to be made is which of the two
robot hands should be used to generate probing pushes.
To this end, we analyze the reachability of both hands
as described by Vahrenkamp, Berenson, Asfour,
Kuffner, and Dillmann (2009). The reachability is
encoded as a discretization of the Cartesian space
around the robot that gives information about the
probability that an inverse kinematics solution exists
for a given six-dimensional pose. This model allows the
robot to determine whether a position can be reached
by one of its hands and how flexible the selected hand
is in this area. The robot should use the hand that is
more versatile during the whole course of the pushing
motion, therefore we integrate the reachability along
the pushing trajectory from the position above the
starting point to the actual starting point, from there to
the end point, and finally to the position above the end
point. Figure 5 shows an example of such a path. The
hand that accumulates higher reachability over the
complete trajectory is selected for pushing.

3.1 Generation of pushing movements

The motion to be induced on the object must be signifi-
cant enough to allow for verification of the assumed

motion model. On the other hand, the resulting object
motion should not be so large to completely change
the object’s appearance, consequently making feature
matching very difficult. In addition, the object needs to
stay within the robot’s field of view and inside the area
that the robot can reach with at least one of its arms.
The latter aspect becomes increasingly more important
when the object is pushed several times to learn its com-
plete visual representation.

To generate a pushing movement, we estimate the
object position to be the mean of the points contained
in the hypothesis. Although this is not the true position
of the object center, it is a sufficient approximation for
the generation of the pushing movement. To direct the
push, we choose a central point, which is positioned
right in front of the robot at the same height as the
hypothetical object centre. Such a point is well within
the field of view of the robot and is also easy to reach
with both arms. The starting point of the pushing
movement is taken to be on the side of the hypothesis
that is opposed to the central point. The main difficulty
is to choose the right offset from the object center, as
the size of the object is unknown. The size is estimated
by taking the maximal distance of hypothetical object
points from the center of the hypothesis. To this value,
we add the size of the robot hand and a safety margin
(see Figure 6). The end point of the pushing movement
is determined by calculating a point at a fixed distance
from the starting point towards the central point. A
detailed description of how to generate the pushing
behavior for the manipulation of object hypotheses
(including force control to avoid collisions) is provided
in Appendix B. The resulting behavior is shown in
Figure 7.

Since the real size of the object is not known, the
length of the actual object motion can not be guaran-
teed. The object does not move at all if we largely over-
estimate its size. This issue can be mitigated by limiting
the estimation of the object size and by using a larger
safety margin. On the other hand, starting far away
from the hypothesis increases the probability of collid-
ing with other objects.

3.2 Hypothesis validation

After the probing push, the robot needs to check
whether the hypothetical object points moved as a
physical object (phase 3 in Figure 1). Such feature point
motion strongly indicates that the hypothesis indeed
constitutes an object. The verification could be limited
only to the hypothesis that the robot attempted to
push, but even if the hypothesis was wrong, the robot
might still by chance move a real physical object.
Therefore it is reasonable to check all available hypoth-
eses for indications if their feature points moved as a
physical object. In the current version of the system, we
assume that the robot interacts with rigid objects.
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Figure 6. The pushing motion is determined based on the estimated object position and size. The push is always directed towards
a fixed central point in front of the robot so that the object stays within its reach and field of view.

Figure 7. A successful probing push. The robot starts at the position above the object, moves to the starting position for pushing,
applies the probing pushing movement and withdraws to the position above the object. All movements are generated using linear,
autonomous dynamic systems. After the push, the robot removes the arm from the field of view to allow for unobstructed

acquisition of the object image.

More complex models such as articulated (Katz &
Brock, 2008) or deformable motion models are possi-
ble, but they would lead to more ambiguities in the ver-
ification process and longer computational times.

A necessary prerequisite for the analysis of feature
point motion is that we can match features extracted
from images before and after the push. As mentioned
before, we use Harris interest points and color MSER
features. For matching we need distinctive descriptors
that are as invariant as possible to the rigid-body trans-
formation. In the case of Harris interest points, we use
the SIFT descriptor (Lowe, 1999), which consists of a
normalized histogram of gradient orientations around
the respective point. SIFT descriptors were shown to be
robust against viewpoint changes that are not too large.
In the case of color MSERs, we use color, saturation
and the lengths of the two principal axes of the corre-
sponding region for matching.

After matching, the robot estimates the motion of
each hypothesis, i.e. the three-dimensional translation
and rotation that maps the features extracted from
images before the push onto the features after the push.
Since the initial hypothesis may contain features that
do not belong to the actual physical object, and further-
more some features may be mismatched between the
images before and after the push, there may be many
outliers with respect to the assumed motion model.
Thus, it is important to apply a robust method for esti-
mating the transformation. Again, RANSAC fits the
bill because it is robust against feature mismatches and

can filter out the features that do not move according
to the assumed motion model. Three pairs of corre-
sponding features before and after the push are suffi-
cient to determine the rigid-body transformation
(Horn, 1987), so the implementation of RANSAC is
straightforward, just as in Algorithm 2 of Appendix A.

Each rotation can be represented by its axis and
angle. We use the weighted sum of the rotation angle
and length of translation to evaluate the rigid motion
of the hypothesis. If this measure exceeds a threshold
(we use 3 cm for translation), we consider the object to
have moved and we can proceed with the verification.
The features are validated or discarded depending on
whether they moved according to the estimated motion
model. The validated features originate with high prob-
ability from three-dimensional points on the physical
object and can thus be added to the training data.
Note, however, that it is well possible that some of the
visible features are not detected, therefore the robot
should continue exploring the object to acquire addi-
tional features as well as snapshots from different
viewpoints.

After the verification step, we perform a saccadic
movement towards the center of the verified feature
points. This way we ensure that the object stays in the
center of the robot’s field of view. Eye and neck degrees
of freedom can be used for this purpose. We add two
translational, virtual links to the head kinematics (see
Figure 8), which enables us to use standard inverse
kinematics methods to compute the appropriate eye
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Figure 8. ARMAR-III head kinematics with two translational,
virtual degrees of freedom.

and neck movement. With these two additional degrees
of freedom, the problem of turning the head towards
the three-dimensional point p can be formulated as sol-
ving the equation

p=1(y,l1,1») (1)

where y are the robot head degrees of freedom, /; and
I, are the two translational virtual links, and f is the
head’s forward kinematics supplemented by the two
virtual links. Redundancy is resolved by imposing a
secondary task, which is to keep the head as close as
possible to the ideal configuration, i.e. head in upright
position with eyes directed straight towards the front of
the robot.

4 Learning a model for recognition

After successful verification the robot can be quite cer-
tain that it has indeed discovered a physical object. The
next step is to accumulate object features from different
viewpoints.

4.1 Feature accumulation

To acquire a complete object appearance model, the
robot repeatedly pushes the object over a constant

Algorithm 1 Learning of a visual multiview object representation.

Generate initial object hypotheses
Select one hypothesis and try to push it
for all hypotheses /# do
Estimate the motion of £
if motion is larger than a threshold then
Confirm 4 to be an object
end if
end for
if any hypothesis was confirmed then

Select the confirmed hypothesis containing the maximal number of features and continue with it

else
Restart from the beginning
end if
while we want to learn more about the object do
Push the object
Determine matches for all object features
Estimate object motion
for all object features f,;, do
if f,, moved concurrently then
Mark f,, as confirmed
else
Discard f,
end if
end for
Determine matches for all other features
for all non-object features f,, do
if f,, moved concurrently then
Add f,, to object as candidate
else if f,, lies within the hypothesis arca then
Add f,, to object as candidate
end if
end for
Create object descriptor using the confirmed features
end while




336

Adaptive Behavior 21(5)

distance. The result of this behavior is that the object
oscillates around the central point (see Figure 6).
Feature motion coinciding with the assumed motion
model is a very strong cue for deciding whether a fea-
ture is a part of the object that the robot has discovered.
After the successful estimation of the rigid-body trans-
formation, the robot looks for other features that
underwent the same transformation as the discovered
object (phase 4 in Figure 1). If this is the case for a fea-
ture that did not belong to the initial hypothesis, we
mark it as a candidate feature. Features that lie within
the convex hull of the validated points are also marked
as candidates. The robot now computes and executes
another pushing movement based on the verified fea-
ture points. After the push, a new rigid-body transfor-
mation is estimated and the candidate features are
tested whether or not they moved coherently with the
hypothesis. If they did, they are considered validated,
otherwise they are discarded. Of course, this only makes
sense if the object has moved.

As before, other features that moved concurrently or
lie within the convex hull of the verified feature points
are added as new candidates. This process of adding
candidate features and validating them with the next
push can be repeated arbitrarily often, thereby accumu-
lating all features that belong to the object, including
those that newly come into view due to the rotational
motion of the object. On the other hand, features may
get out of view as the object rotates. Validated features
that do not follow the motion of the object at a later
time may do so either because they were in fact not part
of the object, or because they were mismatched when
their matching feature after the push was determined. If
a feature fails to move together with the hypothesis
once, it is not considered when the motion is estimated
after the next push, and if it fails twice, it is removed
from the hypothesis. Data acquired after a number of
successive pushes are shown in Figure 9.

Although SIFT descriptors are fairly tolerant to view-
point changes, there is still a risk of not correctly match-
ing the features when the rotation in depth is too large.
To be more robust to such changes, we accumulate sev-
eral SIFT descriptors for each feature point (by adding
SIFT descriptors calculated from successive snapshots
of the object). To reduce the computational effort, we
limit the number of SIFT descriptors at each feature
point by means of k-means clustering once their number
exceeds a specified maximum. Thus, once a feature point
has been seen from a few different angles, we have asso-
ciated with it a set of descriptors, which allows the robot
to reliably find the matching feature after a push.

4.2 Model generation

After each iteration of pushing, validation and accumu-
lation, the hypothesis contains four different kinds of
features:

new candidates features;

validated features that are visible;

validated features that are not visible; and
validated features that did not move concurrently.

We use only the visible, validated feature descriptors to
generate training data associated with the current view-
point. As the object is pushed repeatedly, training data
from different viewpoints are acquired and a viewpoint-
invariant classifier can be learned. Feature vectors gen-
erated for training of the classifier consist of two main
components. The first is the bag-of-features model
(Csurka et al., 2004), which is essentially a histogram of
SIFT descriptors. To create such a histogram, the space
of SIFT descriptors is divided into a finite number of
bins (1000 bins were used in our experiments), which
are defined by clustering all descriptors from a large
number of training views. Bag-of-features has been
shown to be a distinctive and robust classification
method and is particularly popular in the field of object
recognition. Another important advantage of this
method is that it does not require that features are accu-
rately tracked across views.

As a complement to the bag-of-features model,
which is based on SIFT descriptors and therefore uses
only grayscale pixel values, we also create a color histo-
gram for the area spanned by the feature points. We
use a saturation-weighted hue histogram, which means
that the hue of each pixel is weighted with its saturation
when it is added to the histogram. This avoids problems
that may arise if large parts of the object have a very
faint color, which might lead to significantly changing
histograms when the illumination changes.

4.3 Object recognition

The combination of these two models leads to a very
powerful object recognition system, as will be shown in
the experimental section. For the actual classification
we use techniques such as k-nearest-neighbors (kNN)
and SVMs.

To apply recognition techniques based on global
descriptors, the object to be recognized needs to be dis-
cerned from the background. Traditionally, segmenta-
tion is realized through feature clustering, regular
windowing or randomized windowing (Ramisa,
Vasudevan, Scaramuzza, Mantaras, & Siegwart, 2008),
but these are sensitive and time-consuming processes.
However, in our system the segmentation problem at
recognition time is no different from the one the robot
faces when learning a new object, therefore it can deal
with it in the same way. We first generate object
hypotheses and apply pushing actions to segregate all
feature points belonging to the hypothetical object. The
extracted, segmented features are then used as input to
the trained classifier.
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Figure 9. The first three rows show object discovery and segmentation in different settings: in each row, the first image depicts the
initial object hypotheses that were generated. As can be seen, their quality decreases in more complex scenes. One hypothesis is
then selected for verification and pushed. The second to fourth image in each row show the validated features belonging to that
hypothesis after each push. Note that the object is always pushed approximately towards or across a central point in front of the
robot, thus staying in the field of view and within the reach of the arms. The last two rows show the segmentation of an object
throughout multiple pushes, during which its different sides become visible. This allows the accumulation of object descriptors from
multiple viewpoints. Owing to the rather uncontrolled object motion, it may take many pushes until all sides of the object have been

revealed. These pictures are an excerpt from a series of 20 pushes.

5 Experimental evaluation

To evaluate different aspects of our system, we con-
ducted extensive experiments on two humanoid robots,
CB-i (Cheng et al., 2007) and ARMAR-III (Asfour
et al., 2006). Since the proposed paradigm was designed
to handle difficult scenes, we tested it in complex sce-
narios with 5-10 objects placed on a table in front of

the robot. As expected, the purely vision-based initial
hypotheses could not achieve reliable segmentation in
cluttered scenes. Table 1 shows the percentages of
hypotheses that coincide with a real object, those which
contain only a part of the object and those that are
wrong because they extend over more than one object.
The first two results allow for a successful push, which
leads to a complete and correct segmentation. If the
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Table I. Quality of the initial object hypotheses.

Good Part of an object Wrong

50% 39% I %

Table 2. Object recognition rate for the initial hypotheses and
after n pushes.

Initial hypotheses ~ One push ~ Two pushes  Three pushes

77% 86% 96% 98%

robot tries to push an incorrect hypothesis, there is still
a chance that it moves one or more of the physical
objects and as a consequence is able to segment them
correctly. This is the main reason why we test all
hypotheses and not only the selected one in the verifica-
tion phase. We consider this robustness to visual misin-
terpretations a great advantage of our approach.
However, attempting to push an incorrect hypothesis
increases the chance of unexpected collisions with other
objects.

The most important question that has to be
answered is, of course, whether the developed system
enables a humanoid robot to autonomously learn clas-
sifiers that result in reliable recognition. We let our
robots learn the visual appearance of 35 different typi-
cal household objects such as food packages, bottles,
books, etc. For each object, we accumulated 20 descrip-
tors obtained from different viewpoints. An example
sequence used for appearance learning is shown in
Figure 9. For recognition, we used support vector
machines and 3-nearest-neighbors classification with x?
histogram distance. Both classifiers produced similar
recognition rates. To segregate the object features from
other features and thus obtain input data for object rec-
ognition, we used the proposed object hypothesis gen-
eration followed by pushing for verification.

Table 2 shows the recognition rate for the initial
hypotheses and after 1-3 pushes. The success rate for
the initial hypotheses is relatively low, which is due to
hypotheses that only cover a small part of the visible
object surface or two objects at once and thus result in
a partially incorrect segmentation (see also Table 1).
After the first push, false and unstable features are
removed, which significantly improves the recognition
rate. After two pushes, the hypothesis includes almost
all visible features of the object, therefore the reliability
of the recognition becomes excellent. After three
pushes, the percentage of classification errors is further
reduced, except when a significant part of the object
becomes invisible. This shows that our system can learn
appearance-based object models that can be used for
reliable recognition.

100 T T T T T
90
o] 80
[
_5 70
S 60|
[s]
o
o 50
40 E
30 1 1 1 1 1
0 5 10 15 20 25 30
# pushes for learning

Figure 10. The performance of multiview object recognition
with respect to the number of training images acquired from
different viewpoints.

Another important aspect of the proposed paradigm
is that a robot can learn a viewpoint-independent rep-
resentation of the manipulated object. After each push,
the object is observed from a different perspective and
the corresponding visual descriptor is created (see also
Figure 9). Thus, recognition from multiple viewpoints
becomes possible. Since pushing causes a rather uncon-
trolled motion, we cannot guarantee that the manipu-
lated object has been observed from all sides after
training. However, there is a high probability that after
a large number of pushes, the viewpoints that are possi-
ble without lifting the object have been sampled with
sufficient density. In our current implementation, the
robot cannot autonomously grasp and place the object
at completely different orientations, which is necessary
to obtain snapshots of the object from all possible
viewpoints. However, instead of the robot a human
user can place the object at different orientations,
which enables the robot to continue the exploration
process and acquire views from fundamentally different
viewpoints. In this way, a more complete model of
object appearance can be acquired.

In the next experiment we tested how many pushes
are necessary to achieve a good multiview coverage of
different objects. To this end, we performed a training
process with 30 pushes for 5 of our test objects. We
took test images of each of them from 8 different view
directions, where the object was turned on the table in
steps of 45°. We then tried to recognize the object using
classifiers learned from subsets of the acquired descrip-
tors. As expected, when only the first few training
images were used, the object recognition succeeded only
from some of the 8 viewpoints, but with an increasing
number of pushes and consequently more training
images from different viewpoints, the recognition rate
improved (see Figure 10). When looking at the individ-
ual objects, it seemed that a certain saturation was usu-
ally reached between 15 and 25 pushes.

Both SIFT features at Harris interest points and
color MSERSs are invariant to motion within the image
plane, but they are sensitive to large changes in scale
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Table 3. Object recovery rate after scale change.

Scale ratio 1.2 x 1.3 x 1.4 x 1.5 x 1.6 x
Recovery rate  100% 100% 91% 54% 4%
Table 4. Object recovery rate after rotation.

Rotation angle 20° 30° 40° 50° 60°
Recovery rate 100% 100% 83% 56% 1%

and especially to rotations in depth. In (Moreels &
Perona, 2007), state-of-the-art feature descriptors were
analyzed with respect to their robustness against three-
dimensional rigid-body motions. As all our hypotheses
contain several features, the risk that none of them are
rediscovered after the push is naturally smaller than for
a single feature. Still, many features may be lost if the
change is too large. This risk is particularly high when
the object has not yet been seen from different sides,
i.e. during the first few pushes. Therefore, we analyzed
the sensitivity to viewpoint changes for objects that
were pushed only once and thus only contain features
belonging to its front side.

Table 3 shows the recovery rate after scale changes.
As can be seen, scale changes up to a factor of 1.3 are
unproblematic. This corresponds to a motion of 15 cm
at an object—camera distance of 50 cm, which is the
lower bound for the distance typically seen when a
humanoid robot manipulates an object. In our system,
the threshold to verify the object motion was usually
set to 3 cm, which leaves a generous tolerance margin
for the relatively uncontrolled motion, especially
because it is unlikely that the pushing motion would
occur exactly along the direction that causes the maxi-
mal scale change.

Rotations in depth are a bigger problem, as e.g. a
push against the edge of an object may cause significant
rotation. As described by Moreels and Perona (2007),
local descriptors including SIFT tend to fail for orienta-
tion changes higher than 25°. Table 4 shows the recov-
ery rate for object hypotheses depending on the angle
of rotation caused by the push. For viewpoint changes
of up to 30° the objects could be relocalized reliably,
although part of the features belonging to the hypoth-
esis may be lost after a large rotation. Above 40°, there
is a high risk of losing the hypothesis completely. In
practice, this happens only very rarely and only during
the first few pushes. After the manipulated object has
been seen from a variety of viewpoints and for each fea-
ture we have acquired several different SIFT descrip-
tors, the re-localization becomes more stable. If the
robot really looses the track of the current object
hypothesis, it restarts the learning process from scratch,
starting with the newly generated object hypotheses.

The performance of our system on both robots is
shown in two videos, BimanualPushing.mov and
PushingForce.mov, which are available as supplemen-
tary material to this paper.

6 Conclusions

We presented a new approach that combines object
manipulation with visual processing techniques originat-
ing in robust statistics. The developed system can auton-
omously learn visual models of unknown objects, which
can later be used for recognition. The proposed
approach is robust because, first, it enables the robot to
reliably segment unknown objects from the background,
second, it does not require long-term feature tracking
(features need to be tracked only between successive
training views, but any later disappearance or reappear-
ance does not significantly affect the quality of learning)
and, third, it enables the acquisition of state-of-the-art
statistical models of object appearance. By making use
of force sensing, the robot can react to unexpected colli-
sions with other objects during exploration, thus
expanding the variety of scenes that can be dealt with by
the proposed system. The approach used for segmenta-
tion at the time of exploration is also used when the task
is to recognize an object. This way segmentation
becomes beneficial as a preprocessing step for object rec-
ognition. By semi-randomly exploring the object, i.e. by
applying pushing movements from different sides of the
object, a viewpoint-independent appearance model of
the manipulated object can be learnt. Our experiments
confirm that the proposed paradigm results in a robust
object learning and recognition system, even in cluttered
scenes with many objects and textured background.

We use pushing to induce motion on hypothetical
objects because it is much easier to push than to grasp
an unknown object. However, by grasping the object
the robot can control its motion more accurately and
acquire training views more systematically. One possi-
ble direction for future research is therefore to combine
both types of manipulation to learn more comprehen-
sive object models for recognition.

Studies in infant development showed that motion
influences the perception of object unity (Spelke, 1990;
Johnson & Aslin, 1996; Smith, Johnson, & Spelke,
2003). While there is some controversy about when
other cues such as Gestalt principles start affecting the
perception of objectness, it is clear from this research
that motion starts having an effect from early on.
Similarly, even young infants can perceive three-
dimensional shapes (Kraebel et al., 2007). Kellman
(1993) proposed a two-stage process of how object unity
is formed: first, the primitive process which takes into
account motion and, second, the rich process which con-
siders also the edge orientation besides motion. Initially,
with infants younger than 6 months old, only the
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primitive process is operational. Analogous to these
findings, the developed technical system segregates
objects from the background based on three-
dimensional shape and motion cues. The acquired infor-
mation could be used to train other visual processes that
are useful for the perception of object unity.

Passive vision systems, which attempt to learn visual
representations that can be used for segmentation from
scratch, normally require many thousands of annotated
images. While some recent approaches attempt to incre-
mentally learn new representations from little addi-
tional data (Fei-Fei, Fergus, & Perona, 2006), they still
rely on the existence of prior information, which must
come from somewhere. It is therefore necessary to
equip an autonomous robot with the capability to learn
new visual representations without requiring many
thousands of new images and/or a large amount of
prior information. The proposed paradigm can be
applied to such learning problems.

Note

1. This is because MSER features are region based whereas
Harris interest points are calculated directly from the local
image structure.
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Appendix A high probability, return the plane containing the maxi-
mal possible subset of three-dimensional points from
the overall set.

There are two problems with this approach. First,
some of the points that belong to other parts of the scene
may by chance lie on the plane defined by the physical
surface. To get rid of such outliers, we remove all points
from the hypothesis that lie far away from its center, i.e.
more than twice the standard deviation. Second, if two
or more objects with planar surface parts are arranged
in such a way that their surfaces lic on one plane, they
will be merged into one hypothesis. We therefore apply
clustering to the resulting plane, which mostly resolves
this problem. We chose the x-means algorithm (Pelleg &
Moore, 2000) for feature clustering, which is an exten-
sion of the standard k-means algorithm that also esti-
mates the optimal number of clusters.

Even with these extensions, if two objects are placed
directly next to each other, the clustering may fail to
separate them. Experimental results on that problem
can be found in the evaluation section. On the other
hand, it may happen that one large object is separated
into two hypotheses. Both situations can be resolved by
applying pushing actions to the hypothetical surfaces.

The main difficulty we encounter when searching for
geometric structures within a point cloud is that only a
small subset of all points constitutes a surface that
really exists in a three-dimensional world. So for each
surface we detect, most of the points from the overall
set are actually outliers with respect to it. An algorithm
that is well suited to deal with such situations is the
RANSAC (Fischler & Bolles, 1981). The main idea of
RANSAC is to randomly select samples of points that
contain the minimal number of points that are needed
to calculate a parametric description of the sought sur-
face. The parameters of the surface are then calculated
and the number of points in the scene that lie on the
surface is estimated. This is repeated many times, and
the parameters that define the surface with the largest
number of points on it are returned.

A.l Planes

First we describe how to find a plane that contains
(within a small tolerance margin) the maximum num-
ber of points from the overall set. A plane is uniquely
determined by three non-colinear points p;, p,, p;. With
vi =p, —p, and v, = p; — p;, the surface normal is
n = v; Xv,. The plane is then defined by the equation

n'x +d =0 with d = —n"p,. With this in mind, we
can search for planes using the basic RANSAC tech-
nique shown in Algorithm 2. If this algorithm is exe-
cuted with a large number of iterations n, it will, with

A.2 Spheres

The search for spheres is completely analogous to the
search for planes. A sphere is uniquely defined by four
non-coplanar points. The sphere’s center ¢ and radius
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Algorithm 2 Surface detection by RANSAC. Here m = 3 in the case of planes and m = 4 in the case of spheres; n

denotes the number of random samples that are drawn.

fori = 1..ndo
Randomly select m different points from the set

Calculate the parameters of the surface that is defined by these m points

for all points p in the set do

if p within tolerance margin around surface then
Increase counter for inliers

end if
end for

if number of inliers > max then
Save actual surface parameters as best ones

end if

end for

Return the parameters of the surface with the maximal number of inliers

can be calculated by solving the determinant equation
M| = 0, with M defined as

xTx xT 1
pip 1
M=|plp, pI 1 (2)
pip; p; 1
pips b 1

With M;; denoting the submatrix of M formed by
leaving out row i and column j, the solution is given by

M|

| M |
1] My T
2 My |’

|Mi4|

| M |

c =

If |[M,;| = 0, the four points are coplanar and there is
no solution. To find a sphere, we again apply
RANSAC. Since more points are needed to calculate
sphere parameters than in the case of planes (four
instead of three), the random sampling iteration needs
to be repeated more often (parameter n of Algorithm 2)
to have the same probability of finding the optimal
sphere.

A.3 Cylinders

The parameters of a cylinder cannot be computed so
easily from a few points on its surface, therefore detect-
ing them is significantly more difficult than detecting
planes or spheres. But since many household objects
such as bottles or cans have a cylindrical shape, or can
be approximated very well by cylinders, we believe that
it is worth the effort to be able to find this specific
shape.

Beder and Forstner (2006) presented methods that
allow the calculation of cylinder parameters given 5-9

points on its surface, but only the methods that require
7 or 9 points return a unique solution. In all cases,
equation systems must be solved that require a rela-
tively high computational effort. Moreover, the prob-
ability of randomly selecting 7 points belonging to a
cylinder is rather small if the overall set consists mainly
of outliers, which we have to expect in our case.
Therefore, many iterations of standard RANSAC
would be necessary.

For this reason, instead of wusing the direct
RANSAC approach, we follow the idea presented in
(Chaperon & Goulette, 2001). Here, two nested
RANSAC loops are executed, but both of them are less
computationally intensive. In the outer loop, promising
candidates for the cylinder axis are discovered. In the
inner loop, the points are projected onto a plane that is
orthogonal to the candidate cylinder axis, which
reduces the problem of finding the rest of the cylinder
parameters to the search for the best two-dimensional
circle within the projected points.

The intermediate step of finding cylinder axis candi-
dates requires the calculation of the Gaussian image of
a three-dimensional point set. The Gaussian image con-
sists of surface normals at each of the three-dimensional
points. With surface normals having unit length, this is
equivalent to a set of points on the unit sphere. We cal-
culate the Gaussian image by approximating the surface
normal at every three-dimensional point using its near-
est neighbors.

The surface normals of a cylinder form a great circle
on the unit sphere (see Figure 11), therefore we search
for great circles in the Gaussian image that contain the
largest number of estimated normals. The axis of the
cylinder is perpendicular to the corresponding great cir-
cle. The search for great circles is simplified by the fact
that it is equivalent to the intersection of the unit sphere
with a plane through its center. Such a plane is uniquely
defined by only two normals, i.e. two points on the unit
sphere. This allows efficient use of RANSAC for planes
to find great circles with maximal support.
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Figure 11. (a) Depiction of how the Gaussian image of a perfect cylinder would look. (b) The Gaussian image resulting from a set
of three-dimensional points in a scene containing a cylindrical object on an empty table. Of course only the front side of the object is
visible for the cameras, therefore only half of the great circle is contained in the Gaussian image.

Given a cylinder axis, we need to find the radius and
offset such that the maximal number of points lie on
the cylinder surface. This can be simplified by project-
ing all points to a plane perpendicular to the axis and
searching for the circle that contains the maximal num-
ber of the projected points. The search can be further
sped up by considering only those points that have con-
tributed to the great circle in the Gaussian image which
defined the cylinder axis.

A two-dimensional circle is uniquely defined by
three non-collinear two-dimensional points (x;,y;) with
i € {1,2,3}. The coordinates of the center of the circle
(x¢, ) are then given by

o= O3 =)0 D)+ 0= 2s)03 +93) + (2 = )03 +33)

¢ 26
_ (=) D) F (0 —x3)03 +03) + (o —x)E3 +33)
¢ 26
(4)
where
8 =x1(y3 —»2) + x2(n1 —y3) + X302 — 1)
The cylinder radius is evidently

r= \/(x1 —xc)z + (1 —yc)z, and the offset is an arbi-
trary point on the line that results from the backprojec-
tion of the circle center onto three-dimensional space.

Appendix B

The robot pushing behavior is generated as a sequence
of point-to-point movements, which are specified using
third-order attractor dynamics (Schaal, Peters,
Nakanishi, & Ijspeert, 2005). We applied the following
linear system

T = ag(g —r) (5)

2 = a:(B.(r —y) — 2) (6)
=z (7)

Here y is one of the degrees of freedom that define
the complete robot configuration y, and z and r are
auxiliary variables. It is easy to show that the above
system is critically damped and that it has a unique
attractor point at y=g,z=0r=g¢ for
a.=4B.>0, a; >0, 7>0. System (5)—(7) is suitable
for the generation of probing pushes because it is guar-
anteed to converge to the desired end point, here
denoted by g, in a smooth manner regardless of the
starting position and perturbations that might arise due
to unexpected collisions. In addition, the speed of
movement can be modulated with parameter 7 and
even if the end point g is changed on the fly, the move-
ment remains smooth up to the second order.

To ensure that the object is not occluded by the
robot’s arm, we move the arm to the home position
outside of the robot’s view after the push. Thus, images
from before and after the push are acquired with the
arm removed from the robot’s field of view. The com-
plete probing behavior is accomplished by executing a
sequence of five dynamic systems (5) — (7), which result
in the following movements:

e Relocate the hand from its home position to the
position above the starting point for the pushing
movement (leftmost image in Figure 7).

e Move the hand towards the starting position for
pushing (second image left in Figure 7).

e Move the hand from the starting to the end posi-
tion, thus generating the probing push (from sec-
ond to fourth image in Figure 7).

e  Move the hand to a position above the end position
for pushing (rightmost image in Figure 7).

e Move the arm to the home position away from the
robot’s field of view.
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Figure 12. Trajectories of the right hand during two pushes.
The trajectory represented by the continuous line was recorded
during an undisturbed push, while the dashed one was
generated when the hand hit an obstacle twice before it could
be lowered besides the object. The forces arising due to
collisions with the obstacle are shown by the dotted line.

By moving the hand first to the position above the
starting point for the pushing motion, we mostly avoid
unexpected collisions with other objects in the scene. It
is therefore not necessary to wuse sophisticated

approaches for collision-free path planning, which
would be difficult to accomplish in scenes with many
unknown objects.

In cluttered scenes, the hand may still collide with
other objects, especially during the phase when it is
lowered to the starting position for pushing. Such colli-
sions are detected by the force—torque sensor in the
wrist of the robot. If such a collision occurs, the hand
is raised again and lowered a bit closer to the estimated
object position. This is repeated until it could be low-
ered without collision. Figure 12 shows example trajec-
tories of the hand during pushes with and without
collisions. If the hand collides with an obstacle several
times, the correcting movements eventually bring it
very close to the object. When the hand is positioned
with high probability above the object, the robot moves
it down until contact with the object and executes a
sliding movement instead of a push. This reactive strat-
egy enables the robot to move the objects even in very
difficult situations.



