
1070-9932/16©2016IEEE

Trial and Error

By Norikazu Sugimoto,
Voot Tangkaratt,
Thijs Wensveen,

Tingting Zhao,
Masashi Sugiyama, and

Jun Morimoto

Using Previous
Experiences as

Simulation
Models

in Humanoid
Motor Learning

Im
a

g
e

 l
ic

e
n

s
e

d
 b

y
 In

g
r

a
m

 P
u

b
li

s
h

in
g

Date of publication: 23 February 2016

96

Digital Object Identifier 10.1109/MRA.2015.2511681

S
ince biological systems have the ability to efficiently
reuse previous experiences to change their behavioral
strategies to avoid enemies or find food, the number
of required samples from real environments to
improve behavioral policy is greatly reduced. Even

for real robotic systems, it is desirable to use only a limited
number of samples from real environments due to the limited
durability of real systems to reduce the required time to
improve control performance. In this article, we used previous
experiences as environmental local models so that the move-
ment policy of a humanoid robot can be efficiently improved
with a limited number of samples from its real environment.
We applied our proposed learning method to a real humanoid
robot and successfully achieve two challenging control tasks.
We applied our proposed learning approach to acquire a pol-
icy for a cart-pole swing-up task in a real-virtual hybrid task
environment, where the robot waves a PlayStation (PS) Move
motion controller to move a cart-pole in a virtual simulator.
Furthermore, we applied our proposed method to a challeng-
ing basketball-shooting task in a real environment.

Motor Learning in Real Environments
For biological systems, exploring outside worlds for long peri-
ods of time can be dangerous, since this increases the probabil-
ity of encountering enemies. On the other hand, a biological
system needs to explore its surrounding environment to sam-
ple the data and improve its behavioral policy to increase the
probability of survival. In such cases, efficiently reusing previ-
ous experiences is crucial for improving its behavioral policies
without actually interacting with real environments. A
standard approach is using a parameterized simulation model.

• IEEE ROBOTICS & AUTOMATION MAGAZINE • march 2016

march 2016 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 97

System identification methods can be used to build a parame-
terized model, and the acquired model can virtually sample
the data for policy improvement [1], [4], [14], [17], [22], [35],
[36]. However, for policy improvement, the learned simulation
model’s generalization performance needs to be carefully veri-
fied. Even though the simulation model can be useful for pre-
dicting state transitions, explicitly predicting them is not
necessary for policy updates.

In this article, we propose using previously acquired data
as a simulation model instead of building a parameterized
simulation model. To utilize the previously acquired data to
improve the current policy, we need to reevaluate the previous
data in terms of the current policy. To do this in reinforce-
ment-learning (RL) frameworks, importance-weighted policy
gradients with parameter-based exploration (IW-PGPE) can
be used [34]. The usefulness of this approach has been thor-
oughly evaluated by comparisons in numerical simulations
with previously proposed RL methods [6], [9], [15], [25], [29].

However, no work has clearly stated and shown that this
particular combination of PGPE and importance weighting
to derive the gradient of objective functions is suitable for
real robot learning. In our previous study, we presented
preliminary results and showed that IW-PGPE is a useful
approach for humanoid motor learning [23]. In this article,
we extend our IW-PGPE algorithm to more efficiently
reuse previous experiences by introducing a recursive oper-
ation to policy updates and show how our extended algo-
rithm is useful for real robot learning in high-dimensional
spaces. We successfully applied our proposed approach to
two different tasks with two different conditions. First, we
applied it to a cart-pole swing-up task in a real-virtual hy-
brid environment with a PS Move motion controller. Then
we applied it to a challenging basketball-shooting task in a
real environment.

Motor Learning Framework

Trajectories and Returns
We assume that the underlying control problem is a discrete-
time Markov decision processes. At each discrete time step ,t
the agent observes state () ,x t X! selects action () ,u t U!
and receives immediate reward ()r t of the results from a state
transition in the environment. The environment’s dynamics
are characterized by (() | (), ()),x x up t t t1+ which repre-
sents the transition probability density from current state ()x t
to subsequent state x t 1+^ h when action ()u t is taken;

xp 1^ ^ hh is the probability density of the initial states. Imme-
diate reward ()r t is given based on reward function

, , .x u xr t t t 1+^ ^ ^ ^h h hh
The robot’s decision-making procedure at each time step t is

characterized by parameterized policy ,)u x wp t t^ ^ ^h h with
parameter w , which represents the conditional probability den-
sity of taking action ()u t in state .()x t We assume that the poli-
cy is continuously differentiable with respect to parameter w .

A sequence of states and actions forms a trajectory denoted
by : [(), (), , (), ()],x u x uh T T1 1 f= where T denotes the

number of steps, called the horizon length. We assume that T is
a fixed deterministic number. Then the discounted cumulative
reward along h, called the return, is given by

	 () : ((), ()) (()),x u xR h r t t Tt

t

T
1

1

1
c U= +-

=

-

/ � (1)

where [,)0 1!c is the discount factor for future rewards. The
immediate and terminal rewards are ,x ur t t^ ^ ^h hh and

(()).x TU

Policy Models
In this article, we consider feedback and feedforward policy
models.

Feedback Policy Model
We use locally linear state-dependent basis functions in our
feedback policy model [20], [21], [31]:

	 () (()),u W zt tfb fbz= � (2)

where ()z t Z! is a feedback state at time t. Note that state
space Z can be a subset of the original state space, i.e., .Z X1
Wfb is a state-dependent matrix, and (())z tfb M0!z is a vec-
tor that consists of state-dependent basis functions, where M is
the number of basis functions.

Feedforward Policy Model
The feedforward policy model is formulated as:

	 () (),u Wt tff ffz= � (3)

where w M0! is the parameter vector, ()tff M 10!z # is a
vector that consists of time-dependent basis functions, and
Wff is a parameter matrix.

Table 1. The supplemental equations for low-level
controller and gradient of objective function with
reference to policy parameters.

1.1) �The expected return in the PGPE formulation is defined
in terms of the expectations over both h and w as a func-
tion of hyperparameter :t

w w w(): () () ()d d .J p h p R h h; ;t t= ##
1.2) The derivative of the expected return using log arithmic

	 derivative w w
w

() ()
()

:log p p
p

d
d

;
;
;

t
t
t

=t
t

w w w w() () () () ()d d .logJ p h p p R h hd d; ; ;t t t=t t##
1.3) �The expectations over h and w are approximated by

empirical averages:

.c w() () ()logN p R h1
n n

n

N

1
d d ;t t=t t

=

J /

2) �We can acquire the gradient information for policy updates
that are weighted by importance weight v:

w w() : () () ().logJ N v p R h1
IW n n n

n

N

1
d d ;t t=t t

=
l

l l l
l

t /

• IEEE ROBOTICS & AUTOMATION MAGAZINE • march 201698

PGPE Policy Updates
In our work, we use PGPE-based policy updates [6], [33]. Pol-
icy parameter w is stochastically sampled from prior distribu-
tion (|)wp t with hyperparameter .t In other words, the
policy is deterministic, but its parameter is stochastic.

In PGPE, hyperparameter t is optimized to maximize ex-
pected return ()J t (Table 1, 1.1). Optimal hyperparameter
t) is given by : () .argmax Jt t=) t In practice, a gradient
method is used to find : ,#t t t tfD+) where

()Jdt tD = t is the derivative of J with respect to t (Table 1,
1.2) and f is the learning rate. We approximated derivative

()Jd tt by the empirical average (Table 1, 1.3).

Efficient Reuse of Previous Experiences

Importance Weight
The original PGPE can be considered an on-policy algorithm
[27], where the data collected from the current policy are used
to estimate the policy gradients. However, to reuse the previ-
ous experiences, we need to evaluate the current policy with
the data collected by the previous policies. To do this, we need
an off-policy algorithm through which the data-collecting pol-
icy and the policy to be updated are different. Therefore, we
use an off-policy version of the PGPE algorithm. In this off-
policy method, importance weighting [8] is used to evaluate

the previously collected data (experience)
from the current policy’s point of view.
This method is called an IW-PGPE [16],
[24], [26], [34].

The basic idea of importance
weighting is to weight samples drawn
from a sampling distribution to match
the target distribution. For PGPE, im-
portance weight v was defined for cur-
rent hyperparameter t that was used
in previous experiences:

	 () (|)
(|)

.w w
w

v p
p

t

t
=l

l l
l

� (4)

This weight indicates how much the
previous experience contributed to the
current policy update. The approximat-
ed derivative of the expected return is
then weighted by this importance
weight for reusing the previous experi-
ences. Table 1 shows the weighted deriv-
atives using the previous experiences,
where wnl represents a policy parameter
generated from previous hyperparame-
ter tl and hnl represents the trajectory
of the previous experiences.

Learning Procedure
The learning procedure of our proposed
method is shown in Figure 1, which re-
peats from Phases 1 to 3 until the learn-
ing performance is converged:

●● �Phase 1: Collect data in a real envi-
ronment.

●● �Phase 2: Add the collected data to a
database.

●● �Phase 3: Update the hyperparameters
of the current policy using the stored
data in the database.
In Phase 1, 1 policy parameter wn is

sampled from prior distribution .(|)wp t
2 Then, a trajectory is acquired from the

real environment using the policy with the
sampled policy parameter. In ,3 1 and

Figure 1. The flowchart of the proposed method: (a) Phase I, (b) Phase II, and
(c) Phase III.

Phase 1: Interact with Robot and Collect Data

Phase 2: Add the Experienced Data to Database

Phase 3: Update the Hyperparameter of a Policy

Database

Policy
Generator

Database
Hyperparameter

Generated Policy Parameter
Acquired Reward

Policy

(a)

Action

State
Reward

Parameter

Add

Robot

 Repeat N Times

Policy
Generator

wn

Di

Di

Di-L

Di-1

Repeat Until t = T

1

2

3

1 2

3

 Repeat S Times5

t Dti

4 Dtvi

(b)

(c)

march 2016 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 99

2 are repeated N times. Note that for each trial, different poli-
cies with different policy parameters are used.

In Phase 2, the acquired data composed of N trials are
added to a database. The hyperparameter, the sampled policy
parameters, and the acquired reward are stored as ith data set

.Di The database stores the latest L 1+ data sets. We limit
the data size to avoid unnecessary computation for the pa-
rameter updates in Phase 3.

In Phase 3, the hyperparameter is updated based on all the
data stored in the database. In ,4 the weighted sum of each
derived gradient for each dataset is used to update the policy
(Table 1),

Finally, in 5 we recursively applied the procedure com-
posed of 1 , 2 , ,3 and 4 S times.

Recursive Reuse of Previous Experiences
Here we recursively use the IW-PGPE method so that we can
more efficiently reuse the previously collected data. This re-
cursive update, which has not been systematically explored
for real robot learning, is a novel contribution of this study.
By recalculating the importance weights introduced in (4),
the previous experiences can be repeatedly reused for hyper-
parameter updates. Here, we introduce a new operator, H,
which outputs the amount of updates of hyperparameter :t

	 (, { }),H D i L
it tD = - � (5)

	 (,),DdL J1
1

IW i
i i L

i
t=

+ t

= -

l

l

U/ � (6)

where Di represents the ith experienced data needed for the
derivative calculation. Note that for the current iteration,
weighted derivative ()J IWd tt

U equals nonweighted derivative
()Jd tt
U , because importance weight wv n^ h is one. With this

operator, a recursive formula for the hyperparameter updates
is derived:
	 (, { }),H Ds s s i L

i
1t t t= ++ - � (7)

where s = {1, . . . , S} is the number of recursions.

With each recursion, the importance weight is estimated
automatically and adaptively. The importance weight gradually
becomes small depending on prior distribution .(|)wp t In
other words, the number of recursions is adapted based on the
relationship between the trajectory generated from the previ-
ous and current policies.

Cart-Pole Swing-Up
Experiment
We first applied our pro-
posed approach to a sim-
ulated environment and
tested it using a human-
oid robot simulator (Fig-
ure 2). In addition, we
developed a virtual dy-
namics simulator and our
robot interacted with its
virtual environment using
a PS Move motion controller [Figure 3(a)]. Since the cart-pole
dynamics are underactuated, the robot can only apply force to

Figure 2. The humanoid robot simulator [31]. (Image courtesy of
Prof. S. Schaal.)

PS Move
Motion Controller

yy
xx

zz

Figure 3. (a) The robot controls a motion controller to swing-
up a cart-pole simulated in virtual environment from a hanging
position. The angular velocity (yellow arrow) is converted into
the cart’s driving force. (b) The diagram of the experimental
system. A desired trajectory of controlled joint (ides) is given to
the robot, and the motion controller’s angular velocity is given to
the cart-pole simulator. The reward is based on cart-pole state
(,),h } and policy is optimized to maximize cumulative reward.
(Photo courtesy of ATR.)

(a)

F

Cart-Pole

Motion Controller
}

h

Cart-Pole
Simulator

Robot PS Move
Motion Controller

Feedback
Policy

Maximize
Cumulative Reward

Reward and
Feedback

State

(b)

F

PD Controller

x

ides:

Small variations of the

movement trajectories

were observed due to

the uncertainty of the

real system.

• IEEE ROBOTICS & AUTOMATION MAGAZINE • march 2016100

the cart. The motion controller’s angular velocity is converted
into the cart’s driving force. In this task, the robot controls a
cart-pole to swing up from a hanging position by waving the

motion controller and
also controls the five
joints of its upper body
(the torso’s yaw joint,
three joints of the left-
shoulder, and the left-el-
bow joint). The length of
one trial was 2 s.

For this cart-pole
swing-up task, we implemented a feedback policy (2) that
outputs a desired joint angular velocity by a mixture of local
feedback policies with basis functions defined in the cart-pole

state space [13]. The derived desired joint velocities desi
o were

converted into joint torques using a proportional-derivative
(PD) controller (see also Table 2). Here, the state-dependent
matrix in (2) was defined as

	 ,W W Zfb
fb= u u � (8)

where , , , (() , and ()Z z c zz z z z t1M m m1 2 f= = - =< <u u u u u6 6@ @
[() () ()]t t t} } h <o o h Wfbu is a parameter matrix. As shown in
Figure 3(a), angle position ,} the angular velocity of pole

,}o and the horizontal velocity of cart ho were considered in
the feedback policy. We used 12 basis functions M 12=^ h
for each controlled joint. Each basis function is formulated,
as shown in Table 2 with center ,cfb

m which is allocated with
grid pattern (4 # 3 # 1) in the range of : , / , / , /0 4 2 3} r r r

, : , , / ,rad rad s4 2 0 2} r r-o and : .0ho
The force applied to cart F was derived according to the PS

Move motion controller’s angular velocity.
We also defined the objective function as the sum of state-

dependent reward xq t^ ^ hh and cost of action .,x uc t t^ ^ ^h hh
Here x and u are the state vector and the desired position of
each joint. A state-dependent reward is given based on the
pole’s angle:

	 (()) [()],x expq t t 2a}= - � (9)

where parameter .0 5a = is a constant. When the pole’s angle
is upright (),0} = the state-dependent reward takes a maxi-
mum value. The control cost is given based on the difference
between the actual and desired angles:

	 ((), ()) (() ()) ,x uc t t t tdes
j j

j

2

1

5
b i i= -
=

/ � (10)

where ()5 10 4#b = - is a constant and j is an index of the
controlled joint.

Figure 5. The simulation results of different numbers of
recursions. The difference of color represents the different
parameters, S 0= (blue), 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 60,
80, 100 (red).

101 102 103

Iterations

0

20

40

60

80

100

C
um

ul
at

iv
e

R
ew

ar
ds

S = 100

S = 0
(IW-PGPE)

Figure 4. The simulation results of cart-pole swing-up. The mean
and standard deviation of cumulative rewards are plotted. Blue and
red lines are learning curves with and without recursive updates
formulated in the “Recursive Reuse of Previous Experiences” section.

Proposed

101 102 103

Iterations

0

20

40

60

80

100

C
um

ul
at

iv
e

R
ew

ar
ds

PGPE

IW-PGPE

REINFORCE

Table 2. The supplemental equations
about basis functions.

1) �The basis functions for feedback policy are defined in state
space of z with center c fb

m and size :
m
/

z
z

z
(())

(())
(())

,t
g t

g t
M

fb
fb

fb

m
m m

m

1/
z =

=l l

z z c z c(()) (()) (()) .expg t t t2
1fb fb fb

m m m m
1= - - -< -8 B/

2) �The basis functions are defined along the time trajectory
with center cf

m
f and size :v

()
()

()
,t

g t
g t

M
ff

ff

ff

m
m m

m

1/
z =

=l l

() () .expg t t c
2
1ff ff

m m2
2

v
= -; E

3) �The PD controller outputs torque command x for each
joint to track the desired trajectories with positive con-
stants (and):K KP D

() (() ()) (() ()) .t K t t K t tP
des

D
desx i i i i=- - - -o o

The performance reached

a maximum value around

the 120th iteration.

march 2016 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 101

Hyperparameter t was updated with a discount factor of
. ,0 999c = a learning rate of . ,0 05f = ten trials in one itera-

tion of ,N 10= and 100 iterations for reuse .()L 100= We
also employed the recursive updates introduced in the “Re-
cursive Reuse of Previous Experiences” section and terminat-
ed each recursion at the
100th time ().S 100= To
efficiently reuse the old
data, we set sufficiently
large numbers to L and S,
so that the importance
weight becomes close to
zero when we use the old-
est data.

To evaluate the average
learning performances of
our proposed approach,
we compared the following methods:

●● REINFORCE: The REINFORCE algorithm [25]
●● PGPE: Standard PGPE [6]
●● IW-PGPE: Standard IW-PGPE [34]
●● Proposed: Proposed recursive IW-PGPE.

For each method, we updated the parameters every ten trials
and used the same learning rate.

Figure 6. The learning performance of the cart-pole swing-up
task using real humanoid robot, where reward function is based
on previous work of (9) and (10).

40 80 120 120
0

20

40

60

Iterations

C
um

ul
at

iv
e

R
ew

ar
ds

Figure 7. The acquired behavior of the cart-pole in the swing-up task.

0 2 4 6
h (m)

-2-4-6

Figure 8. The acquired behavior of a humanoid robot in the cart-
pole swing-up task. (Photo courtesy of ATR.)

Final Position
of Motion Controller

Initial Position
of Motion Controller

Figure 9. (a) The setup of the basketball-shooting task: horizontal
distance between CB-i and the goal was 2 m, and goal’s height
was 0.9 m. A reward was given based on the distance between
the ball and the goal when the ball crosses horizontal plane at

. m.z 0 5= The ball’s position was observed by a stereo camera.
(b) A schematic diagram of the experimental system.

2 m

(a)

(b)

0.9 m
0.5 m

0.5 m

0.1 m

y

z

x

Robot

Feedforward Policy

Maximize
Cumulative Reward

RewardPD Controller

x

ides:

i5, i6, i7

p(xp, yp, zp = 0.5) i1, i2, i3

i4

Small variations of the

movement trajectories

were observed due to

the uncertainty of the

real system.

• IEEE ROBOTICS & AUTOMATION MAGAZINE • march 2016102

The learning results are shown in Figure 4. The horizontal
and vertical axes are the learning iterations and the cumula-
tive rewards. The gray, green, blue, and red lines represent the

performances of REINFORCE, PGPE, IW-PGPE, and the
proposed method, respectively. The mean and standard devi-
ation over five simulation runs are plotted. Since system noise
is not considered in our simulation, the standard deviation of
the learning curves was relatively small. The cart-pole swing-
up policy was improved by our proposed method much faster
than by the other approaches.

The effects of the number of recursions ()S are shown in
Figure 5. We conducted five simulation runs for each parame-
ter S = (0, 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 60, 80, 100) with dif-
ferent random seeds. The improvements of the task
performance became faster with larger S. In this simulation,
we did not observe any slowdown or bias in the performance
improvement even with a relatively large S value. This is pos-
sibly due to the effect of the importance weight.

We also evaluated our proposed method using our real
humanoid robot. The learning performance is shown in Fig-
ure 6. The horizontal and vertical axes are the iterations and
the mean of the cumulative rewards in each iteration. The
performance reached a maximum value around the 120th it-

eration. Figures 7 and 8 show the ac-
quired swing-up movements,
although the pitch angular velocity
of the PS Move corresponds to the
force input to the cart. In this cart-
pole swing-up task using the real-
virtual hybrid environment, since
the robot did not know which PS
Move sensor corresponded to the
input to the cart, it explored the
movements by using the five joints
of its upper body. As a result, the
hand position of the robot moved
around the three-dimensional Car-
tesian space (see also Figure 8).

Basketball-Shooting
Experiment
Next, we tested the basketball-
shooting task using all seven de-
grees of freedom of the robot’s right
arm. The policy outputs the desired
angular velocity for seven joints of
the right arm: three shoulder joints,
the elbow joint, and three wrist
joints. Since the robot does not have
any sensors to detect the state of the
ball when it is on its hand, we sim-
ply used the feedforward policy
model in (3). Desired angular ve-
locities ({ , , , ,j 1 2 3 4des

ji =o , , })5 6 7
are learned through the trials. A
simple nominal trajectory was pro-
vided for the elbow joint that slowly
extended it. The center of basis
functions cff

m was defined along the
Figure 11. The generated trajectories of the right arm in the basketball-shooting task. Horizontal
and vertical axes are time and joint angle. Mean and standard deviation over 50 trials are plotted.

Flexion-Extension Adduction-Abduction Internal/External Rotation

Flexion-Extension Adduction-Abduction Internal/External Rotation

Shoulder

A
ng

le
 (

ra
d)

Elbow

Wrist

Flexion-Extension

Time (s)
0 0.25 0.5

Time (s)
0 0.25 0.5

Time (s)
0 0.25 0.5

0 0.25 0.5 0 0.25 0.5

0 0.25 0.5 0 0.25 0.5

A
ng

le
 (

ra
d)

A
ng

le
 (

ra
d)

1.1

1.2

1.3

-1.5

-1.4

0.46

0.48

0.50

0.52

1.0

0.5

1.5

2.0

0.0

0.2

-0.4

0.0

0.42

0.46

0.50

0.54

Figure 10. The learning performance of basketball-shooting task using
a real humanoid robot.

20 40 60 80 1000
0

20

40

60

80

100

Iterations

C
um

ul
at

iv
e

R
ew

ar
ds

march 2016 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 103

time at regular intervals. The length of one trial was 0.5 s
with 0.002-s time steps [13].

The task setup is shown in Figure 9. The position of the goal
was 2 m from the robot. When the ball (weight: 0.5 kg, radius:
0.11 m) crossed a horizontal plane at height of 1 m, a terminal
reward is given based on the horizontal distance between the
ball and the basket:

	 ,exp d0 1
2a aU = -6 @ � (11)

where the distance is defined as .d p p 2x y
2 2 2= + -^ h The

ball’s positions on the horizontal plane are px and .py
()1000a = and ()51a = are constant parameters. The control

cost was given as follows:

	 ((), ()) (() ()) ,x uc t t t tdes
j j

j

2

1

7
b i i= -
=

/ � (12)

where constant parameter b was .5 10 4# - The state-de-
pendent cost was given only in the terminal condition.

For one data set, the numbers of trials, databases, and re-
cursive updates were , ,N L10 10= = and ,S 10= respec-
tively. The policy was updated with discount factor

.0 999c = and learning rate . .0 05f =
The learning performance is shown in Figure 10. The learn-

ing converged around the 80th iteration. After the learning
stage, the successful shooting rate was 100%; 50 of 50 shots
went in.

The means and standard deviations of all the joint trajecto-
ries of the humanoid right arm in the basketball-shooting task
are shown in Figure 11. This result shows that properly coordi-
nated joint movements had to be learned for a successful bas-
ketball-shooting task. On the other hand, small variations of
the movement trajectories were observed due to the uncer-
tainty of the real system. The acquired behavior after the learn-
ing is shown in Figure 12.

Discussion
In our PGPE-based approach, the policy’s output is determin-
istic and does not need noisy control output for exploration.
Thus, the control output
can be smooth, and
smooth control output is
highly suitable for robot
hardware. In comparison,
the previously proposed
model-based policy up-
date algorithms must first
identify the real environ-
ment [1], [4], [14], [17],
[22], [35], [36]. Therefore,
exploratory noisy input using a real robot is mandatory, al-
though successful applications of model-based RL methods to
real systems have been presented [14], [18]. In addition, the
previous approaches used an approximated dynamics model
with a function approximator, such as Gaussian process

Figure 12. The acquired behavior of the humanoid robot in the
basketball-shooting task. (Photos courtesy of ATR.)

We applied our proposed

method to a challenging

basketball-shooting task in

a real environment.

• IEEE ROBOTICS & AUTOMATION MAGAZINE • march 2016104

regression [2]. With a function approximator, the sampled
data from the approximated model can be generated by inap-
propriate interpolation or extrapolation that improperly up-
dates the policy parameters. In addition, if we aggressively

derive the analytical gradi-
ent of the approximated
model to update the poli-
cy, the approximated gra-
dient might be far from
the true gradient of the
objective function due to
the model approximation
error. If we consider using
these function approxima-
tion methods for high-di-
mensional systems like
humanoid robots, this
problem becomes more
serious due to the difficul-
ty of approximating high-

dimensional dynamics models with a limited amount of data
sampled from real systems. On the other hand, if the environ-
ment is extremely stochastic, a limited amount of previously
acquired data might not be able to capture the real environ-
ment’s property and could lead to inappropriate policy up-
dates. However, rigid dynamics models, such as a humanoid
robot model, do not usually include large stochasticity. There-
fore, our approach is suitable for a real robot learning for high-
dimensional systems like humanoid robots.

Moreover, applying RL to actual robot control is difficult,
since it usually requires many learning trials that cannot be exe-
cuted in real environments, and the real system’s durability is
limited. Previous studies used prior knowledge or properly de-
signed initial trajectories to apply RL to a real robot and im-
proved the robot controller’s parameters [1], [4], [10], [19], [32].

We applied our proposed learning method to our human-
oid robot [7] (Figure 13) and show that it can accomplish two
different movement-learning tasks without any prior knowl-
edge for the cart-pole swing-up task or with a very simple
nominal trajectory for the basketball-shooting task.

The proposed recursive use of previously sampled data to
improve policies for real robots would also be useful for
other policy search algorithms, such as reward weighted re-
gression [11] or information theoretic approaches [12], and it
might be interesting to investigate how these combinations
work as a future study.

Conclusions
In this article, we proposed reusing the previous experienc-
es of a humanoid robot to efficiently improve its task per-
formance. We proposed recursively using the off-policy
PGPE method to improve the policies and applied our ap-
proach to cart-pole swing-up and basketball-shooting
tasks. In the former, we introduced a real-virtual hybrid
task environment composed of a motion controller and vir-
tually simulated cart-pole dynamics. By using the hybrid
environment, we can potentially design a wide variety of
different task environments. Note that complicated arm
movements of the humanoid robot need to be learned for
the cart-pole swing-up. Furthermore, by using our pro-
posed method, the challenging basketball-shooting task
was successfully accomplished.

Future work will develop a method based on a transfer
learning [28] approach to efficiently reuse the previous expe-
riences acquired in different target tasks.

Acknowledgment
This work was supported by MEXT KAKENHI Grant
23120004, MIC-SCOPE, ``Development of BMI Technolo-
gies for Clinical Application’’ carried out under SRPBS by
AMED, and NEDO. Part of this study was supported by JSPS
KAKENHI Grant 26730141. This work was also supported by
NSFC 61502339.

References
[1] A. G. Kupcsik, M. P. Deisenroth, J. Peters, and G. Neumann, “Data-effi-
cient contextual policy search for robot movement skills,” in Proc. National
Conf. Artificial Intelligence, 2013.
[2] C. E. Rasmussen and C. K. I. Williams Gaussian Processes for Machine
Learning. Cambridge, MA: MIT Press, 2006.
[3] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,” in Proc.
14th Int. Conf. Machine Learning, 1997, pp. 12–20.
[4] C. G. Atkeson and J. Morimoto, “Nonparametric representation of poli-
cies and value functions: A trajectory-based approach,” in Proc. Neural Infor-
mation Processing Systems, 2002, pp. 1643–1650.

Efficiently reusing previous

experiences is crucial to

improve its behavioral

policies without actually

interacting with real

environments.

Figure 13. The humanoid robot CB-i [7]. (Photo courtesy of ATR.)

march 2016 • IEEE ROBOTICS & AUTOMATION MAGAZINE • 105

[5] E. Greensmith, P. L. Bartlett, and J. Baxter, “Variance reduction techniques
for gradient estimates in reinforcement learning,” J. Machine Learning Res.,
vol. 5, pp. 1471–1530, Nov. 2004.
[6] F. Sehnke, C. Osendorfer, T. Rückstiess, A. Graves, J. Peters, and J. Schmid-
huber, “Parameter-exploring policy gradients,” Neural Netw., vol. 23, no. 4, pp.
551–559, 2010.
[7] G. Cheng, S. Hyon, J. Morimoto, A. Ude, G. H. Joshua, G. Colvin, W.
Scroggin, and C. J. Stephen, “Cb: A humanoid research platform for exploring
neuroscience,” Adv. Robotics, vol. 21, no. 10, pp. 1097–1114, 2007.
[8] G. S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications. Ber-
lin, Germany: Springer-Verlag, 1996.
[9] H. Hachiya, J. Peters, and M. Sugiyama, “Reward weight regression with
sample reuse for direct policy search in reinforcement learning,” Neural Com-
put., vol. 23, no. 11, pp. 2798–2832, 2011.
[10] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots Systems, 2006, pp. 2219–2225.
[11] J. Peters and S. Schaal, “Reinforcement learning by reward-weighted re-
gression for operational space control,” in Proc. Int. Conf. Machine Learning,
2007, pp. 745–750.
[12] J. Peters, K. Mülling, and Y. Altün, “Relative Entropy Policy Search,” in
Proc. 24th AAAI Conf. Artificial Intelligence, 2010, pp. 1607–1612.
[13] J. Moody and C. J. Darken, “Fast learning in networks of locally-tuned
processing units,” Neural Comput., vol. 1, no. 2, pp. 281–294, 1989.
[14] J. Morimoto, C. G. Atkeson, “Nonparametric representation of an approx-
imated Poincare map for learning biped locomotion,” Auton. Robots, vol. 27,
no. 2, pp. 131–144, 2009.
[15] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing, vol. 71, no.
79, pp. 1180–1190, 2008.
[16] L. Weaver and N. Tao, “The optimal reward baseline for gradient-based
reinforcement learning,” in Proc. 7th Conf. Uncertainty Artificial Intelligence,
2001, pp. 538–545.
[17] M. P. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and data
efficient approach to policy search,” in Proc. Int. Conf. Machine Learning,
2011, , pp. 465–472.
[18] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes for
data-efficient learning in robotics and control,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 2, pp. 408–423, 2015.
[19] N. Sugimoto and J. Morimoto, “Phase-dependent trajectory optimization
for cpg-based biped walking using path integral reinforcement learning,” in
Proc. IEEE/RAS Int. Conf. Humanoid Robots, 2011, pp. 255–260.
[20] N. Sugimoto, M. Haruno, K. Doya, and M. Kawato, “MOSAIC for multi-
ple-reward environments,” Neural Comput., vol. 24, no. 3, pp. 577–606, 2012.
[21] N. Sugimoto, J. Morimoto, S. Hyon, and M. Kawato, “eMOSAIC Model for
Humanoid Robot Control,” Neural Netw., vol. 29–30, pp. 8–19, May 2012.
[22] N. Sugimoto and J. Morimoto, “Trajectory-model-based reinforcement
Learning: Application to bimanual humanoid motor learning with a closed-
chain constraint,” in Proc. IEEE-RAS Int. Conf. Humanoid Robots, 2013, pp.
429–434.
[23] N. Sugimoto, V. Tangkaratt, T. Wensveen, T. Zhao, M. Sugiyama, and J.
Morimoto, “Efficient reuse of previous experiences in humanoid motor learn-
ing,” in Proc. IEEE-RAS Int. Conf. Humanoid Robots, 2014, pp. 554–559.

[24] R. J. Williams, “Toward a theory of reinforcement-learning connectionist
systems,” Tech. Rep. NU-CCS-88-3, College of Computer Science, Northeast-
ern Univ., Boston, MA, 1988.
[25] R. J. Williams, “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning,” Mach. Learn., vol. 8, no. 3, pp. 229–256, 1992.
[26] R. S. Sutton, “Temporal credit assignment in reinforcement learning,”
Ph.D. dissertation, Univ. Massachusetts, 1984.
[27] R. S. Sutton and G. A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.
[28] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl-
edge Data Eng., vol. 22, no. 10, pp. 1345–1359, 2010.
[29] S. Kakade, “A natural policy gradient,” in Proc. Advances Neural Informa-
tion Processing Systems 14, 2002, pp. 1531–1538.
[30] S. Schaal and C. G. Atkeson, “Constructive incremental learning from
only local information,” Neural Comput., vol. 10, no. 8, pp. 2047–2084, 1998.
[31] S. Schaal, “The SL simulation and real-time control software package,”
Univ. of Southern California, Los Angeles, CA, Tech. Rep., 2009.
[32] T. Matsubara, J. Morimoto, J. Nakanishi, M. Sato, and K. Doya, “Learning
CPG-based biped locomotion with a policy gradient method,” Robot. Auton.
Syst., vol. 54, no. 11, pp. 911–920, 2006.
[33] T. Zhao, H. Hachiya, G. Niu, and M. Sugiyama, “Analysis and improve-
ment of policy gradient estimation,” Neural Netw., vol. 26, pp. 118–129, Feb.
2012.
[34] T. Zhao, H. Hachiya, V. Tangkaratt, J. Morimoto, and M. Sugiyama, “Effi-
cient sample reuse in policy gradients with parameter-based exploration,”
Neural Comput., vol. 25, no. 6, pp. 1512–1547, 2013.
[35] V. Tangkaratt, S. Mori, T. Zhao, J. Morimoto, and M. Sugiyama, “Model-
based policy gradients with parameter-based exploration by least-squares con-
ditional density estimation,” Neural Netw., vol. 57, pp. 128–140, Sept. 2014.
[36] S. Schaal, C. G. Atkeson, “Learning control in robotics,” IEEE Robot. Au-
tomat. Mag., vol. 17, no. 2, pp. 20–29, 2010.

Norikazu Sugimoto, National Institute of Information and
Communications Technology, Osaka, Japan. E-mail: xsugi@
nict.go.jp.

Voot Tangkaratt, The University of Tokyo, Japan. E-mail:
voot@ms.k.u-tokyo.ac.jp.

Thijs Wensveen, Delft University of Technology, The Netherlands.
E-mail: thijswensveen@gmail.com.

Tingting Zhao, the Tianjin University of Science and Technol-
ogy, China. E-mail: tingting@tust.edu.cn.

Masashi Sugiyama, The University of Tokyo, Japan. E-mail:
sugi@k.u-tokyo.ac.jp.

Jun Morimoto, ATR Computational Neuroscience Labs, Kyoto,
Japan. E-mail: xmorimo@atr.jp.
�

