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a b s t r a c t

Free-energy based reinforcement learning (FERL) was proposed for learning in high-dimensional state
and action spaces. However, the FERL method does only really work well with binary, or close to binary,
state input, where the number of active states is fewer than the number of non-active states. In the FERL
method, the value function is approximated by the negative free energy of a restricted Boltzmannmachine
(RBM). In our earlier study,we demonstrated that the performance and the robustness of the FERLmethod
can be improved by scaling the free energy by a constant that is related to the size of network. In this
study, we propose that RBM function approximation can be further improved by approximating the value
function by the negative expected energy (EERL), instead of the negative free energy, as well as being
able to handle continuous state input. We validate our proposed method by demonstrating that EERL:
(1) outperforms FERL, as well as standard neural network and linear function approximation, for three
versions of a gridworld task with high-dimensional image state input; (2) achieves new state-of-the-art
results in stochastic SZ-Tetris in bothmodel-free andmodel-based learning settings; and (3) significantly
outperforms FERL and standard neural network function approximation for a robot navigation task with
raw and noisy RGB images as state input and a large number of actions.

© 2016 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Sallans and Hinton (2004) proposed free-energy based rein-
forcement learning (hereafter, FERL) to handle high-dimensional
state and action spaces. In the FERL method, the value function is
approximated by the negative free energy, F , of a restricted Boltz-
mann machine (RBM) (Freund & Haussler, 1992; Hinton, 2002;
Smolensky, 1986): Q = −F = −⟨E⟩ + H for action-value based
learning, where ⟨E⟩ is the expected energy and H is the entropy of
the network. A considerable limitation of the FERL method is that
it only works well with binary, or close to binary, state input. Fur-
thermore, it is known that RBMs, traditionally, are not invariant to
different state representations and require that the number of ac-
tive states (values close to one) is much fewer than the number of
non-active states (values close to zero) to work well.

We have earlier demonstrated (Elfwing, Uchibe, & Doya, 2013)
that the robustness and the learning performance of FERL can be
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improved by scaling the free energy by a constant scaling factor,
Z (i.e., Q = −F/Z), that is related to the size of the network. The
purpose of this study is to show that expected energy based RBM
function approximation (hereafter, EERL: Q = −⟨E⟩) can achieve
competitive learning performance, not only in tasks with binary
state input and fewer active than non-active states, but also in
tasks with continuous state input and in tasks with more active
than non-active states. In the latter cases, we introduce a simple
normalization by removing themean of a state vector from each of
its elements to improve the learning performance even further.

To validate our proposed method, we first use three versions
of a gridworld task where the state input consists of (1) grayscale
images of handwritten digits from the MNIST data set (LeCun, Bot-
tou, Bengio, & Haffner, 1998); (2) inverted MNIST images; and
(3) RGB images of the different objects from the CIFAR-10 data
set (Krizhevsky, 2009). The purpose of the first version of the task
is to test the learning performance of our proposed method for a
task setting that is traditionally considered well-suited for RBMs:
i.e., close to binary state input with much fewer active than non-
active states. The purpose of the other two versions of the task is
the opposite, i.e., a task with more active than non-active states,
and a task with continuous state input. We then use the stochastic
SZ-Tetris benchmark (Szita & Szepesvári, 2010) to validate the per-
formance of EERL, in both model-free (Sarsa(λ)) and model-based
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Fig. 1. RBM architecture for action-value based reinforcement learning. In the case
of state-value based reinforcement learning, the action nodes, aj , action biases, bj ,
and the action weights, ujk , are not included.

(TD(λ)) learning settings, for a task that is, in general, considered
difficult for reinforcement learning algorithms. Finally, we use a
robot visual navigation task with raw and noisy RGB camera im-
ages as state input. The goal of the task is to navigate to one of two
goal areas. The correct goal can be inferred from the color of the
upper part of four landmarks, which is randomly changed in each
episode. In the robot navigation task, we investigate howwell EERL
can handle a large number of actions (pairs of velocities of the left
and right wheels) by testing settings with 9, 25, and 100 possible
actions.

Apart from the pioneering work by Sallans and Hinton (2004)
and our earlier studies (Elfwing, Otsuka, Uchibe, & Doya, 2010;
Elfwing et al., 2013), there have been few studies using RBMs as
function approximation in reinforcement learning. Heess, Silver,
and Teh (2012) proposed two energy-based actor-critic policy
gradient algorithms and demonstrated that theyweremore robust
andmore effective than standard FERL in several high dimensional
tasks. Otsuka, Yoshimoto, and Doya (2010) extended the FERL
method to handle partially observable Markov decision processes,
by incorporating a recurrent neural network that learns a memory
representation that is sufficient for predicting future observations
and rewards. In our recent work (Elfwing, Uchibe, & Doya, 2015),
we demonstrated in the classification domain that the expected
energy based RBM method significantly outperforms the free
energy based RBMmethod.

2. Method

2.1. TD(λ) and Sarsa(λ)

The reinforcement learning (Sutton&Barto, 1998)methods that
we propose in this study are based on the state-value function
learning algorithm TD(λ) (Sutton, 1988) and the action-value
function learning algorithm Sarsa(λ) (Rummery & Niranjan, 1994;
Sutton, 1996). TD(λ) learns an estimate of the state-value function,
Vπ , and Sarsa(λ) learns an estimate of the action-value function,
Q π , while the agent follows policy π . If the approximated value
functions, Vt ≈ Vπ and Qt ≈ Q π , are parameterized by the
parameter vector θt , then the gradient-descent update of the
parameters is computed by

θt+1 = θt + αδtet , (1)

where TD-error, δt , is

δt = rt + γ Vt(st+1) − Vt(st), (2)

for TD(λ) and

δt = rt + γQt(st+1, at+1) − Qt(st , at), (3)

for Sarsa(λ). The eligibility trace vector, et , is

et = γ λet−1 + ∇θtVt(st), e0 = 0, (4)
for TD(λ) and

et = γ λet−1 + ∇θtQt(st , at), e0 = 0 (5)

for Sarsa(λ). Here, st is the state at time t , at is the action selected
at time t , rt is the reward for taking action at in state st , α is the
learning rate, γ is the discount factor of future rewards, λ is the
trace-decay rate, and ∇θtVt and ∇θtQt are the vectors of partial
derivatives of the function approximators with respect to each
component of θt .

2.2. Free energy value function approximation

The use of a RBM as a function approximator for reinforcement
learningwas proposed by Sallans and Hinton (2004). A RBM is a bi-
directional neural network (see Fig. 1) which in the FERL method
consists of binary state nodes, s, binary hidden nodes, h, and, in the
case of action-value function learning, binary action nodes a. The
ith state node, si, is connected to hidden node hk by the weightwik,
and the jth action node, aj, is connected to hidden node hk by the
weight ujk. In addition, the state nodes, the hidden nodes and the
action nodes are all connected to a constant bias input with a value
of 1, with connection weights bi, bk, and bj, respectively. The action
vector a has an ‘‘one-out-of-J ’’ representation and functions as a
fixed input to the network for each action. Let aj denote the vector
for action j, where aj is equal to one and the rest of the action nodes
are equal to zero.

For state-value function learning, the energy, E, of the RBM for
state vector s is given by

E(s, h) = −

K
k=1

I
i=1

siwikhk −

I
i=1

bisi −
K

k=1

bkhk, (6)

and for action-value function learning, the energy, E, of the RBM
for state vector s and action vector aj is given by

E(s, aj, h) = −

K
k=1

hk


I

i=1

siwik +

J
j∗=1

aj∗uj∗k



−

I
i=1

bisi −
J

j∗=1

bj∗aj∗ −

K
k=1

bkhk

= −

K
k=1

hk


I

i=1

siwik + ujk



−

I
i=1

bisi − bj −
K

k=1

bkhk. (7)

Here, I is the number of state nodes, K is the number of hidden
nodes, and J is the number of actions. The free energy, F , can be
computed as the sum of the expected energy, ⟨E⟩, and the negative
entropy, H , where the expectations are taken with respect to the
posterior distribution of the hidden values (P(h|s) and P(h|s, aj)).
The expectedhidden activation (i.e., the probability that the hidden
value is equal to one) of hidden node k is given by

⟨hk⟩ = P(hk = 1|s) = σ


I

i=1

siwik + bk


= σ (xk) (8)

σ(x) =
1

1 + e−x
, (9)

for state-value function learning and

⟨hjk⟩ = P(hk = 1|s, aj) = σ


I

i=1

siwik + ujk + bk


= σ


xjk

, (10)
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for action-value function learning. Here, xk and xjk are the inputs to
the sigmoid activation function of hidden node k. The free energy
can then be computed by

F(s) = ⟨E(s, h)⟩ +

−H(s)  
⟨log P(h|s)⟩ (11)

= −

K
k=1

I
i=1

siwik⟨hk⟩ −

I
i=1

bisi −
K

k=1

bk⟨hk⟩

+

K
k=1

⟨hk⟩ log⟨hk⟩ + (1 − ⟨hk⟩) log(1 − ⟨hk⟩), (12)

= −

K
k=1

xk⟨hk⟩ −

I
i=1

bisi +
K

k=1

⟨hk⟩ log⟨hk⟩

+ (1 − ⟨hk⟩) log(1 − ⟨hk⟩), (13)

and

F(s, aj) = −

K
k=1

xjk⟨hjk⟩ −

I
i=1

bisi − bj +
K

k=1

⟨hjk⟩ log⟨hjk⟩ (14)

+

K
k=1

(1 − ⟨hjk⟩) log(1 − ⟨hjk⟩). (15)

In Sallans and Hinton’s original proposal (Sallans & Hinton, 2004),
the value functions are approximated by the negative free energy
(i.e., V (s) = −F(s) andQ (s, aj) = −F(s, aj)). For Sarsa, the deriva-
tives of the Q -function with respect to the function approximator
parameters (wik, ujk, bi, bj, and bk), used in the learning updates (5),
can be computed by

∇wikQ (s, aj) = si⟨hjk⟩, (16)
∇ujkQ (s, aj) = aj⟨hjk⟩, (17)

∇bkQ (s, aj) = ⟨hjk⟩, (18)
∇biQ (s, aj) = si, (19)
∇bjQ (s, aj) = aj. (20)

2.3. Expected energy value function approximation

The purpose of this study is to demonstrate that RBM based
function approximation can be significantly improved by approx-
imating the Q -function by the negative expected energy, and
that EERL is an attractive general method for learning in high-
dimensional state and action spaces. In EERL, the state-value and
action-value functions are computed by

V (s) = −⟨E(s, h)⟩ =

K
k=1

xk⟨hk⟩ +

I
i=1

bisi, (21)

Q (s, aj) = −⟨E(s, aj, h)⟩ =

K
k=1

xjk⟨hjk⟩ +

I
i=1

bisi + bj, (22)

and an additional term:

⟨hjk⟩(1 − ⟨hjk⟩)xjk, (23)

is added to the derivative expressions with respect to the network
parameters wik, ujk, and bk. For example, the derivatives of the
Q -function with respect to wik (16) are changed to

∇wikQ (s, aj) = si

⟨hjk⟩ + ⟨hjk⟩(1 − ⟨hjk⟩)xjk


. (24)

Fig. 2 visualizes the differences between free energy and ex-
pected energy function approximation by showing the contribu-
tions to the state-value function from one hidden node k for FERL
Fig. 2. The contributions to the state-value function from one hidden node k for
FERL (−Fk) and EERL (−⟨E⟩k) as functions of the input to the hidden node, xk , as
well as the sigmoid hidden activation function and the entropy of the hidden node
(Hk = − [⟨hk⟩ log⟨hk⟩ + (1 − ⟨hk⟩) log(1 − ⟨hk⟩)]).

(−Fk) and EERL (−⟨E⟩k) as functions of the input to the hidden
node, xk:

−Fk = xk⟨hk⟩ − [⟨hk⟩ log⟨hk⟩ + (1 − ⟨hk⟩) log(1 − ⟨hk⟩)] , (25)
−⟨E⟩k = xk⟨hk⟩. (26)

For FERL, the −Fk-function is a monotonically increasing non-
negative function that is approximately equal to the sigmoid
function for xk-values smaller than approximately−2 and approx-
imately equal to xk for large positive xk-values. Since the con-
tribution to the value function from the hidden nodes is always
non-negative, the network has to counterbalance active hidden
nodes with negative bias values for the state nodes (bi) and, in the
case of action value learning, the action nodes (bj). Interestingly,
for EERL, the −⟨E⟩k-function is not monotonically increasing and
not non-negative. Instead, it has a global minimum value of ap-
proximately −0.28 for xk ≈ −1.28. For a more detailed analysis of
the differences between free energy and expected energy function
approximation, see Elfwing et al. (2015).

2.4. Action selection

In this study, we use softmax action selection with a Boltzmann
distribution. For Sarsa, the probability to select action a in state s is
defined as

π(a|s) =
exp(Q (s, a)/τ)
b
exp(Q (s, b)/τ)

. (27)

For TD(λ), we assume a model-based learning setting where the
state transitions from the current state s to the next state s′
are known and deterministic, for all possible next states. The
probability to select an action a that leads to the next state s′ is
defined as

π(a|s) =
exp(V (f (s, a))/τ)
b
exp(V (f (s, b))/τ)

. (28)

Here, f (s, a) returns the next state s′ according to the deterministic
state transition dynamics and τ is the temperature that controls
the trade-off between exploration and exploitation. In this study,
we used hyperbolic discounting of the temperature and the
temperature was decreased in every episode i:

τ(i) =
τ0

1 + τki
. (29)
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Here, τ0 is the initial temperature and τk controls the rate of
discounting.

Our approach to action selection differs from the approach in
the original proposal by Sallans and Hinton (2004), where they
used Gibbs sampling to generate the Boltzmann distribution for
softmax action selection.

2.5. Initialization and normalization

In our experience, to achieve robust and efficient learning, the
amplitude of the random initialization of the weights between
the action nodes and the hidden nodes (ujk) has to be several
magnitudes larger than the amplitude of the random initialization
of the other weights. In this study, ujk was initialized using a
uniform distribution with values between −1 and 1. All other
weights were initialized using a uniform distribution with values
between −0.001 and 0.001. This means that the initial Q -function
for both FERL and EERL will grow with the number of hidden
nodes, with a faster rate for FERL. To ensure that the Q -values
were initialized within an appropriate range, we used the scaling
technique we proposed in Elfwing et al. (2013), by setting
Z to approximately twice the initial Q -values without scaling
(assuming a maximum reward of 1), i.e., Q = −F/Z for FERL and
Q = −⟨E⟩/Z for EERL.

Tang and Sutskever (2011) proposed a simple solution to
improve standard RBM learning for classification problems with
more active than non-active states. They normalized the training
set by removing the mean of each input before learning. This
normalization technique is not feasible in a reinforcement learning
context where the state vectors are not known in advance. In this
study, we propose an alternative normalizing method to improve
the performance of RBM function approximation in tasks where
the state input consists of more active than non-active states, the
number active states varies greatly for different state vectors, and
the state vector consists of continuous values. For each state vector,
we remove the mean of the state vector from each of its elements:

zi = si −

I
j=1

sj

I
. (30)

Normalization by replacing si with zi does not change any other
parts of the FERL and EERL learning algorithms (hereafter, denoted
FERL-ZM and EERL-ZM).

3. Experiments

To evaluate the proposed EERLmethod, we compare the perfor-
mance with FERL, linear function approximation (hereafter, linRL),
and function approximation using a two-layered feedforward
neural network (hereafter, NNRL). For linRL, the approximated
Q -values are computed by the weighted sum of the state vector
elements, Q (s, a) =


i siwia, with derivatives with respect to the

weight parameters computed as ∇wiaQ (s, a) = si. For NNRL, The
state nodes si of the neural network are connected to K hidden
nodes by weights wik. The hidden nodes have sigmoid activation
functions, δk = σ(


i wiksi). The hidden nodes are connected to

Q -value output nodes with linear activation by weights wka. The
approximated Q -values are computed as the weighted sum of the
hidden activations (Q (s, a) =


k wkaδk), with derivativeswith re-

spect to the weight parameters computed as

∇wik (Q (s, a)) = δk(1 − δk)wkasi, (31)
∇wka (Q (s, a)) = δk. (32)
We used a grid-like search for each method in each task to
determine the appropriate values of the learning rate α and the
temperature decay rate τk. The initial temperature τ0 was set to
0.5 in all experiments.

3.1. Gridworld tasks

Fig. 3 shows the three versions of the gridworld task: MNIST
(left panel), inverted MNIST (middle panel), and CIFAR10 (right
panel). The agent started each episode at state ‘1’ (airplane in the
CIFAR10 task) and the goal of the task was to reach state ‘5’ (deer)
by moving counterclockwise along a path through states ‘2’, ‘3’,
‘6’, ‘9’, ‘8’, ‘7’, and ‘4’ (car, bird, dog, ship, horse, frog, and cat).
The agent received a small negative reward (−0.01) for premature
state transitions to the absorbing goal state ‘5’ (red lines in the
left panel) and a positive reward (+1) for successful completion
of the task, i.e., state transition from state ‘4’ to state ‘5’ (green line
in the left panel). The rewards for all other state transitions were
set to zero. There were four actions that moved the agent one step
in the directions North, East, South, and West. If the agent moved
into a wall (purple lines in the left panel), then the agent remained
in the current state. In the MNIST task, each state consisted of a
handwritten digit from theMNIST data set (LeCun et al., 1998). The
28×28 pixels (the dimension of the state vectorwas 784) grayscale
images were scaled to the range [0; 1] by dividing the pixel values
by 255. For each state, we used 20 different digit images that
were randomly selected from the MNIST training data set. At the
start of each episode, the image for each state was randomly
selected among the 20 possible images. An episode ended either
when the agent moved to the absorbing state (state ‘5’) or after
a maximum number of steps (set to 1000). The inverted MNIST
task was identical to the MNIST task, except that the state images
were inverted, i.e., 1 − pv, where pv was the scaled pixel values
in the MNIST task. In the CIFAR10 task, the states consisted of
32× 32 pixels RGB images from the CIFAR10 data set (Krizhevsky,
2009) (the dimension of the state vector was 32 × 32 × 3 =

3072). As in the MNIST tasks, we randomly selected 20 images of
each class from the training data set and in the beginning of each
episode, the image for each state was randomly selected among
the 20 possible images. To validate our proposed normalization
technique, we performed experiments for the invertedMNIST task
and the CIFAR10 task where the mean of each state vector was
subtracted fromeach of its elements, see (30). For the CIFAR10 task,
the normalization was done separately for the red, green, and blue
channels in the RGB images. The number of hidden nodes was set
to 20, γ was set to 0.96, and λ was set to 0.8 for all methods in
the three tasks. The determined values of α and τk are shown in
Table 1.

The performance of EERL was compared with FERL, NNRL, and
linRL, except for the CIFAR10 task, which linRL could not handle.
Fig. 4 shows the average success rate, i.e., the agent reached the
absorbing goal state using the correct path and received a positive
reward of +1 (top row), and the average number of steps to the
goal (bottom row), computed over 10 simulation runs and 100
episodes. The results are summarized in Table 2 as the average
number of episodes to reach a success rate of 95%, the average
number of episodes to reach a success rate of exactly 100%, and
the average number of steps to the goal in the final 100 episodes
(± standard deviation) of the learning processes.

EERL (with the proposed normalization, EERL-ZM, for the
inverted MNIST and the CIFAR10 tasks) outperformed the other
methods. EERL had the fastest convergence to both 95% and 100%
success rates, as well as significantly (p < 0.001) fewer steps to
the goal in the final 100 episodes of learning, in all three tasks.
Compared with FERL, the learning speed of EERL (measured by the
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Fig. 3. The three versions of the gridworld task: MNIST (left panel), inverted MNIST (middle panel), and CIFAR10 (right panel). At the beginning of each episode the image
for each state was randomly selected among 20 possible images.
Fig. 4. The average success rate (top row), i.e., the agent reached the absorbing goal state using the correct path and received a positive reward of+1, and the average number
of steps to the goal (bottom row), computed over 10 simulation runs and 100 episodes in the three version of the gridworld task. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
time to reach an average success rate of 95%) was more than three
times faster in the MNIST task and, compared with FERL-ZM, the
learning speed of EERL-ZM was more than five times faster in the
inverted MNIST task and the CIFAR10 task.

The proposed normalization technique greatly improved the
learning performance of both RBM function approximation
methods in the invertedMNIST task and the CIFAR10 task.Without
normalization, EERL performed similarly to NNRL and linRL in the
inverted MNIST task and significantly worse than NNRL in the
CIFAR10 task. In the CIFAR10 task, the learning became unstable,
with large variance in the number of steps to the goal in later stage
of the learning process (see the solid black line in Fig. 4(f)). For
FERLwithout normalization, therewas almost no learning progress
at all in the CIFAR10 task and the average success rate at the end
of the 40000 episodes of learning was only approximately 80% in
the inverted MNIST task. In contrast, the proposed normalization
had little, and mostly negative, effect on the learning for NNRL
and linRL. For NNRL, the normalization made the learning more
unstable during the first half of the learning process (see the
dashed red lines in Fig. 4(e) and (f)). For linRL, normalization
made the learning slower and the final learning performance was
significantly worse (see dashed green line in Fig. 4(e)).
3.2. SZ-Tetris

Stochastic SZ-Tetris (Burgiel, 1997) was proposed as a bench-
mark for reinforcement learning by Szita and Szepesvári (Szita &
Szepesvári, 2010). It is played on a board of standard Tetris size
with a width of 10 and a height of 20. In each step, either an
S-shaped tetromino or a Z-shaped tetromino appears with equal
probability. The agent can select a rotation (lying or standing) and a
horizontal position within the board. In total, there are 17 possible
actions for each tetromino (9 standing and 8 lying horizontal po-
sitions). After the action selection, the tetromino is dropped down
the board, stopping when it hits another tetromino or the bottom
of the board. If a row is completed, then it disappears. The agent
gets a score of +1 point for one completed row and a score of +2
points for two completed rows. The game ends when a tetromino
does not fit within the board.

SZ-Tetris preserves the core challenges of regular Tetris but
allows the evaluation of different strategies within a feasible
time frame. Several factors contribute to make Tetris a difficult
problem for reinforcement learning algorithms, such as the
relatively large number of action that can be selected in each
state, the stochasticity in the state transitions, and that improved
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Table 1
The determined values α and τk for each method in the three gridworld tasks.

Method α τk

MNIST task

EERL 0.01 × Z 0.01
FERL 0.01 × Z 0.01
NNRL 0.01 0.005
linRL 0.001 0.01

Inverted MNIST task

EERL 0.001 × Z 0.002
EERL-ZM 0.001 × Z 0.002
FERL 0.001 × Z 0.002
FERL-ZM 0.001 × Z 0.002
NNRL 0.001 0.001
NNRL-ZM 0.001 0.001
linRL 0.0001 0.002
linRL-ZM 0.0001 0.002

CIFAR10 task

EERL 0.001 × Z 0.001
EERL-ZM 0.001 × Z 0.001
FERL 0.001 × Z 0.001
FERL-ZM 0.001 × Z 0.001
NNRL 0.001 0.001
NNRL-ZM 0.001 0.001

Table 2
The average number of episodes to reach a success rate of 95% (second column) and
exactly 100% (third column), and the average number of steps to the goal in the final
100 episodes (± standard deviation; fourth column) for each method in each of the
three gridworld tasks.

Method Success rate Steps to goal final 100 epi
95% 100%

MNIST task

EERL 1300 3000 8.02 ± 0.12
FERL 4600 – 8.26 ± 0.63
NNRL 1500 5300 8.24 ± 0.51
linRL 1400 – 8.25 ± 0.56

Inverted MNIST task

EERL 11200 35700 8.17 ± 0.45
EERL-ZM 5800 17900 8.03 ± 0.20
FERL – – 20.5 ± 6.11
FERL-ZM 30300 – 9.28 ± 1.86
NNRL 9400 39600 8.40 ± 0.74
NNRL-ZM 14800 36800 8.27 ± 0.57
linRL 8300 36000 8.18 ± 0.49
linRL-ZM 9600 – 8.53 ± 1.22

CIFAR10 task

EERL 22000 – 12.5 ± 51.3
EERL-ZM 6300 17500 8.03 ± 0.17
FERL – – 15.4 ± 13.4
FERL-ZM 33500 – 11.7 ± 4.18
NNRL 14200 39800 8.33 ± 0.66
NNRL-ZM 12600 36500 8.25 ± 0.56

performance increases the episode length. For an alternating
sequence of S-shaped and Z-shaped tetrominos, the upper bound
of the episode length is 69600 (Burgiel, 1997) (corresponding to
a score of 27840 points), but the maximum episode length is
probablymuch shorter,maybe a few thousands (Szita& Szepesvári,
2010). That means that to evaluate a good strategy, SZ-Tetris
requires at least 100,000 times less computation than regular
Tetris.

The standard learning approach for Tetris is to use a model-
based learning setting and define the evaluation function or state-
value function as the linear combination of hand-coded features.
Using this approach, value-based reinforcement learning algo-
rithms have a lousy track record in the Tetris domain. In regu-
lar Tetris, their reported performance levels are many magnitudes
lower than black-box methods such as the cross-entropy method
(CEM) and evolutionary approaches. For stochastic SZ-Tetris, the
reported scores for a wide variety of reinforcement learning al-
gorithms are either approximately zero (Szita & Szepesvári, 2010)
or in the single digits.1 Faußer and Schwenker (2013) used TD(λ)
and a two layer neural network with 5 hidden nodes (i.e., NNRL)
as an alternative approach to linear function approximation. They
achieved a score of about 130 points for a single network, which
is slightly worse than the reported performance of 133–138 points
for CEM. Using an ensemble of 10 networks and average decisions,
they achieved the current state-of-art performance of about 150
points for stochastic SZ-Tetris.

In this study, we compared the performance of EERL, FERL, and
NNRL in three learning settings:

1. TD(λ) with state features. Model-based learning setting with
20 state features similar to the original Bertsekas and Ioffe
features (Bertsekas & Ioffe, 1996): 10 column heights (10 × 21
binary states), 9 relative column height differences that were
capped at ±5 (9 × 11 binary states), and the number of holes
(151 binary states, i.e., the number was capped at 150 holes).

2. Sarsa(λ) with state features. Model-free learning setting with
the same state features as for TD(λ), with the addition of the
current tetromino (2 binary states). There was 34 possible
actions (i.e., action nodes in EERL and FERL, and Q -value nodes
in NNRL), 17 for each tetromino. In the model-free learning
setting, an episode ended when the selected position and
rotation of a tetromino did not fit within the board, i.e., the
possible actions were not limited to the actions that fit within
the board as in the model-based setting.

3. TD(λ) with board states. Model-based learning setting where
the state vector was equal to the board state, i.e., a state node
was set to 1 if the corresponding board cell was occupied by
a tetromino and set to 0 if the corresponding board cell was
empty. To be able to handle that the number active state nodes
varied dramatically between different states (from zero active
state nodes when the board was empty to a majority of active
state nodes at the end of the episodes), we used our proposed
normalization technique in this learning setting for the three
methods.

In all three learning settings, we used the same reward function as
in Faußer and Schwenker (2013):

r(s) = e−(number of holes in s)/33. (33)

The end of an episode was an absorbing state, in which the agent
received a 0 reward. The number of hidden nodes was set to 50, γ
was set to 0.99, and λ was set to 0.8 for EERL, FERL, and NNRL in all
three learning settings.

Fig. 5 shows the average score computed over every 1000
learning episodes and 5 simulation runs. Table 3 summarizes the
final average performance over the last 1000 episodes for the three
methods in the three learning settings, as well as the determined
values of α and τk.

In the model-based learning setting with state features (see
Fig. 5(a)), the three methods reached very similar final average
performance levels after 200000 episodes, scores of slightly more
than 200 points. The learning speed of NNRL was faster, reaching
the final performance level after about only 50000 episodes.
EERL and FERL needed about 120000 episodes to reach close to
the final performance level. The scores of above 200 points are
large improvements over the previous state-of-the-art learning
result of about 150 points achieved by an ensemble of 10

1 http://barbados2011.rl-community.org/program/SzitaTalk.pdf.

http://barbados2011.rl-community.org/program/SzitaTalk.pdf
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Fig. 5. The average score computed over every 1000 episodes and 5 simulation runs in the three learning settings for SZ-Tetris.
Table 3
Average scores (± standard deviation) computed over the final 1000 episodes and
5 simulations runs for SZ-Tetris (fourth column), as well as the determined values
of α (second column) and τk (third column).

Method α τk Final mean score

TD(λ) with state features

EERL 0.01 × Z 0.00025 202.2 ± 66.7
FERL 0.01 × Z 0.00025 204.5 ± 61.5
NNRL 0.01 0.00025 203.7 ± 67.0

Sarsa(λ) with state features

EERL 0.01 × Z 0.00025 194.8 ± 52.0
FERL 0.01 × Z 0.00025 196.0 ± 53.3
NNRL 0.01 0.00025 0

TD(λ) with board states

EERL-ZM 0.001 × Z 0.00025 129.6 ± 50.9
FERL-ZM 0.001 × Z 0.00025 108.1 ± 44.5
NNRL-ZM 0.001 0.00025 17.7 ± 16.6

neural networks. The results were also achieved in much shorter
learning time. The neural networks in the previous study reached
their final performance levels after 5 million episodes. The large
improvement in performance and learning speed in our NNRL
implementation, compared with the implementation in Faußer
and Schwenker (2013), can probably be explained by that we used
10 times as many nodes in the hidden layer and more efficient
exploration by softmax action selection (compared with ϵ-greedy
used in the their study). The scores of above 200 points are also
higher than the score of 182 points reported for the hand-coded
policy proposed by Szita and Szepesvári (2010) as a baseline result
for the learning of good strategies in stochastic SZ-Tetris:

It divides the board to 5 two-blocks-wide columns; it puts only S-
pieces in column 1 and 2, only Z-pieces in column 4 and 5, and
tries to preserve the type of column 3, changing only if max. height
is above 15.

In the two more challenging learning settings (see Fig. 5(b) and
(c)), EERL and FERL clearly outperformed NNRL. NNRL could not
handle the model-free learning setting and achieved an average
score of 0 points. In the model-based setting with board states,
NNRL-ZM learning was unstable and it could only achieve a
final performance of 17.7 points after 1 million episodes. The
performances of EERL and FERL were particularly impressive in
the model-free learning setting. The scores of 195 and 196 points
achieved after 1 million episodes are more than 10 points higher
than the score for the hand-coded policy described above, and
only less than 10 points lower than the results in the model-
based setting. In contrast to the settings with hand-coded state
feature where the learning curves for EERL and FERL were almost
identical, EERL-ZM clearly outperformed FERL-ZM in the model-
based learning setting with board states. The score of about 130
points achieved by EERL-ZM is the same as the score of 130 points
achieved by Faußer and Schwenker (2013) for a single network
with state features.

The SZ-Tetris experiments show that FERL can perform as well
as EERL, but only in specific task settings where the state vector
has the following three characteristics: (1) binary values; (2) the
number of active nodes is much fewer than the number of non-
active nodes; and (3) the number of active nodes does not change
between states. The SZ-Tetris experiments with state features
fulfilled these characteristics since, in themodel-based setting, the
state vectors consisted of exactly 20 ones and 440 zeros, and, in the
model-free setting, the state vectors consisted of exactly 21 ones
and 441 zeros.

To investigate the learned policies, we used an alternating
sequence of S- and Z-tetrominos. Fig. 6 shows the learned policy for
the best EERL solutions found in the model-free (final mean score
of 206 points) and model-based (222 points) learning settings
with state features, as well as the corresponding expected hidden
activations in the model-based learning setting. In the model-
free setting (Fig. 6(a)), the learned policy was very similar to the
hand-coded policy described above. The board was divided into 5
two-blocks-wide columns. Standing S-tetrominos were placed in
columns 5:6 and 7:8, and standing Z-tetrominos were placed in
columns 1:2 and 9:10. The type of tetromino that was placed in
column 3:4 was switched approximately every 100 trials, creating
two holes for every switch.

The learned model-based policy was more complex and
interesting. In this case, the board was also divided into 5 two-
blocks-wide columns. However, no column was dedicated to a
single tetromino during the whole episode. Instead, it tried to
switch the type of tetromino that used three columns without
creating any holes. A switch was often initialized by placing
a standing tetromino across two of the five two-blocks-wide
columns and accomplished over several trials. Fig. 6(b) and (c)
show a clear correlation between switches in policy (indicated by
the horizontal lines) and changes in the hidden node activation
pattern. The hidden node activation pattern was sparse and
approximately binary. In most cases, a hidden node became active
(changed its activation from approximately zero to approximately
one) after a switch in policy and remained active until a later switch
in policy.

Fig. 7 visualizes the switch that occurred between trial 107 and
113. The switch was accomplished by, first, placing a Z-tetromino
in column8:9 (trial 107), second, reducing the height of column7:8
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Fig. 6. Learned policy for an alternating sequence of S- and Z-tetrominos for the best EERL solutions in the model-free (a) and model-based (b) learning settings with state
features, as well as the expected hidden node activations in the model-based learning setting (c). Lying actions were only used just before the end of episodes and are not
shown in figures. The horizontal lines in figures (b) and (c) indicate switches in policy in the model-based learning setting.
Fig. 7. Visualization of a switch of the type of tetromino that used three two-blocks wide columns learned by the best EERL network in the model-based setting with
state features (trials 107–113). For each trial, the left panel shows the landing position of the current tetromino and the right panel shows the board state after the action.
The tetrominos shown above the board indicate the current type for each column. S-tetrominos are shown in green and Z-tetrominos are shown in red, except for the
Z-tetrominos that were placed across two of the five two-blocks-wide columns in the beginning (trial 107) and the end (trial 113) of the switch, which are shown in purple.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
by 4 by placing S-tetrominos twice in column 5:6 (trials 108 and
112), and, third, placing a Z-tetromino in column 6:7 (trial 113).
This switch changed the type that used three columns from the
Z-tetromino to the S-tetromino, while, in the process, removing 6
lines and reducing the maximum column height for the tetromino
that used two columns from 14 to 5.

3.3. Robot navigation

For the robot navigation task, we used a simulation environ-
ment that was developed to mimic the properties of the Cyber
Rodent robot (Doya & Uchibe, 2005). The Cyber Rodent is a small
mobile robot, 22 cm in length and 1.75 kg in weight. The robot has
a variety of sensors, including an omnidirectional C-MOS camera,
an infrared range sensor, seven infrared proximity sensors, gyros,
and accelerometers. It has two wheels and a maximum speed of
1.3 ms−1.

Fig. 8(a) shows the robot visual navigation task that we
introduced in Elfwing et al. (2013). The goal of the task is to
navigate to one of the two goal areas (in the southwest and the
northeast corners, see dashed quarter circles in Fig. 8(a)) of the
2.5×2.5m experimental area, by learning to infer the correct goal
area by the color of the upper part of the four landmarks. If the color
of upper part of the landmarks is green (as shown in Fig. 8), then the
correct goal area is in the southwest corner, and if the color is blue,
then the correct goal area is in the northeast corner. At the start of
each episode, the correct goal area is randomly changed, and the
robot is randomly placed in one of the four starting areas (dotted
rectangles in Fig. 8(a)). The initial position within the starting area
and the robot’s initial heading angle are also randomly selected.
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Fig. 8. (a) Overview of the experimental area for the navigation tasks. The dashed quarter circles at the southwest and northeast corners in the left panel indicate the two
goal areas and the dotted rectangles indicate the four starting areas. The circles outside the experimental area indicate the four landmarks. The color of the lower part of each
landmark (the larger circles) was unique and non-changing. The color of the upper part of all landmarks (the smaller circles) corresponded to the correct goal area and was
randomly changed at the start of each episode. Note that the difference in radius between the lower and the upper part of the landmarks is only for illustrative purposes. In
the experiments, both parts of the landmarks had the same radius. (b) an example of a noisy RGB camera image taken at the robot’s position in (a), with corresponding red,
green and blue channels. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 4
The RGB-values for the different objects in the binary RGB setting and the mean
values in the noisy RGB setting. In the noisy setting, Gaussian noise with a standard
deviation of 0.1 was added to the red, green, and blue channels for each pixel.

Object RGB-values
Binary Noisy (mean)

Upper landmarks (SW goal) (0; 1; 0) (0.1; 0.9; 0.1)
Upper landmarks (NE goal) (0; 0; 1) (0.1, 0.1, 0.9)
Lower SW landmark (1; 1; 0) (0.9; 0.9; 0.1)
Lower NW landmark (1; 0; 1) (0.9; 0.1; 0.9)
Lower NE landmark (1; 0; 0) (0.9; 0.1; 0.1)
Lower SE landmark (0; 1; 1) (0.1; 0.9; 0.9)
Obstacles (1; 1; 1) (0.9; 0.9; 0.9)
Background (0; 0; 0) (0.1; 0.1; 0.1)

The color of the lower part of each landmark is unique and non-
changing, and can therefore be used for localization.

In our earlier study, we assumed that the robot was equipped
with a perfect color blob detection system. The state vector was
constructed by extracting a binary camera for each predefined
color that the robot could detect. In this study, we used a more
challenging and interesting task setting, where the state vector
consisted of raw and noisy RGB camera images. To investigate
howwell EERL, FERL, and NNRL could handle noisy state input, we
compared a binary setting (the RGB-values were set to either zero
or one) with a setting where the RGB-values were sampled from
a normal distribution with a standard deviation of 0.1 and a mean
of either 0.9 or 0.1 (see Table 4). Fig. 8(b) shows an example of a
noisy camera image and the three color channels corresponding
to the robot’s position in Fig. 8(a). The robot’s simulated camera
had a resolution of 738 (41× 18) pixels covering a horizontal field
of view of ±75°, with a 3.75° distance between the pixels. Within
the field of view, the landmarks were visible from all distances and
the obstacles were visible up to 2m. The size of an object in the
camera image increased with the inverse of the distance to the
object. In addition, the state vector consisted of three normalized
real-valued distance measures from the robot’s front proximity
sensors, located at −30°, 0°, and +30° in relation to the robot’s
heading direction. The distance informationwas normalized to the
range [0; 1] and higher values corresponded to shorter distances.
The total length of the state vector was 2217 (41 × 18 × 3 + 3).

In our earlier study, we used, as is common in action-
value based reinforcement learning, a small number of actions
(velocities of the right and the left wheels) that were selected
Table 5
The average number of steps to goal (± standard deviation) computed over the final
200 episodes for the different learning settings in the robot navigation task.

Method Final performance
9 Actions 25 Actions 100 Actions

Binary RGB-values

EERL 23.9 ± 9.1 30.4 ± 14.5 30.4 ± 13.3
FERL 25.3 ± 10.1 127 ± 351 569 ± 821
NNRL 30.1 ± 12.3 33.9 ± 17.7 459 ± 721

Noisy RGB-values

EERL 29.6 ± 15.0 37.4 ± 44.0 35.5 ± 20.4
FERL 28.9 ± 15.5 319 ± 634 810 ± 867
NNRL 42.8 ± 28.3 288 ± 615 1504 ± 782

in a rather ad-hoc manner. In this study, we instead defined
a list of possible wheel velocities that was common for both
wheels. An additional purpose of the robot navigation experiment
was to investigate how well EERL, FERL, and NNRL could
handle an increased number of actions. We performed 3 sets
of experiments with 9 actions (possible wheel velocities of
[−25, 25, 45] cm/s), 25 actions ([−45, −25, 5, 25, 45] cm/s), and
100 actions ([−45:10:45]2 cm/s). Gaussian noise was added to
each wheel velocity, with zero mean and a standard deviation
equal to 1% of the amplitude of the velocity.

An episode ended either when the robot moved its head inside
the correct goal area or when the length of the episode exceeded a
fixed threshold of 2000 time steps. The robot received a+1 reward
if it reached the correct goal area, otherwise the reward was set
to 0. The number of hidden nodes was set to 50, γ = 0.98, and
λ = 0.8. The values of α and τk were determined in the noisy RGB
setting with 9 actions: 0.005 × Z and 0.01 for EERL, 0.01 × Z and
0.005 for FERL, and 0.005 and 0.005 for NNRL.

Fig. 9 shows the average number of steps to goal computed over
every 200 episodes and 5 simulation runs for EERL, FERL, and NNRL
in the binary and the noisy RGB settings for robots with 9, 25, and
100 actions. The average performance computed over the final 200
episodes is summarized in Table 5.

EERL converged faster than FERL and NNRL in all six settings
and the average final performance was significantly (p < 0.001)

2 Matlab notation.
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Fig. 9. The average number of steps to goal computed over every 200 episodes and 5 simulation runs in the robot navigation experiments in the binary and noisy RGB
settings with 9, 25, and 100 actions for EERL (a), FERL (b), and NNRL (c).
Fig. 10. Examples of learned trajectories for the best performing EERL (a) and FERL (b) agents in the noisy RGB setting with 9 (northeast goal) and 25 (southwest goal)
actions. The color coding visualizes the velocities of the left and right wheels. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
better, except for in the noisy RGB setting with 9 actions where
the average final performance achieved by FERLwas slightly better
than EERL, but not significantly so (p = 0.31). FERL andNNRL could
only achieve a final average performance of less than 50 steps to
goal in the settings with 9 actions, and, for NNRL, in the binary RGB
setting with 25 actions. The performance of EERL was particularly
impressive in the experiments with 100 actions. In both the binary
and the noisy RGB settings, there were no significant difference in
the average final performance between experiments with 25 and
100 actions.

Fig. 10 shows examples of learned trajectories by the best per-
forming EERL (a) and FERL (b) agents in the noisy RGB setting with
9 (northeast goal) and 25 (southwest goal) actions. Fig. 11 shows
the corresponding expected hidden activation patterns, which dis-
play clear differences between EERL and FERL. For FERL, the activa-
tion patterns were sparse and close to binary, with, in most states,
a few active hidden nodes with activations close to 1 and a large
majority of non-active hidden nodes with activations close to 0. In
contrast, for EERL, the activation patterns were dense with large
number of nodes with activations closer to 0.5 than 0 or 1. In the 9
actions setting, the learned behaviors of EERL and FERL were simi-
lar. In the 25 actions setting, therewas one distinct difference in the
learned initial behavior. For FERL, the agent learned, similar to the
9 actions setting, to immediately start to rotate to face the target.
In contrast, for EERL, the agent learned to initially navigate back-
wards until it reached the opening to the center square and then
it started to rotate to face the target. The attractiveness of initial
backward navigation can be explained by that the possible num-
ber of pixels in the image corresponding to the closest landmark
was larger (compared to the landmark closest to the target) and,
therefore, provided a better guide for navigation to the opening to
the center square. In the 9 actions setting, there was only one ac-
tionwith negative velocity (moving straight backwith a velocity of
−25 cm/s) and backward navigation was therefore not an option.
Initial backward navigation was also observed for EERL in the 100
actions setting.

These results suggest that richer neural encoding is one
explanation for the higher and more stable performance achieved
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Fig. 11. Expected hidden activations along the learned trajectories shown in Fig. 10.
by EERL. For example, in the noisy RGB setting with 25 actions, the
final mean performance for FERL varied from 47 to 639 steps to
goal. In comparison, the final mean performance for EERL varied
only from 30 to 46 steps to goal.

4. Conclusions

In this study, we proposed that RBM function approximation
for reinforcement learning can be significantly improved by
approximating the value function by the negative expected energy,
instead of the negative free energy. We validated this approach by
showing that EERL: (1) outperformed FERL, as well as NNRL and
linear function approximation, for three versions of a gridworld
tasks that tested learning in high-dimensional state spaces with
more non-active than active states, more active than non-active
states, and continuous state input; (2) achieved new state-of-the-
art results in stochastic SZ-Tetris in both model-free (Sarsa(λ))
and model-based (TD(λ)) learning settings; and (3) significantly
outperformed FERL andNNRL in a visual robot navigation taskwith
raw and noisy RGB images as state input and a large number of
actions, both in terms of learning speed and final performance.
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