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 [Abstract]  

Importance 

Melancholia, with biological homogeneity, has been a key to understand critical features of major depressive 

disorder (MDD). Previous biomarker studies have focused on severe treatment-resistant depression with recurrent 

episodes. However, for effective treatment selection, it is also very important to focus on majority of depression 

like melancholia, from general clinic outpatients at early stages of depression.  

 

Objective 

By focusing on melancholic features with biological homogeneity, this study aimed to identify a small number of 

critical functional connections (FCs) that were specific only to the melancholic type of MDD.    

 

Design, Setting, and Participants 

On the resting-state fMRI data, classifiers were developed to differentiate MDD patients from healthy controls 

(HCs). A completely independent validation cohort was prepared. We examined correlations between the 

biomarker score, which is the value to predict the liability of melancholic MDD (i.e., weighted linear sum) and 

depression symptoms (i.e., the Beck Depression Inventory scores). In addition, this biomarker was applied to the 

data of pharmacological treatments and of other mental disorders. 

 

Results 

The classification accuracy was improved from 50 % (93 MDD and 93 HCs) to 70% (66 melancholic MDD and 66 

HCs), when we specifically focused on the melancholic MDD with moderate or severer level of depressive 

symptoms. It showed 65% accuracy for the independent validation cohort. The biomarker score distribution 

showed improvements with escitalopram treatments, and also showed significant correlations with depression 

symptom scores (BDI, r = .59). This classifier was specific to melancholic MDD, and it did not generalize in other 

mental disorders including autism spectrum disorder (ASD, 54% accuracy) and schizophrenia spectrum disorder 

(SSD, 45% accuracy). Among the identified 12 FCs from 9,316 FCs between whole brain anatomical node pairs, 

the left DLPFC / IFG region, which has most commonly been targeted for depression treatments, and its functional 

connections between Precuneus / PCC, and between right DLPFC / SMA areas had the highest contributions. 

 

Conclusions and relevance  

Given the heterogeneity of the MDD, focusing on the melancholic features is the key to achieve high classification 

accuracy. The identified FCs specifically predicted the melancholic MDD and associated with subjective 

depressive symptoms. These results suggested key FCs of melancholic depression, and open doors to novel 

treatments targeting these regions in the future.  

 

  



Introduction   

For a typical clinical diagnosis, major depressive disorder (MDD) has been diagnosed with the categorical 

criteria of DSM-5. The diagnosis depends on how patients feel or act in several aspects of experiences in daily life, 

for observable or noticeable symptoms. However, Research Domain Criteria (RDoC) framework assumes that 

mental disorders can be addressed as disorders of brain circuits (Insel, Cuthbert, Garvey et al., 2010). 

In order to identify robust functional characteristics of depressive brains, the resting state functional magnetic 

resonance imaging (rsfMRI) has been attracted attention as a measure of baseline neural activity with benefit of 

data-driven analysis based on availability of large datasets, (Cao et al., 2014). According to a recent review, rsfMRI 

studies in MDD has been using seed-based analysis or/and independent component analysis (Mulders et al., 2015). 

In addition, a multivariate pattern analysis has shown that the majority of the most discriminating features between 

MDD and  healthy controls were intra- or inter-connectivity of the default mode network (DMN; Zeng, et al., 

2012). For these data-driven analyses for depression biomarkers above, though those studies showed comparatively 

high sensitivity (75-92%) and specificity (75-88%), those accuracies were not for an independent validation cohort. 

When affected by idiosyncratic characteristics of a particular sample (e.g., local site, MRI scanner type, and recruit 

process, etc.), regression models will tend to cause overfitting. Some cautions and recommendations were provided 

to be careful about inflated predictions of psychiatric neuroimaging (Whelan and Garavan, 2014). The other study 

focused on the generalization to a diverse sample, which included 360 depression and 360 healthy controls in total, 

reported rather lower number of classification accuracies around 45 – 56 % (i.e., chance level was 50 %) in the 

large heterogeneous sample, and significantly higher accuracy than chance level in a subgroup with higher 

depression severity, 61 – 62 % for an independent validation (Sundermann et al., 2016). In order to overcome 

difficulties of generalization, Drysdale et al. (2016) applied the combined algorithm of hierarchical clustering and 

SVM to the training dataset which includes only treatment-resistant MDD patients (TRD; with a history of failure 

to respond to at least two anti-depressant medication trials). Because their hierarchical clustering based only on the 

TRD subjects, it might be more useful as a TRD biomarker. For more general clinical assessment of depression, it 

would be important to develop a clinic-based biomarker for MDD including those who are at early stages of 

depression.   

In the fields of psychiatry, melancholia has been known as a subtype determined by strong biological factors 

(Parker et al., 1996). Melancholia has been characterized with an increased risk of MDD in co-twins, which was 

greater in monozygotic than dizygotic pairs; the symptoms of higher rates of comorbidity with anxiety disorder; 

overall severity; larger number of episodes; and lower levels of neuroticism (Kendler,1997; Sun, 2012). It has also 

been reported that the melancholia is more responsive to pharmacological treatment compared to non-melancholic 

MDD (Parker et al., 1996). As a genetic biomarker of depression, the CONVERGE consortium has successfully 

identified two loci by focusing on a severe subtype, melancholia feature with recurrent MDD episodes 

(CONVERGE consortium, 2015). As a main subtype with considerable amount of previous studies, focusing on the 

melancholia is one of the traditional approaches to understand depression. Hyett et al. (2015) observed reduced 

effective connectivity during rsfMRI involving in attention and interoception in melancholia, compared to non-

melancholic depressive and healthy control groups, though with comparatively small sample size per group. 

    Recently, Yahata et al. (2016) proposed a machine-learning based algorithm that demonstrated a high degree 

of generalization in classification performance for multiple independent validation cohorts of autism spectrum 

disorder (ASD). Their sparse algorithm selected only 16 out of all 9,730 FCs that distinguished individuals with 

ASD from typically-developed individuals with accuracy of 85%. The reliability of the classifier was generalized in 

an independent validation cohort of ASD from overseas (75% accuracy). They also found that the ASD classifier 

was specific to the ASD.  

In this study, we applied this algorithm to form a classifier for the MDD patients from general clinics with no 

treatment or at beginning of treatment. The purpose of this study is: (1) to examine if we could have higher 

classification accuracy by limiting the training dataset from all MDD outpatients to the subtype of melancholia with 

moderate or severe depressive symptoms; (2) to test if we could generalize the results of (1) to independent 

validation cohorts; (3) to examine the association between the selected FCs and severity of depressive symptoms, 

by using the BDI-II scores (Beck Depression Inventory; Beck et al., 1996) and by comparing the classification 

results between pre- and post- escitalopram treatment (for 6 weeks) datasets; and (4) to clarify the specificity of 



depression classifier by applying to the independent datasets of other mental disorders, including ASD and 

schizophrenia spectrum disorder (SSD).           

 

Methods 

Participant Selection for the training dataset  

All the patients were recruited at the Hiroshima University Hospital and local clinics (in Hiroshima, Japan) and 

screened using the M.I.N.I. (Sheehan et al. 1998; Otsubo et al. 2005) for a MDD diagnosis with the DSM-IV 

criteria. Exclusion criteria included current or past manic episodes; psychotic episodes; alcohol dependence or/and 

abuse; substance dependence or/and abuse; and antisocial personality disorder. Patients had initial MRI scan before 

or after starting medication within 0-2 weeks. Healthy participants were recruited from local community, 

interviewed with the M.I.N.I., and none showed any history of psychiatric disorders. The study protocol in this 

study was approved by the Ethics Committee of Hiroshima University. Prior to the administration of any 

experimental procedure, written informed consents were obtained from all participants. For the training dataset of 

the all MDD classifier, first, we used all the melancholic and non-melancholic MDD data collected from four 

different sites to see if it works for the entire heterogeneous depression cohort. Then, for the melancholic MDD 

classifier, the training dataset was limited to have the subtype of melancholia (based on M.I.N.I.) with moderate 

depression symptoms for patients, with age- and gender-matched healthy controls, based on the Beck Depression 

Inventory (Beck et al., 1996; BDI-II score 17 or higher). The numbers of patients and healthy controls were set to 

be equal, in order to develop a classifier unbiased toward either group (See Table 1). For the scores of the Japanese 

version of the national adult reading test (JART; Matsuoka et al., 2006), which was used to estimate the intelligence 

quotient (IQ), there were three missing data in the training datasets (i.e., one melancholic MDD and two HCs in 

both all MDD and melancholic MDD datasets) and two missing data of treatment-resistant MDD in the test dataset. 

For BDI scores, there were two missing data of HCs (only in the all MDD dataset) and one missing post- 

antidepressant treatment data in the training dataset.     

 

Generalization to an independent external validation cohort  

An independent validation cohort was formed at the National Institute of Radiological Sciences in Japan. The 

participants were evaluated on lifetime history of psychiatric disorders based on M.I.N.I. The MDD patients were 

free of comorbid psychiatric disorders, and all healthy controls were free of any somatic, neurological, or 

psychiatric disorders and had no history of current or previous drug abuse. All participants provided written 

informed consent before the study. The protocol was approved by the Radiation Drug Safety Committee and by the 

institutional review board of the National Institute of Radiological Sciences, in accordance with the ethical 

standards laid down in the 1964 Declaration of Helsinki and its later amendments.  

 

Association with measures of depression and depressive symptoms  

The Beck Depression Inventory (BDI) is one of the most frequently used instruments for measuring depression 

and depressive symptoms. It was examined if this biomarker would be associated with severity of depressive 

symptoms in a whole sample including all MDD as a state measure.   

 

Pharmacological treatment effects 

Twenty-eight patients with melancholic depression in the training dataset had an additional MRI scan after 6 

weeks of treatment with antidepressant (escitalopram). We applied the classifier to this post-treatment dataset to 

examine if it would be a state marker of depression severity and would be sensitive to changes associated with the 

pharmacological treatments. 

 

Application to non-melancholic MDD, treatment-resistant MDD 

In order to make sure if this biomarker would be specific to the characteristics of melancholic MDD, we applied 

the same classifier to the datasets of non-melancholic and treatment-resistant MDD. Non-melancholic MDDs are 

from the all MDD dataset with BDI score 17 or higher.  

 



Application to other mental disorders 

ASD and SSD datasets were adopted from our previous investigation (Yahata et al., 2016). In order to minimize 

any effect from comorbidity of depression, the ASD dataset was limited to the data with no active antidepressant 

medication and recorded resting state with eyes-open like all the other datasets.  

 

Experiment protocol and data acquisition 

The following  common instructions and settings were used in all the sites. In the scan room with dimmed 

lights, participants were asked not to think of anything in particular, not to sleep, and keep looking at a cross mark 

in the center of the monitor screen. (Details of scan parameters for MRI data acquisition and procedure in each site 

were shown in Table S3 and Figure S1 in supplementary material.) 

 

Neuroimaging data preprocessing and interregional correlations 

All the rsfMRI data was preprocessed using the identical procedures described in Yahata et al. (2016). T1-

weighted structural image and resting state functional images were preprocessed using SPM8 (Wellcome Trust 

Centre for Neuroimaging, University College London, UK) on Matlab R2014a (Mathworks inc., USA). The 

functional images were preprocessed with slice-timing correction and realignment to the mean image. Then, using 

the normalization parameters obtained through the segmentation of the structural image aligned with the mean 

functional image, the fMRI data was normalized and resampled in 2 x 2 x 2 mm3 voxels. Finally, the functional 

images were smoothed with an isotropic 6mm full-width half-maximum Gaussian kernel. After these preprocessing 

steps, the scrubbing procedure (Power JD et al. 2012) was performed to exclude any volume (i.e., functional image) 

with excessive head motions, based on the frame-to-frame relative changes in time series data. In order to keep data 

quality high enough the for subsequent analyses, we only included the data with more than 50% of the volumes 

survived in the time series. (For a summary of head motion, see Table S2 in supplementary material.)    

  For each individual, the time course of fMRI data was extracted for each of 137 regions of interests (ROIs), 

anatomically defined in the Brainvisa Sulci Atlas (BSA; http://brainvisa. Info; Perrot et al., 2011; Riviere et al., 

2002) covering the entire cerebral cortex. In the present study, we did not incorporate the cerebellum in the 

construction of a classifier, because for many participants in site 1, the cerebellum was truncated in their structural 

and functional images. After applying a band-pass filter (0.008 - 0.1 Hz), the following nine parameters were 

linearly regressed out: the six head motion parameters from realignment; the temporal fluctuation of the white 

matter; that of the cerebrospinal fluid; and that of the entire brain. A pair-wise Pearson correlations between 137 

ROIs were calculated to obtain a matrix of 9,316 FCs for each participant.  

 

Classification algorithm for FC selections  

Here, we applied the identical classification algorithm developed in a previous study on ASD (Yahata et al., 

2016), which adopts a cascade of L1-regularized sparse canonical correlation analysis (L1-SCCA) and sparse 

logistic regression (SLR). SLR has the ability to train a logistic regression model, while objectively pruning FCs 

that are not useful for the purpose of classifying MDD. Before training SLR, L1-SCCA was used to reduce the 

input dimension to some extent and simultaneously reduce the effects of nuisance variables (NVs) that may cause 

catastrophic over-fitting. In this study, site, sex, and age were included in the NVs. The method uses a sequential 

process of nested-feature selection and leave-one-out cross validation (LOOCV) in order to avoid information 

leakage and over-optimistic results (Whelan et al. 2014). At the end of LOOCV, the output of the logistic 

regression classifier was used to compute the classification accuracy, and the associated weighted linear sum 

(WLS) was used to compute the correlation analysis analysis with the score of depression symptoms (BDI-II). The 

detailed description of the algorithm is found in the methods section of the ASD paper (Yahata et al., 2016). The 

original classification code developed for the ASD paper is also available for access (please contact the server 

administrator of ATR Brain Information Communication Research Laboratory: asd-classifier@atr.jp). 

 

Results 

Classification performance and generalization   

For the evaluation of classification accuracy, we used the results of LOOCV for the training dataset (See Table 2). 



The all MDD sample included 93 patients (both melancholic and non-melancholic; BDI score >= 11) with 93 

healthy controls (BDI <= 10). The classifier of the all MDD was composed of 22 FCs as relevant predictors, and 

the classification accuracy was 51 % (sensitivity 53 %, specificity 48 %, and AUC 0.52). The classification 

accuracy was just around the chance level (50 %), when all heterogeneous MDD samples were included. Then, we 

limited samples to focus only on the subtype of melancholia with moderate or higher depression symptoms (BDI 

>=17). The second training dataset included 66 melancholic MDD patients and 66 healthy controls (BDI<=10). The 

melancholic MDD classifier selected 12 FCs, and its LOOCV classification accuracy was 70 % (sensitivity 64 %, 

specificity 77 %, and AUC 0.77; see Figure S3 for more detailed results by site). After running the permutation test 

(1,000 repetitions) to make sure that the classification accuracy is significant (p<.05; for the permutation results, 

see Figure S2 in supplement), we checked the performance of generalization in the test datasets as independent 

validation cohorts. The classification accuracy of Test1 dataset was 61% including all MDDs, but when the patient 

group was limited only to have the melancholic MDD, the accuracy level was improved to 65% (sensitivity 64 %, 

specificity 65 %, and AUC 0.62). The results of permutation test on the test data was also significant (p<.05).  

 

Identified 12 FCs in the melancholic MDD classifier    

All the identified twelve FCs for the melancholic MDD classifier were sorted by their absolute weight, and shown 

in Figure 1A. Figure 1B shows the absolute value of weight of each FC, as a contribution level to the WLS score of 

the classifier (for more details, see Table S1 and Figure S4 in supplementary material). The weights of the top two 

FCs were remarkably high compared to the rest of the FCs. As shown in Figure 1C, FC#1 was the functional 

connection between  

the Left DLPFC (BA46) and the Precuneus / dorsal PCC, whereas the FC#2 was the connection between the left 

IFG (opecular, BA44) and right DLPFC / supplementary motor area (SMA). Those top two connections had an 

overlapped ROI regions in left DLPFC, which is often the therapeutic target of transcranial magnetic stimulation 

(TMS; Fox et al., 2012 for review) for treating depression. 

 

Change with the escitalopram treatment                                                                                                     A part of 

the melancholic MDD in the training dataset went through the program of escitalopram treatment for 6 weeks, and 

twenty-eight melancholic MDD patients completed post-treatment scans. In addition to the severity of depression 

symptoms, it was examined if the WLS scores of melancholic MDD classifier would be changed by the 

escitalopram treatment. Figure 2A shows that the distribution of WLS scores were significantly moved toward that 

of healthy controls after the escitalopram treatment.  

 

Prediction of depressive symptom scores (BDI)    

In order to assess if the WLS score of the melancholic MDD classifier works as a predictor of severity of 

depressive symptoms, we performed a correlation analysis between the WLS and the measured subjective rating 

scores of BDI for the dataset including all the participants (93 MDDs and 93 healthy controls) and also in all the 

MDD patients (93 MDDs only). The results showed that there was a significant correlation when all the 

participants in the training dataset were included (r = .655, permutation test p<.005, shown in Figure 2B), and when 

only all the MDD patients included (r = .188, permutation test p<.05, shown in Figure 2C).   

 

Application to the test dataset of non-melancholic MDD and TRD 

The melancholic MDD biomarker did work well for classification neither on the non-melancholic MDD with 

the accuracy of 54 % (sensitivity 42 %, specificity 67 %, and AUC 0.65), nor on the treatment-resistant MDD with 

the accuracy of 47 % (sensitivity 40 %, specificity 54 %, and AUC 0.46) (See Figure 3A). However, the 

distribution of non-melancholic MDD showed a trend to be shifted toward the opposite direction along the axis of 

the melancholic MDD classifier (p = .076, Benjamini–Hochberg-corrected Kolmogorov–Smirnov test). 

 

Application to the test dataset of other mental disorders    

The results showed that the classification accuracy of the ASD data was around the chance level, 54 % 

(sensitivity 55 %, specificity 50 %, and AUC 0.52), and no difference was observed between the distribution of 



ASD patients and healthy controls (p=.74, n.s.) The SSD data also showed low accuracy, 45 % (sensitivity 43 %, 

specificity 47 %, and AUC 0.43). The distribution of SSD also showed a trend to be shifted toward the opposite 

direction along the axis of the melancholic MDD classifier (p = .057, Benjamini–Hochberg-corrected 

Kolmogorov–Smirnov test). These results showed that the biomarker developed in this study was specific to the 

melancholic MDD (See Figure 3B).      

 

Discussion 

Although it has been difficult to classify the depressed outpatients who visits general clinic for the first time, this 

study suggested that the classification performance of depression was improved by focusing on the melancholic 

subtype with moderate or severer symptoms. In addition, the reliability of melancholic MDD classification was 

generalized to a completely independent validation cohort from a different site. Furthermore, the melancholic MDD 

biomarker was associated with the severity of depressive symptoms. The distribution of WLS scores in melancholic 

MDD patients was shifted toward that of healthy controls after the pharmacological treatment with escitalopram. 

However, this biomarker was specific to the melancholic MDD, and did not work well on non-melancholic MDD, 

nor treatment-resistant MDD, nor ASD, nor SSD. 

Different from previous biomarkers which included only pharmacological treatment-resistant MDD patients to 

make a depression classifier (e.g., Drysdale et al., 2016), this study included early stage of MDD outpatients in a 

training dataset as general majority, which has been more difficult to diagnose accurately. It would be clinically 

meaningful that the moderately high classification performance was obtained from this kind of target cohort, and 

the reliability of it was generalized to a completely independent cohort with a similar early stage of melancholic 

MDD patients in a different site. In some previous biomarker studies in genetics or molecular sciences, it has been 

known that the classification accuracy was improved by focusing on the melancholia. Recently, a biomarker study 

which used the metabolomics showed improvement from ~ 72 % accuracy for all MDD to 80 % accuracy when 

focused on the melancholia (Liu et al., 2016). Previous studies on neuroendocrine system also has shown that the 

melancholic features were associated with larger effect sizes compared to non-melancholic depression (Stetler et 

al., 2011). Moreover, neurological studies showed consistent differences on cerebrospinal fluid volume gray matter 

volume, white matter volume, with more evidence of EEG abnormalities during some reward tasks, between 

melancholic and non-melancholic patients (Parker et al., 2015). Though there are not so many studies on rsfMRI 

yet, in melancholia, reduced effective connectivity between attention and interoception networks was observed 

(Hyett et al., 2015). This study supported the idea that patterns of functional connectivity of melancholic and non-

melancholic depression patients are different. This suggests that it is important and critical to extract a biologically 

homogenous group to create a classifier with high performance accuracy.  

   For the selected 12 features, the top two FCs showed outstanding magnitude of weights compared to the rest of 

FCs. The overlapped region between these two FCs was in the left dorsolateral prefrontal cortex (DLPFC), which 

has been a traditional target region of depression treatment by repetitive transcranial magnetic stimulation (rTMS) 

etc. The brain region around the left DLPFC (BA46/9) and left inferior frontal gyrus (IFG) has been noted with 

imbalance of left and right DLPFC in MDDs (observed in fMRI and in EEG as alpha asymmetry), that is associated 

with the negative emotional processing bias (Grimm et al., 2008). The lower left DLPFC activity in MDD patients 

has also been observed during a verbal fluency task (Okada et al, 2003, Takamura et al., 2016). This region is 

considered to form the central executive network (CEN; Seeley et al., 2007) and regarded as controlling the default 

mode based on causal relationships examined by rTMS (Chen et al., 2013).         

 The rest of selected FCs included many key brain regions which have been reported in previous depression 

studies. As numerous studies have confirmed, the brain regions in the default mode network (DMN) have been 

associated with some abnormality or impairment in depression, and the identified FCs included DMN regions as 

well. The 12 FCs mainly included the brain regions around cingulate cortex, including anterior cingulate cortex 

(ACC), posterior cingulate cortex (PCC) / Precuneus, thalamus, caudate, left and right DLPFC, visual cortex, and 

supplementary motor area. Those brain regions were frequently reported in previous studies, showing some 

structural and/or functional connectivity abnormality in MDD (e.g., Yin et al., 2016). Based on the facts that the 

WLS scores showed significant correlation with the depressive symptoms, and also the distribution of WLS scores 

was shifted toward healthy controls after six weeks of escitalopram treatments, this biomarker may be a state 



marker, rather than a trait marker.   

Classification results of ASD and SSD showed that neither of mental disorders was classified well using the 

melancholic MDD classifier. Furthermore, the other two studies which used the same sparse classification 

algorithms for developing the ASD classifier (Yahata et al., 2016) and the SSD classifier (Yoshihara, in 

submission) reported that their FCs had no overlap with the 12 FCs reported in this study for depression biomarker. 

These results may mean that the main characteristic features and associated neural functional connectivities are 

different in each mental disorder. On the specificity of the melancholic MDD biomarker, even in the same category 

of MDD diagnosis, this biomarker did work well neither on non-melancholic MDD nor treatment-resistant MDD. 

As limitation, as long as we are using the existing diagnosis, we can only see the results associated with those 

existing labels but not with any potentially-important unknown factors. This basic question may be solved by 

having some new perspectives for analysis or by combining unsupervised learning method with combined cross-

disorder data together.     

  

Conclusions 

Our findings suggest that the classification algorithm which was originally developed for ASD was successfully 

applied to early stages of melancholic MDD outpatients from clinics, to achieve a relatively high classification 

accuracy and mild level of generalization to independent validation cohorts. Because of heterogeneity of the MDD, 

it has been very difficult to achieve high classification accuracy when classifiers were developed on all the patients 

with MDD diagnosis. These results make us realize how important it is to focus on the melancholic features for 

clinical diagnosis and for biological homogeneity. In addition, the identified functional connectivities were 

characteristic to the melancholic MDD, but not to other types of MDD and disorders including ASD and SSD. This 

specific biomarker showed significant correlation with depressive symptoms, and the predicted depression scores in 

the patient group were improved toward healthies after pharmacological treatments. These results suggest that this 

may be a state marker rather than a trait marker. Combined with the fact that melancholia has been particularly 

responsive to biological treatments (Parker et al., 1996), this can be a biomarker of treatment response. 

Furthermore, as a unique benefit of using the sparse algorithm, only a small number of important FCs with the 

highest contribution over the whole brain were identified for the biomarker. These identified FCs for the 

melancholic MDD biomarker can be target brain regions of focused treatment or intervention in the future.   
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Figure 3. The specificity of the melancholic MDD classifier to the other affective disorders was examined using the 

test datasets of MDD subtypes from Non-melancholic MDD and treatment-resistant MDD (TRD) samples (A), and 

of other disorders from autism spectrum disorder (ASD) and schizophrenia spectrum disorder (SSD) samples (B).  

 

 

 
The significance of the Benjamini–Hochberg-corrected Kolmogorov–Smirnov test and AUC values are shown 

along with the distributions. In this figure, for visualization purposes, the WLS of each data set is standardized to 

match median and SD of healthy controls across the panels. Note that this WLS standardization is not performed in 

any quantitative analysis. 
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