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S
ince biological systems have the ability to efficiently 
reuse previous experiences to change their behavioral 
strategies to avoid enemies or find food, the number 
of required samples from real environments to 
improve behavioral policy is greatly reduced. Even 

for real robotic systems, it is desirable to use only a limited 
number of samples from real environments due to the limited 
durability of real systems to reduce the required time to 
improve control performance. In this article, we used previous 
experiences as environmental local models so that the move-
ment policy of a humanoid robot can be efficiently improved 
with a limited number of samples from its real environment. 
We applied our proposed learning method to a real humanoid 
robot and successfully achieve two challenging control tasks. 
We applied our proposed learning approach to acquire a pol-
icy for a cart-pole swing-up task in a real-virtual hybrid task 
environment, where the robot waves a PlayStation (PS) Move 
motion controller to move a cart-pole in a virtual simulator. 
Furthermore, we applied our proposed method to a challeng-
ing basketball-shooting task in a real environment.

Motor Learning in Real Environments
For biological systems, exploring outside worlds for long peri-
ods of time can be dangerous, since this increases the probabil-
ity of encountering enemies. On the other hand, a biological 
system needs to explore its surrounding environment to sam-
ple the data and improve its behavioral policy to increase the 
probability of survival. In such cases, efficiently reusing previ-
ous experiences is crucial for improving its behavioral policies 
without actually interacting with real environments. A  
standard approach is using a parameterized simulation model. 
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System identification methods can be used to build a parame-
terized model, and the acquired model can virtually sample 
the data for policy improvement [1], [4], [14], [17], [22], [35], 
[36]. However, for policy improvement, the learned simulation 
model’s generalization performance needs to be carefully veri-
fied. Even though the simulation model can be useful for pre-
dicting state transitions, explicitly predicting them is not 
necessary for policy updates. 

In this article, we propose using previously acquired data 
as a simulation model instead of building a parameterized 
simulation model. To utilize the previously acquired data to 
improve the current policy, we need to reevaluate the previous 
data in terms of the current policy. To do this in reinforce-
ment-learning (RL) frameworks, importance-weighted policy 
gradients with parameter-based exploration (IW-PGPE) can 
be used [34]. The usefulness of this approach has been thor-
oughly evaluated by comparisons in numerical simulations 
with previously proposed RL methods [6], [9], [15], [25], [29].

However, no work has clearly stated and shown that this 
particular combination of PGPE and importance weighting 
to derive the gradient of objective functions is suitable for 
real robot learning. In our previous study, we presented 
preliminary results and showed that IW-PGPE is a useful 
approach for humanoid motor learning [23]. In this article, 
we extend our IW-PGPE algorithm to more efficiently 
reuse previous experiences by introducing a recursive oper-
ation to policy updates and show how our extended algo-
rithm is useful for real robot learning in high-dimensional 
spaces. We successfully applied our proposed approach to 
two different tasks with two different conditions. First, we 
applied it to a cart-pole swing-up task in a real-virtual hy-
brid environment with a PS Move motion controller. Then 
we applied it to a challenging basketball-shooting task in a 
real environment.

Motor Learning Framework

Trajectories and Returns
We assume that the underlying control problem is a discrete-
time Markov decision processes. At each discrete time step ,t
the agent observes state ( ) ,x t X!  selects action ( ) ,u t U!  
and receives immediate reward ( )r t  of the results from a state 
transition in the environment. The environment’s dynamics 
are characterized by ( ( ) | ( ), ( )),x x up t t t1+  which repre-
sents the transition probability density from current state ( )x t  
to subsequent state x t 1+^ h when action ( )u t  is taken; 

xp 1^ ^ hh is the probability density of the initial states. Imme-
diate reward ( )r t  is given based on reward function 

, , .x u xr t t t 1+^ ^ ^ ^h h hh
The robot’s decision-making procedure at each time step t  is 

characterized by parameterized policy , )u x wp t t^ ^ ^h h  with 
parameter w , which represents the conditional probability den-
sity of taking action ( )u t  in state .( )x t  We assume that the poli-
cy is continuously differentiable with respect to parameter w .

A sequence of states and actions forms a trajectory denoted 
by : [ ( ), ( ), , ( ), ( )],x u x uh T T1 1 f=  where T denotes the 

number of steps, called the horizon length. We assume that T is 
a fixed deterministic number. Then the discounted cumulative 
reward along h, called the return, is given by

	 ( ) : ( ( ), ( )) ( ( )),x u xR h r t t Tt

t

T
1

1

1
c U= +-

=

-

/ � (1)

where [ , )0 1!c  is the discount factor for future rewards. The 
immediate and terminal rewards are ,x ur t t^ ^ ^h hh and 

( ( )).x TU

Policy Models
In this article, we consider feedback and feedforward policy 
models.

Feedback Policy Model
We use locally linear state-dependent basis functions in our 
feedback policy model [20], [21], [31]:

	 ( ) ( ( )),u W zt tfb fbz= � (2)

where ( )z t Z!  is a feedback state at time t. Note that state 
space Z  can be a subset of the original state space, i.e., .Z X1  
Wfb is a state-dependent matrix, and ( ( ))z tfb M0!z  is a vec-
tor that consists of state-dependent basis functions, where M is 
the number of basis functions.

Feedforward Policy Model
The feedforward policy model is formulated as:

	 ( ) ( ),u Wt tff ffz= � (3)

where w M0!  is the parameter vector, ( )tff M 10!z #  is a 
vector that consists of time-dependent basis functions, and 
Wff  is a parameter matrix.

Table 1. The supplemental equations for low-level 
controller and gradient of objective function with  
reference to policy parameters.

1.1) �The expected return in the PGPE formulation is defined 
in terms of the expectations over both h and w as a func-
tion of hyperparameter :t

w w w( ): ( ) ( ) ( )d d .J p h p R h h; ;t t= ##
1.2) The derivative of the expected return using log arithmic

	 derivative w w
w

( ) ( )
( )

:log p p
p

d
d

;
;
;

t
t
t

=t
t

w w w w( ) ( ) ( ) ( ) ( )d d .logJ p h p p R h hd d; ; ;t t t=t t##
1.3) �The expectations over h and w are approximated by 

empirical averages:

.c w( ) ( ) ( )logN p R h1
n n

n

N

1
d d ;t t=t t

=

J /

2) �We can acquire the gradient information for policy updates 
that are weighted by importance weight v:

w w( ) : ( ) ( ) ( ).logJ N v p R h1
IW n n n

n

N

1
d d ;t t=t t

=
l

l l l
l

t /
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PGPE Policy Updates
In our work, we use PGPE-based policy updates [6], [33]. Pol-
icy parameter w  is stochastically sampled from prior distribu-
tion ( | )wp t  with hyperparameter .t  In other words, the 
policy is deterministic, but its parameter is stochastic. 

In PGPE, hyperparameter t is optimized to maximize ex-
pected return ( )J t  (Table 1, 1.1). Optimal hyperparameter 
t)  is given by : ( ) .argmax Jt t=) t  In practice, a gradient 
method is used to find : ,#t t t tfD+)  where 

( )Jdt tD = t  is the derivative of J with respect to t (Table 1, 
1.2) and f  is the learning rate. We approximated derivative 

( )Jd tt  by the empirical average (Table 1, 1.3).

Efficient Reuse of Previous Experiences

Importance Weight
The original PGPE can be considered an on-policy algorithm 
[27], where the data collected from the current policy are used 
to estimate the policy gradients. However, to reuse the previ-
ous experiences, we need to evaluate the current policy with 
the data collected by the previous policies. To do this, we need 
an off-policy algorithm through which the data-collecting pol-
icy and the policy to be updated are different. Therefore, we 
use an off-policy version of the PGPE algorithm. In this off-
policy method, importance weighting [8] is used to evaluate 

the previously collected data (experience) 
from the current policy’s point of view. 
This method is called an IW-PGPE [16], 
[24], [26], [34].

The basic idea of importance 
weighting is to weight samples drawn 
from a sampling distribution to match 
the target distribution. For PGPE, im-
portance weight v was defined for cur-
rent hyperparameter t  that was used 
in previous experiences: 

	 ( ) ( | )
( | )

.w w
w

v p
p

t

t
=l

l l
l

� (4)

This weight indicates how much the 
previous experience contributed to the 
current policy update. The approximat-
ed derivative of the expected return is 
then weighted by this importance 
weight for reusing the previous experi-
ences. Table 1 shows the weighted deriv-
atives using the previous experiences, 
where wnl  represents a policy parameter 
generated from previous hyperparame-
ter tl and hnl  represents the trajectory 
of the previous experiences.

Learning Procedure
The learning procedure of our proposed 
method is shown in Figure 1, which re-
peats from Phases 1 to 3 until the learn-
ing performance is converged:

●● �Phase 1: Collect data in a real envi-
ronment.

●● �Phase 2: Add the collected data to a 
database.

●● �Phase 3: Update the hyperparameters 
of the current policy using the stored 
data in the database.
In Phase 1, 1  policy parameter wn is 

sampled from prior distribution .( | )wp t  
2  Then, a trajectory is acquired from the 

real environment using the policy with the 
sampled policy parameter. In ,3  1  and 

Figure 1. The flowchart of the proposed method: (a) Phase I, (b) Phase II, and  
(c) Phase III.
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2  are repeated N times. Note that for each trial, different poli-
cies with different policy parameters are used.

In Phase 2, the acquired data composed of N trials are 
added to a database. The hyperparameter, the sampled policy 
parameters, and the acquired reward are stored as ith data set 

.Di  The database stores the latest L 1+  data sets. We limit 
the data size to avoid unnecessary computation for the pa-
rameter updates in Phase 3. 

In Phase 3, the hyperparameter is updated based on all the 
data stored in the database. In ,4  the weighted sum of each 
derived gradient for each dataset is used to update the policy 
(Table 1),

Finally, in 5  we recursively applied the procedure com-
posed of 1 , 2 , ,3  and 4  S times.

Recursive Reuse of Previous Experiences
Here we recursively use the IW-PGPE method so that we can 
more efficiently reuse the previously collected data. This re-
cursive update, which has not been systematically explored 
for real robot learning, is a novel contribution of this study. 
By recalculating the importance weights introduced in (4), 
the previous experiences can be repeatedly reused for hyper-
parameter updates. Here, we introduce a new operator, H, 
which outputs the amount of updates of hyperparameter :t

	 ( , { } ),H D i L
it tD = - � (5)

	 ( , ),DdL J1
1

IW i
i i L

i
t=

+ t

= -

l

l

U/ � (6)

where Di  represents the ith experienced data needed for the 
derivative calculation. Note that for the current iteration, 
weighted derivative ( )J IWd tt

U  equals nonweighted derivative 
( )Jd tt
U , because importance weight wv n^ h is one. With this 

operator, a recursive formula for the hyperparameter updates 
is derived:
	 ( , { } ),H Ds s s i L

i
1t t t= ++ - � (7)

where s =  {1, . . . , S} is the number of recursions. 

With each recursion, the importance weight is estimated 
automatically and adaptively. The importance weight gradually 
becomes small depending on prior distribution .( | )wp t  In 
other words, the number of recursions is adapted based on the 
relationship between the trajectory generated from the previ-
ous and current policies.

Cart-Pole Swing-Up 
Experiment
We first applied our pro-
posed approach to a sim-
ulated environment and 
tested it using a human-
oid robot simulator (Fig-
ure 2). In addition, we 
developed a virtual dy-
namics simulator and our 
robot interacted with its 
virtual environment using 
a PS Move motion controller [Figure 3(a)]. Since the cart-pole 
dynamics are underactuated, the robot can only apply force to 

Figure 2. The humanoid robot simulator [31]. (Image courtesy of 
Prof. S. Schaal.) 
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Figure 3. (a) The robot controls a motion controller to swing-
up a cart-pole simulated in virtual environment from a hanging 
position. The angular velocity (yellow arrow) is converted into 
the cart’s driving force. (b) The diagram of the experimental 
system. A desired trajectory of controlled joint (ides) is given to 
the robot, and the motion controller’s angular velocity is given to 
the cart-pole simulator. The reward is based on cart-pole state 
( , ),h }  and policy is optimized to maximize cumulative reward. 
(Photo courtesy of ATR.)
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the cart. The motion controller’s angular velocity is converted 
into the cart’s driving force. In this task, the robot controls a 
cart-pole to swing up from a hanging position by waving the 

motion controller and 
also controls the five 
joints of its upper body 
(the torso’s yaw joint, 
three joints of the left-
shoulder, and the left-el-
bow joint). The length of 
one trial was 2 s. 

For this cart-pole 
swing-up task, we implemented a feedback policy (2) that 
outputs a desired joint angular velocity by a mixture of local 
feedback policies with basis functions defined in the cart-pole 

state space [13]. The derived desired joint velocities desi
o  were 

converted into joint torques using a proportional-derivative 
(PD) controller (see also Table 2). Here, the state-dependent 
matrix in (2) was defined as

	 ,W W Zfb
fb= u u � (8)

where , , , ( ( ) , and ( )Z z c zz z z z t1M m m1 2 f= = - =< <u u u u u6 6@ @
[ ( ) ( ) ( )]t t t} } h <o o h Wfbu  is a parameter matrix. As shown in 
Figure 3(a), angle position ,}  the angular velocity of pole 

,}o  and the horizontal velocity of cart ho  were considered in 
the feedback policy. We used 12 basis functions M 12=^ h 
for each controlled joint. Each basis function is formulated, 
as shown in Table 2 with center ,cfb

m  which is allocated with 
grid pattern (4 # 3 # 1) in the range of : , / , / , /0 4 2 3} r r r  

, : , , / ,rad rad s4 2 0 2} r r-o  and : .0ho  
The force applied to cart F was derived according to the PS 

Move motion controller’s angular velocity.
We also defined the objective function as the sum of state-

dependent reward xq t^ ^ hh and cost of action .,x uc t t^ ^ ^h hh  
Here x  and u  are the state vector and the desired position of 
each joint. A state-dependent reward is given based on the 
pole’s angle:

	 ( ( )) [ ( ) ],x expq t t 2a}= - � (9)

where parameter .0 5a =  is a constant. When the pole’s angle 
is upright ( ),0} =  the state-dependent reward takes a maxi-
mum value. The control cost is given based on the difference 
between the actual and desired angles:

	 ( ( ), ( )) ( ( ) ( )) ,x uc t t t tdes
j j

j

2

1

5
b i i= -
=

/ � (10)

where ( )5 10 4#b = -  is a constant and j is an index of the 
controlled joint.

Figure 5. The simulation results of different numbers of 
recursions. The difference of color represents the different 
parameters, S 0=  (blue), 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 60,  
80, 100 (red).
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Figure 4. The simulation results of cart-pole swing-up. The mean 
and standard deviation of cumulative rewards are plotted. Blue and 
red lines are learning curves with and without recursive updates 
formulated in the “Recursive Reuse of Previous Experiences” section.
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Table 2. The supplemental equations  
about basis functions.

1) �The basis functions for feedback policy are defined in state 
space of z  with center c fb

m  and size :
m
/

z
z

z
( ( ))

( ( ))
( ( ))

,t
g t

g t
M

fb
fb

fb

m
m m

m

1/
z =

=l l

z z c z c( ( )) ( ( ) ) ( ( ) ) .expg t t t2
1fb fb fb

m m m m
1= - - -< -8 B/

2) �The basis functions are defined along the time trajectory 
with center cf

m
f  and size :v

( )
( )

( )
,t

g t
g t

M
ff

ff

ff

m
m m

m

1/
z =

=l l

( ) ( ) .expg t t c
2
1ff ff

m m2
2

v
= -; E

3) �The PD controller outputs torque command x  for each 
joint to track the desired trajectories with positive con-
stants ( and ):K KP D

( ) ( ( ) ( )) ( ( ) ( )) .t K t t K t tP
des

D
desx i i i i=- - - -o o

The performance reached  

a maximum value around 

the 120th iteration.
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Hyperparameter t was updated with a discount factor of 
. ,0 999c =  a learning rate of . ,0 05f =  ten trials in one itera-

tion of ,N 10=  and 100 iterations for reuse .( )L 100=  We 
also employed the recursive updates introduced in the “Re-
cursive Reuse of Previous Experiences” section and terminat-
ed each recursion at the 
100th time ( ).S 100=  To 
efficiently reuse the old 
data, we set sufficiently 
large numbers to L and S, 
so that the importance 
weight becomes close to 
zero when we use the old-
est data.

To evaluate the average 
learning performances of 
our proposed approach, 
we compared the following methods:

●● REINFORCE: The REINFORCE algorithm [25]
●● PGPE: Standard PGPE [6]
●● IW-PGPE: Standard IW-PGPE [34]
●● Proposed: Proposed recursive IW-PGPE.

For each method, we updated the parameters every ten trials 
and used the same learning rate.

Figure 6. The learning performance of the cart-pole swing-up 
task using real humanoid robot, where reward function is based 
on previous work of (9) and (10).
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Figure 7. The acquired behavior of the cart-pole in the swing-up task.
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Figure 8. The acquired behavior of a humanoid robot in the cart-
pole swing-up task. (Photo courtesy of ATR.) 
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(b) A schematic diagram of the experimental system.
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The learning results are shown in Figure 4. The horizontal 
and vertical axes are the learning iterations and the cumula-
tive rewards. The gray, green, blue, and red lines represent the 

performances of REINFORCE, PGPE, IW-PGPE, and the 
proposed method, respectively. The mean and standard devi-
ation over five simulation runs are plotted. Since system noise 
is not considered in our simulation, the standard deviation of 
the learning curves was relatively small. The cart-pole swing-
up policy was improved by our proposed method much faster 
than by the other approaches.

The effects of the number of recursions ( )S  are shown in 
Figure 5. We conducted five simulation runs for each parame-
ter S =  (0, 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 60, 80, 100) with dif-
ferent random seeds. The improvements of the task 
performance became faster with larger S. In this simulation, 
we did not observe any slowdown or bias in the performance 
improvement even with a relatively large S value. This is pos-
sibly due to the effect of the importance weight.

We also evaluated our proposed method using our real 
humanoid robot. The learning performance is shown in Fig-
ure 6. The horizontal and vertical axes are the iterations and 
the mean of the cumulative rewards in each iteration. The 
performance reached a maximum value around the 120th it-

eration. Figures 7 and 8 show the ac-
quired swing-up movements, 
although the pitch angular velocity 
of the PS Move corresponds to the 
force input to the cart. In this cart-
pole swing-up task using the real-
virtual hybrid environment, since 
the robot did not know which PS 
Move sensor corresponded to the 
input to the cart, it explored the 
movements by using the five joints 
of its upper body. As a result, the 
hand position of the robot moved 
around the three-dimensional Car-
tesian space (see also Figure 8).

Basketball-Shooting 
Experiment
Next, we tested the basketball-
shooting task using all seven de-
grees of freedom of the robot’s right 
arm. The policy outputs the desired 
angular velocity for seven joints of 
the right arm: three shoulder joints, 
the elbow joint, and three wrist 
joints. Since the robot does not have 
any sensors to detect the state of the 
ball when it is on its hand, we sim-
ply used the feedforward policy 
model in (3). Desired angular ve-
locities ( { , , , ,j 1 2 3 4des

ji =o  , , })5 6 7  
are learned through the trials. A 
simple nominal trajectory was pro-
vided for the elbow joint that slowly 
extended it. The center of basis 
functions cff

m  was defined along the 
Figure 11. The generated trajectories of the right arm in the basketball-shooting task. Horizontal 
and vertical axes are time and joint angle. Mean and standard deviation over 50 trials are plotted.
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time at regular intervals. The length of one trial was 0.5 s 
with 0.002-s time steps [13].

The task setup is shown in Figure 9. The position of the goal 
was 2 m from the robot. When the ball (weight: 0.5 kg, radius: 
0.11 m) crossed a horizontal plane at height of 1 m, a terminal 
reward is given based on the horizontal distance between the 
ball and the basket:

	 ,exp d0 1
2a aU = -6 @ � (11)

where the distance is defined as .d p p 2x y
2 2 2= + -^ h  The 

ball’s positions on the horizontal plane are px  and .py  
( )1000a = and ( )51a =  are constant parameters. The control 

cost was given as follows:

	 ( ( ), ( )) ( ( ) ( )) ,x uc t t t tdes
j j

j

2

1

7
b i i= -
=

/ � (12)

where constant parameter b  was .5 10 4# -  The state-de-
pendent cost was given only in the terminal condition. 

For one data set, the numbers of trials, databases, and re-
cursive updates were , ,N L10 10= =  and ,S 10=  respec-
tively. The policy was updated with discount factor 

.0 999c =  and learning rate . .0 05f =
The learning performance is shown in Figure 10. The learn-

ing converged around the 80th iteration. After the learning 
stage, the successful shooting rate was 100%; 50 of 50 shots 
went in. 

The means and standard deviations of all the joint trajecto-
ries of the humanoid right arm in the basketball-shooting task 
are shown in Figure 11. This result shows that properly coordi-
nated joint movements had to be learned for a successful bas-
ketball-shooting task. On the other hand, small variations of 
the movement trajectories were observed due to the uncer-
tainty of the real system. The acquired behavior after the learn-
ing is shown in Figure 12.

Discussion
In our PGPE-based approach, the policy’s output is determin-
istic and does not need noisy control output for exploration. 
Thus, the control output 
can be smooth, and 
smooth control output is 
highly suitable for robot 
hardware. In comparison, 
the previously proposed 
model-based policy up-
date algorithms must first 
identify the real environ-
ment [1], [4], [14], [17], 
[22], [35], [36]. Therefore, 
exploratory noisy input using a real robot is mandatory, al-
though successful applications of model-based RL methods to 
real systems have been presented [14], [18]. In addition, the 
previous approaches used an approximated dynamics model 
with a function approximator, such as Gaussian process 

Figure 12. The acquired behavior of the humanoid robot in the 
basketball-shooting task. (Photos courtesy of ATR.) 

We applied our proposed 

method to a challenging 

basketball-shooting task in 

a real environment.
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regression [2]. With a function approximator, the sampled 
data from the approximated model can be generated by inap-
propriate interpolation or extrapolation that improperly up-
dates the policy parameters. In addition, if we aggressively 

derive the analytical gradi-
ent of the approximated 
model to update the poli-
cy, the approximated gra-
dient might be far from 
the true gradient of the 
objective function due to 
the model approximation 
error. If we consider using 
these function approxima-
tion methods for high-di-
mensional systems like 
humanoid robots, this 
problem becomes more 
serious due to the difficul-
ty of approximating high-

dimensional dynamics models with a limited amount of data 
sampled from real systems. On the other hand, if the environ-
ment is extremely stochastic, a limited amount of previously 
acquired data might not be able to capture the real environ-
ment’s property and could lead to inappropriate policy up-
dates. However, rigid dynamics models, such as a humanoid 
robot model, do not usually include large stochasticity. There-
fore, our approach is suitable for a real robot learning for high-
dimensional systems like humanoid robots.

Moreover, applying RL to actual robot control is difficult, 
since it usually requires many learning trials that cannot be exe-
cuted in real environments, and the real system’s durability is 
limited. Previous studies used prior knowledge or properly de-
signed initial trajectories to apply RL to a real robot and im-
proved the robot controller’s parameters [1], [4], [10], [19], [32].

We applied our proposed learning method to our human-
oid robot [7] (Figure 13) and show that it can accomplish two 
different movement-learning tasks without any prior knowl-
edge for the cart-pole swing-up task or with a very simple 
nominal trajectory for the basketball-shooting task.

The proposed recursive use of previously sampled data to 
improve policies for real robots would also be useful for 
other policy search algorithms, such as reward weighted re-
gression [11] or information theoretic approaches [12], and it 
might be interesting to investigate how these combinations 
work as a future study.

Conclusions
In this article, we proposed reusing the previous experienc-
es of a humanoid robot to efficiently improve its task per-
formance. We proposed recursively using the off-policy 
PGPE method to improve the policies and applied our ap-
proach to cart-pole swing-up and basketball-shooting 
tasks. In the former, we introduced a real-virtual hybrid 
task environment composed of a motion controller and vir-
tually simulated cart-pole dynamics. By using the hybrid 
environment, we can potentially design a wide variety of 
different task environments. Note that complicated arm 
movements of the humanoid robot need to be learned for 
the cart-pole swing-up. Furthermore, by using our pro-
posed method, the challenging basketball-shooting task 
was successfully accomplished.

Future work will develop a method based on a transfer 
learning [28] approach to efficiently reuse the previous expe-
riences acquired in different target tasks.
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