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a b s t r a c t 

Social demand for exoskeleton robots that physically assist humans has been increasing in various situa- 

tions due to the demographic trends of aging populations. With exoskeleton robots, an assistive strategy 

is a key ingredient. Since interactions between users and exoskeleton robots are bidirectional, the assis- 

tive strategy design problem is complex and challenging. In this paper, we explore a data-driven learning 

approach for designing assistive strategies for exoskeletons from user-robot physical interaction. We for- 

mulate the learning problem of assistive strategies as a policy search problem and exploit a data-efficient 

model-based reinforcement learning framework. Instead of explicitly providing the desired trajectories in 

the cost function, our cost function only considers the user’s muscular effort measured by electromyog- 

raphy signals (EMGs) to learn the assistive strategies. The key underlying assumption is that the user is 

instructed to perform the task by his/her own intended movements. Since the EMGs are observed when 

the intended movements are achieved by the user’s own muscle effort s rather than the robot’s assistance, 

EMGs can be interpreted as the “cost” of the current assistance. We applied our method to a 1-DoF ex- 

oskeleton robot and conducted a series of experiments with human subjects. Our experimental results 

demonstrated that our method learned proper assistive strategies that explicitly considered the bidirec- 

tional interactions between a user and a robot with only 60 seconds of interaction. We also showed that 

our proposed method can cope with changes in both the robot dynamics and movement trajectories. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Social demand for exoskeleton robots that physically assist hu-

ans has been increasing in various situations due to the demo-

raphic trends of aging populations. Applications have been pro-

osed for augmenting able-bodied people [1–5] , supporting phys-

cally challenged people [6–8] , and rehabilitation [9–11] . In such

xoskeletons, one key ingredient is a control method that gener-

tes robot actions as assistance based on user intentions: an assis-

ive strategy . Human-robot interactions are generally bidirectional,

here the robot provides an assist force to users and detects their

eactions or movement intentions through sensors. Therefore, the

ssistive strategy design problem is complex and challenging. 

Several assistive strategies have been proposed over the last

ecade. A typical approach is based on gravity compensation
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ontrol [2,3,12,13] , which effectively supports the load to maintain

 static posture. Another popular strategy is the electromyography

EMG)-based method [14,15] . EMG-to-force models convert the

ubject’s EMG signals to the joint torques of an assistive robot. For

alking and balancing assistance, an inverted pendulum model

ith Center of Mass (CoM) and Zero Moment Point (ZMP) can

erive stable gait patterns [8,16] . The adaptive oscillator-based

trategy has also received much attention for assisting periodic

ovements [4,17–19] . An extension with a state-machine-based

ontroller has also been proposed [20] . Most of these methods are

ased on independent models of users and robots. However, since

he users and the exoskeletons physically interact in a bidirectional

ay, it might be desirable to explicitly consider such interactions

n assistive strategy design. 

Complex human-robot interaction has also been explored in

arious contexts. For user-robot collaboration tasks, movement

rimitives were learned from two interaction behaviors of users

y Hidden Markov Model (HMM) [21] or Dynamic Movement
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Primitives (DMP) [22] . Moderes et al. applied an optimal control

framework to find the appropriate robot impedance parameters

for a human-robot cooperative reaching task [23] . For cooperative

transportation tasks, some learning methods have also been ex-

plored. Medina et al. proposed an experience-driven robotic assis-

tance control by HMM to learn the user’s intention during task ex-

ecution [24] . Rozo et al. presented a learning-from-demonstration

framework for physical collaborative robot behaviors using task-

parameterized Gaussian Mixture Models (GMMs) and optimal

control for cooperative transportation tasks [25] and extended it

with a stiffness estimation based on a convex optimization for

the assembly of furniture mechanical structures [26] . Learning

approaches from interaction data are often utilized not only for

physical interactions but also for communication. Mitsunaga et al.

applied a policy gradient RL method with which a robot can learn

the proper distance between users and itself so that they feel

comfortable [27] . Such research successfully learned the adaptive

controllers of user behaviors from user-robot interaction data. 

Based on the above successful studies of complex interaction

designs, in this paper, we explore such a data-driven learning ap-

proach for designing assistive strategies for exoskeletons from user-

robot physical interaction data. A few recent studies have applied

learning methods for assistive strategy design on walking-aid robot

control [28] , robotic training for dart-throwing [29] , and exoskele-

ton walking assistance [30,31] . However, two serious problems

have not been sufficiently explored for applying learning meth-

ods for physical human-robot interactions. First, since collecting a

large amount of interaction data imposes a heavy burden on users,

long-term learning experiments cannot be conducted with users.

In such studies, to reduce the required amount of interaction data,

learning methods were applied only for a small number of param-

eters in pre-designed controllers. Second, the designing cost (or

reward) functions are not straightforward. For typical autonomous

robot control problems, the cost function is set with such task de-

pendent information as the desired target locations or trajectories.

However, for assistive scenarios using task-specific costs, this ap-

proach is inappropriate because the desired targets or trajectories

must be determined by the user instead of the robot. 

Instead of explicitly providing the desired trajectories in the

cost function as references, our cost function only considers

the user’s muscular effort measured by electromyography signals

(EMGs) to learn the assistive strategies. The key underlying as-

sumption is that the user is instructed to perform the task by

his/her own intended movements. Since EMGs are observed when

the intended movements are achieved by the user’s own muscle

efforts rather than the robot’s assistance, EMGs can be interpreted

as the “cost” of the current assistance. Based on this assumption,

we expect that a suitable assistive strategy for a user to perform

an intended movement is learned by minimizing the EMG-based

cost function without requiring the desired trajectories in the cost

function. 

We formulate the learning problem of assistive strategies as a

policy search problem and exploit a data-efficient model-based re-

inforcement learning framework called Probabilistic Inference for

Learning Control (PILCO) [32] . Our motivation to use PILCO is its

data-efficiency property, which becomes crucial for such human-

in-the-loop applications as assistive robotic devices. PILCO was

compared to other model-free and model-based RL methods for

a cart-pole swing-up task [32] , and it outperformed the other RL

algorithms by at least one order of magnitude. PILCO is also appli-

cable for probabilistic continuous state-action systems that might

fit human-in-the-loop exoskeletons, rather than approaches with

deterministic system modeling and trajectory optimization [33] . 

In our preliminary study, we demonstrated that our method can

efficiently learn proper assistive strategies with a simulated robot

arm control task based on user EMGs [34] . In this paper, we ap-
lied our method to a real 1-DoF exoskeleton robot and thoroughly

nvestigated its effectiveness for learning assistive strategies from

ser-robot interaction data. 

This paper is organized as follows. In Section 2 , we introduce

ow we formulated the assist policy learning problem by explic-

tly considering user-robot physical interaction. In Section 3 , we

xplain how a data-efficient model-based reinforcement learning

ramework can be used in our assist policy learning problem. In

ection 4 , we present our experimental setup to evaluate our pro-

osed method. In Section 5 , we present our experimental results

nd discuss them in Section 6 . Finally, in Section 7 , we conclude

his paper. 

. Problem formulation 

This section formulates the learning problem of assistive strat-

gy from the direct interactions shown in Fig. 1 . We assume that

he robot is physically coupled and securely attached to the user. 

Since the robot’s future state depends on its current state, its

ction, and the user’s action, the robot dynamics can be written as

ollows: 

 t+1 = g(s t , u t , v t ) + ζt , ζt ∼ N (0 , �ζ ) , (1)

here s t is the robot’s state (e.g., joint angles and velocities) and u t 

s its action (e.g., joint torques or air pressures generated by pneu-

atic actuators). v t is the user’s action (e.g., muscle activations),

nd ζt is an additive Gaussian noise that represents model uncer-

ainty. 

On the other hand, the user’s action is decided by the user’s

ontrol policy that can be based on the robot’s state, the robot’s

ction, or the previous user’s action. Thus, the user’s control policy

an be modeled: 

 t+1 = h (s t , u t , v t ) + ηt , ηt ∼ N (0 , �η) , (2)

here ηt is an additive Gaussian noise. 

By integrating them into one equation, human-robot integrated

ynamics can be represented: 

 t+1 = f (x t , u t ) + ξt , ξt ∼ N (0 , �ξ ) , (3)

here 

 = 

[
s 
v 

]
, �ξ = 

[
�ζ 0 

0 �η

]
. (4)

Based on the above system, we formulate our learning prob-

em of assistive strategies. Our objective is to find a robot control

olicy (assistive strategy) π : π(x , θ) = u that minimizes the long-

erm cost: 

 

π (θ) = �T 
t=0 E x t [ c(x t )] , x 0 ∼ N (μ0 , �0 ) , (5)

here J π evaluates the cost of T steps, θ is an adjustable parameter

ector, so-called policy parameter, and c ( x t ) is given as: 

(x t ) = 1 − exp 

(
− 1 

2 σ 2 
c 

x � t T x t 

)

T = 

(
0 0 

0 T v 

)
, (6)

here σ c is the width of the cost function and T is a diagonal

atrix that expresses the weight of each element of the state in

he cost function. This expression for Eq. (6) is suggested by the

ILCO framework, analytically computes the expected cost over

he policy, and makes the learned dynamics tractable. Note that

nlike typical autonomous robot control problems, cost function

 ( x t ) does not incorporate such task dependent information as the

esired target locations or trajectories. Instead, our cost function

nly considers the user’s muscular effort that can be measured by
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Fig. 1. Schematic diagram of our approach. We formulated assistive strategies based on user-robot integrated system and task-free EMGs cost function and adopted data- 

efficient model-based reinforcement learning to derive control policy. 
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π  
MGs because the robot needs to assist the user’s voluntary mo-

ions rather than control them. Such a cost function design, which

llows the user to lead the learning process, results in an appro-

riate assistive strategy [34] . 

The difficulty of solving the above problem reflects the model-

ng of such interaction dynamics. Due to the inclusion of the user

ction policy and the interaction effects between the user and the

obot, it does not follow rigid body dynamics anymore. Moreover,

ince human subjects tend to become tired when experiments are

onducted for a long period, collecting large-size data is cumber-

ome for learning systems. 

. Learning assistive strategies by reinforcement learning 

We apply PILCO, a model-based policy search method [32] ,

o the assistive problem. PILCO uses probabilistic non-parametric

aussian processes to consider the uncertainty of models. Since

ILCO analytically computes long-term predictions, policy evalu-

tions, and policy improvements, it can perform critical, data-

fficient learning. In this section, we briefly summarize PILCO.

ore details about it can be found [32] . 

.1. Model learning 

For target dynamics modeling, PILCO uses Gaussian process re-

ression [35] where (x t , u t ) ∈ R 

D + F is the training input and �t =
 t+1 − x t ∈ R 

D is the training output. It typically uses the following
ernel function: 

k ( ̃  x p , ̃  x q ) = σ 2 
f exp 

(
−1 

2 

( ̃  x p − ˜ x q ) 
� �−1 ( ̃  x p − ˜ x q ) 

)
+ δpq σ

2 
ξ , 

(7) 

here ˜ x := [ x � , u 

� ] , � is a precision matrix that expresses the

haracteristic length and σ f is the bandwidth parameter. These pa-

ameters are learned with n training inputs ˜ X = [ ̃  x 1 , ..., ̃  x n ] and tar-

ets y = [ �1 , ..., �n ] . 

The predictive distribution of x t+1 is analytically given as fol-

ows: 

p(x t+1 | x t , u t ) = N (x t+1 | μt+1 , �t+1 ) , (8)

t+1 = x t + E f [ �t ] , �t+1 = Var f [ �t ] , (9)

here 

 f [ �t ] = m f ( ̃  x t ) = k 

� 
∗ (K + σ 2 

ξ I) −1 y = k 

� 
∗ β (10)

ar f [ �t ] = k ∗∗ − k 

� 
∗ (K + σ 2 

ξ I) −1 k ∗. (11)

ere, k ∗ := k ( ̃  X , ˜ x t ) , k ∗∗ := k ( ̃  x t ) , and β := (K + σ 2 
ξ

I) −1 y, where K

s a kernel matrix, each of whose element follows K i j = k ( ̃  x i , ̃  x j ) . 

.2. Control policy 

We employed the following control policy: 

˜ (x ∗, θ) = 

N ∑ 

i =1 

k (m i , x ∗)(K + σ 2 
π I) −1 t = k (M, x ∗) � α. (12)
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Fig. 2. Experimental setup: Subjects tracked reference trajectories presented on 

monitor by moving their elbow joint where forearm was physically attached to 1- 

DoF exoskeleton robot. 

Fig. 3. EMGs electrode placement: We measured biceps and triceps EMGs. 
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Here, α = (K + σ 2 
π I) −1 t, where x ∗ is the test input, t is a train-

ing target, M = [ m 1 , ..., m N ] are the centers of the Gaussian basis

functions, σ 2 
π is noise variance, and k is a kernel function. Pol-

icy parameter θ is composed of M , t , and the scale of the kernel

functions k in Eq. (12) . To make it possible to learn suitable assis-

tive strategies even for different tasks and users, we used a policy

model with a high expressive capability of a variety of functions,

as shown in Eq. (12) , among multiple applicable choices [32] . This

function is a kernel regression (or a deterministic Gaussian process

regression), which allows us to represent a variety of complex non-

linear maps between the state and the action [35] . In Section 5.2 ,

we show how greatly different policies are learned for different

users by the same function shown in Eq. (12) . For safe user-robot

interactions, base policy π with a control limit is designed as 

π(x ∗, θ) = u max σ ( ̃  π(x ∗, θ)) , (13)

where u max is a maximum output and σ ( x ) ∈ [0, 1] is a squashing

function. 

3.3. Policy evaluation 

To evaluate the control policy, we need to compute long-term

cost J π . Although it cannot be obtained analytically due to the

Gaussian process model’s complexity, PILCO employs a reasonable

approximation scheme with an analytic moment matching tech-

nique. 

To predict x t+1 , PILCO assumes that distribution p( ̃  x t ) =
p(x t , u t ) is Gaussian and calculates p ( �t ) as follows: 

p(�t ) = 

∫ ∫ 
p( f ( ̃  x t ) | ̃  x t ) p( ̃  x t )d f d ̃

 x t . (14)

Eq. (14) is calculated analytically. PILCO also assumes that mean

μ� and covariance �
 of distribution p ( �t ) are known. Then

the mean and covariance of p(x t+1 ) = N (x t+1 | μt+1 , �t+1 ) are ob-

tained: 

μt+1 = μt + μ�, (15)

�t+1 = �t + �� + cov [ x t , �t ] + cov [ �t , x t ] . (16)

Based on this prediction distribution, expected value E x t [ c(x t )]

can be computed analytically: 

E x t [ c(x t )] = 

∫ 
c(x t ) N (x t | μt , �t )d x t (17)

= 1 − | I + �t T | −1 / 2 

× exp 

(
−1 

2 

(μt − x d t ) 
� ˜ S (μt − x d t ) 

)
, (18)

˜ S := T (I + �t T ) 
−1 . (19)

With the above equations, we can analytically compute the ap-

proximation of J π . 

3.4. Policy improvement with analytic gradient 

Policy parameter θ is optimized by minimizing J π ( θ). Gradient

∂ J π ( θ)/ ∂ θ, which can be computed analytically using the chain-

rule because of the policy evaluation’s analytic expression, is ex-

pressed by ε t := E x t [ c(x t )] : 

d J π (θ) 

d θ
= 

T ∑ 

t=1 

d ε t 
d θ

, 

d ε t 
d θ

= 

d ε t 
d p(x t ) 

d p(x t ) 

d θ
:= 

∂ε t 
d μt 

d μt 

∂θ
+ 

∂ε t 
d �t 

d �t 

∂θ
. (20)

Therefore, such a standard gradient-based non-convex optimization

method as BFGS can be applied to find locally optimal policy pa-

rameter θ. 
. Experimental setup 

We developed an experimental platform based on a 1-DoF

pper-limb elbow-joint exoskeleton robot ( Fig. 2 ). Subjects fol-

owed the target joint trajectory that was presented on a mon-

tor by moving their elbow joint where the forearm was physi-

ally attached to the 1-DoF exoskeleton robot. While the subjects

ere tracking the reference trajectories, we measured the interac-

ion data and used them only to learn the assistive strategies. The

ubjects were instructed as follows. If the assistance made by the

obot was helpful for achieving the task, they should relax and rely

n it. On the other hand, if the assistance was unhelpful, the sub-

ects should actuate their own muscles to achieve the task. We first

onducted a joint-angle tracking task with five subjects to show

he learning performance of our proposed method. Then we inves-

igated whether the same learning system can cope with different

xperimental setups with one of the five subjects. 

.1. EMG measurements 

We placed two EMGs sensors on the subject’s forearm biceps

nd triceps ( Fig. 3 ) to measure their physical effort. The sampling

ime was 0.004 s. The measured signals were rectified and low-

ass filtered with a cutoff frequency of 2.0 Hz with a second-order

utterworth filter. 

.2. 1-DoF exoskeleton robot 

The robot was driven by a pneumatic artificial muscle (PAM)

ctuator (FESTO Inc.), the link length was 0.4 m, and it weighed

.7 kg ( Fig. 4 ). The robot was equipped with a handle, and the

ubject was tightly secured to it. The low-level control period was

.004 s. The input pressure was low-pass filtered with a cutoff fre-
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Fig. 4. 1-DoF upper-limb exoskeleton robot driven by pneumatic artificial muscle 

(PAM). 
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uency of 10 Hz to avoid sudden pressure changes. We evaluated

ur proposed method with two different load weights (2.5 and

.75 kg) and with two different reference trajectory amplitudes

2.5 and 2.8 rad), as shown in Fig. 5 . The 2.5-kg load weight with

 reference trajectory amplitude of 2.5 rad was the default experi-

ental setup. We first evaluated our proposed learning method on

his default setup with five subjects and then investigated whether

he assistive strategy learning system can cope with different ex-

erimental setups. We applied our learning method to two differ-

nt experimental setups: with the heavier load weight (3.75 kg) or

ith the larger trajectory amplitude (2.8 rad). 

.3. Parameter settings in RL 

We utilized PILCO open-source code [36] . The subject action

nd robot state in Eq. (3) were x = [ q ˙ q E b E t ] 
� , where q was the

obot’s joint angle, ˙ q was the angular velocity, and E b and E t were

he filtered-biceps and -triceps EMGs. u was the desired pressure

nput to the PAMs. The initial joint angle was 1.3 rad ( Fig. 5 ). The

ontrol period of PILCO was 0.2 s, and the prediction horizon was

.0 s. The low-level control period was 0.004 s, and we used zero-

rder hold until the next control time step of PILCO. The weight of

he cost function was T v = diag (0 . 2 0 . 4) , and the shape parameter

f cost function σ c was 0.5 in Eq. (5) . The number of basis func-

ions N in Eq. (12) was 10. The number of total policy parameters

as 54. Maximum output u max in Eq. (13) was 0.65 MPa. 

One learning session was composed of five initial system iden-

ification trials and ten learning trials for each task. This one learn-

ng session corresponded to a total of 60 seconds and 300 points

f data, and the sampling period was 0.2 s. On the initial system

dentification trials, the subject tried the task, and the robot gener-

ted random pressure. Its angle, its angular velocity, and the sub-

ect’s EMG signal data were collected. In the learning trials, the

obot learned the model from the input pressure and the measured

ata and optimized the policy parameters. The learned parameters

ere applied, the subject performed the task, and the robot col-

ected new data. For the initial trials, we used the random pressure

nput around a periodic input pattern as u init ∼ N (μu , σ 2 
u ) , where

u = u max | sin (0 . 5 πt) | and σ 2 
u = 0 . 05 . After the 60 seconds initial

ystem identification and learning trials, subjects tried the given

oint-angle tracking task ten times with the learned assist control

utput. In addition, for comparison, subjects also conducted the

ask ten times without assistance. 

. Results 

.1. Performance of learned assistive strategies 

Fig. 6 shows the mean of the EMGs and the tracking errors with

ve subjects. The EMGs were normalized by the percentages of

aximum voluntary contraction (%MVC): %MVC = E / E max , where

 = 

1 
k 
�k e (k ) and e ( k ) is the rectified and low-pass filtered EMG at

ime step k. E max was the maximum value of e during the task ex-

cution. The gray bar indicates without assistance and the red one
ndicates with learned assistance. We conducted a statistical anal-

sis between the two scenarios by paired t-tests. In Fig. 6 (a), the

ean of the biceps %MVC with the learned assistance was signifi-

antly lower than without assistance ( p < 0.05). The muscle activi-

ies of the triceps were roughly constant and much lower than the

iceps when we used the learned assistive strategy. Therefore, we

id not compare the triceps activities, although they varied dur-

ng the learning sessions and were useful for monitoring the hu-

an subject action to derive the control output of the exoskeleton

obot. We show the tracking performance of the reference trajec-

ory with and without learned assistive strategies in Fig. 6 (b). The

bsolute means of the tracking error were not significantly differ-

nt ( p = 0 . 94 ). Therefore, we found that the subjects’ muscle activ-

ties were reduced with the learned assistive strategies while they

chieved similar tracking performance. 

Fig. 7 shows the reference and the mean of the actual trajec-

ories, the mean learned pressure input, and the mean biceps and

riceps EMGs over ten test trials of one of the five subjects with the

earned assistive strategy. In Fig. 7 (a), the dashed line is the desired

rajectory, and the solid line is the actual trajectories. The subject

ollowed the desired trajectory with the learned assist control out-

ut of the exoskeleton robot. Fig. 7 (b) shows the learned outputs.

n Fig. 7 (c) and (d), the blue line shows the biceps, and the green

ine shows the triceps EMGs. The subject generated large bicep ac-

ivity at the beginning of the upward elbow movements due to the

imitations of the actuators and the uncertainty of the user behav-

ors and EMGs. The triceps EMGs were basically constant. 

.2. Learned assistive strategies and interaction models 

Fig. 8 shows the learned assistive strategies and interaction

odels with the Gaussian processes. Fig. 8 (a) expresses the learned

ssistive strategies (pressure) given the robot’s angle, angular ve-

ocity, and EMGs signals. (b) and (c) express the changes of the bi-

eps and triceps EMGs between current and one-step-ahead times

ue to the robot assist pressure inputs at different joint angles

hen a subject lifted his arm. To visualize the assistive strategies

nd the interaction models on a 2D plane, we set the current an-

le and the angular velocity equal to the reference trajectory, and

he biceps and the triceps activities were set as mean EMG val-

es during the learning trials. As shown in Fig. 8 (a), the learned

ssistive strategy depends not only on the robot’s state but also

n the user EMGs. Therefore, this resembles a shared control pol-

cy rather than a robot autonomous control policy. In Fig. 8 (b), the

hanges of the biceps EMGs decreased as the angle and pressure

ncreased. The subject was more relaxed when the robot properly

ssisted him. On the other hand, as shown in Fig. 8 (c), the changes

f the triceps EMGs were higher in the low-angle (around 1.3 rad)

nd high-pressure (around 0.65 MPa) regions. With this condition,

he triceps increased intensively because the subject activated his

riceps EMGs to reduce the tracking error when the robot gener-

ted excessive pressure. 

Fig. 9 (a) shows the learned assistive strategies for other four

ubjects. For subject A, they generated large pressure at around

.0 rad and 0.06 mV, and the maximum pressure was smaller than

he others. For subjects B, C, and D, the pressures increased as the

ngles increased. For subject B, the pressures were greatly gener-

ted at around 0 mV, and for subject C, they were greatly gener-

ted at around 0.06 mV. Fig. 9 (b) shows the one-step changes of

he biceps. For subjects A, B, and D, large EMGs were observed at

round 1.3 rad. For subject C, this value shifted at around 2.0 rad.

ig. 9 (c) shows the one-step changes of the triceps EMGs. Com-

only for all the subjects, the EMGs tended to be larger as the

ngles increased around 2.4 rad. 
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Fig. 5. Joint-angle tracking tasks. We evaluated our proposed method with two different load weights (2.5 and 3.75 kg) and with two different reference trajectory ampli- 

tudes (2.5 and 2.8 rad). 

Fig. 6. Comparison between with and without learned assist under default experi- 

mental setup: (a) Biceps EMGs and (b) Tracking error. Biceps activities with learned 

assistance were significantly lower than without assistance ( p < 0.05). 
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Fig. 7. Trajectories during elbow-joint movements with learned assistive strategy: 

(a) Reference, mean, and variance of measured trajectories; (b) Mean and variance 

of learned pressure; (c) and (d) Mean and variance biceps and triceps EMGs over 

ten test trials of one subject. 
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In summary, these results demonstrated the effectiveness of the

earned assistive strategies for reducing the subject EMGs by ex-

licitly considering the interaction model. 

.3. Learning process 

Fig. 10 shows the accumulated long-term cost of one subject

n each trial. The subject tried the learning session three times.

he error bars show the standard deviations of the cost over the

essions. The accumulated cost quickly decreased and converged

t around six trials. 

Fig. 11 shows the learning process of the parametrized policy

or one subject. Since the policy has 54 parameters, we visualized

he policy maps of the 1st, 5th, and 10th trials on the 2D plane.

ccording to the learning progress, the policy map became clearer

nd steeper. 

.4. Application to different experimental setups 

First, we show the results under an experimental condition

ith a heavier load weight. In Fig. 12 (a), we compared the bi-

eps activities. Significant differences ( p < 0.001) were observed

etween with and without the learned assistive strategy. Interest-

ngly, as depicted in Fig. 12 (b), the absolute tracking errors signifi-

antly decreased when we used the learned assistive strategy with

 < 0.005. The tracking errors also decreased because generating

recise elbow movements with more weight was harder than with

ess weight and the assist control input of the exoskeleton robot

ade this task easier. 

Second, we show the results with an experimental condition

ith a larger reference trajectory amplitude. In Fig. 13 (a), we com-

ared the biceps activities. Significant differences ( p < 0.001) were

bserved between with and without the learned assistive strategy.

s in Fig. 13 (b), in this experimental setup with a larger reference

rajectory amplitude, we interestingly observed significant reduc-

ion in the triceps activities with p < 0.001. This is probably be-

ause a faster movement is required to track the reference trajec-

ory with a larger amplitude in the same time period. We did not

bserve a significant difference in the tracking errors ( p = 0 . 59 ). 

In summary, our method learned the assistive strategies even

or different experimental settings in the robot dynamics and the

hape of the reference trajectories with the same assist learning
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Fig. 8. (a) Learned assistive strategies when subject lifted his arm: (b) Changes of biceps EMGs, and (c) Changes of triceps EMGs. 

Fig. 9. (a) Learned assistive strategies for different subjects: (b) Changes of biceps and (c) Changes of triceps EMGs. 
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Fig. 10. Accumulated cost in each trial. It quickly decreased and converged at 

around six trials. 
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Table 1 

Parameters of cost function. 

Weight T v = diag (·) Shape σ c 

1 0.2, 0.4 0.5 

2 0.2, 0.2 0.5 

3 0.4, 0.2 0.5 

4 0.2, 0.4 0.3 

5 0.2, 0.4 0.7 
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trategy. This result suggests the usefulness of our learning method

or different assistive control applications. 

Finally, we conducted additional experiments to investigate the

ffects of different parameters in the cost function for the learn-
ng process. We prepared five more parameters ( Table 1 ) and com-

ared the performance of the learned assistive strategies between

he same and different parameters. As shown in Fig. 14 , the result-

ng EMGs in the Biceps were not statistically significantly different

 p = 0 . 0965 ). This result suggests that our method may not be sen-

itive for such parameter settings. 

. Discussion 

Our experimental results suggest that our approach is rele-

ant for learning assistive strategies because of its sample effi-

iency. The proper assistive strategies of a 1-DoF robot for tra-

ectory tracking tasks were learned only with 60 seconds human-
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Fig. 11. Changes of policy map of one subject. Policy map became clearer and steeper. 

Fig. 12. Comparison between with and without learned assist under experimen- 

tal setup with heavier load weight: (a) Biceps EMGs and (b) Tracking error. Biceps 

activities with learned assistance were significantly lower than without assistance 

( p < 0.001). Interestingly, absolute tracking error significantly decreased if we used 

learned assistive strategy ( p < 0.005). 

Fig. 13. Comparison between with and without learned assist under experimental 

setup with larger reference trajectory amplitude: (a) Biceps EMGs. Biceps activi- 

ties with learned assistance were significantly lower than without assistance ( p < 

0.001). (b) Triceps EMGs. We also observed significant reduction in triceps activities 

( p < 0.001). 

Fig. 14. Performance comparison of learned assistive strategies between same and 

different parameters. Biceps EMGs were not statistically significantly different p > 

0.05. 
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obot interaction data. Although other existing approaches also re-

orted their sample efficient learning, they are based on sample-

nefficient, model-free reinforcement learning. Thus, the sample ef-

ciency was achieved by utilizing task-specific knowledge in the

olicy design. For example, in both dart-throwing training assis-

ance [29] and exoskeleton walking assistance [31] , policies were

arefully designed with only a few parameters to be learned. On

he other hand, our framework with model-based reinforcement

earning learned 54 parameters from scratch, which is evidence of

ts relevance for learning assistive strategies. Even though our pro-

osed method certainly reduced user EMGs, the amount of EMGs

id not become zero for the following two possible reasons: 1) in-

onsistency of user behaviors, which were not consistent among

ultiple trials even in the same task, and 2) uncertainty in the

MGs. 

In our experimental task, the predictive horizon was clearly

iven from the task period. Thus, it is not a turning parameter.

owever, for more complex tasks where the horizon is not ex-

licitly given from the task, it becomes another turning parameter

hich should be set properly for the task. 

. Conclusion 

We directly learned assistive strategies from interactions be-

ween users and a robot. First, we formulated a learning problem

f assistive strategies. To reduce the required number of inter-

ctions between a user and the robot to learn the assist policy,

e applied a data-efficient, model-based reinforcement learning

ramework. To verify the effectiveness of our proposed method,
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e conducted a series of experiments. The results show that our

ethod learned such a proper assistive strategy to reduce the user

MGs even for changes in the robot dynamics and the shape of

he reference trajectories with the same task-free EMG-based cost

unction. 

Our method can be extended to learn multiple task assistive

trategies, but the learned strategies are task-dependent. Future

ork will extend our method using multi-task RL, which can be

eneralized even for unseen tasks from multiple sets of human-

obot interaction data across different tasks. Generally, RL frame-

orks suffer from the curse of dimensionality. To extend the scala-

ility of our framework for higher dimensional systems, we might

tilize such dimensionality reduction techniques as synergies for

oth the user and robot. Since human muscles are not always ac-

ivated independently, muscle synergies can be used to reduce the

tate dimension of humans [37] . On the other hand, robot control

ased on synergies has also been explored. Cunha et al. showed

hat only two synergies could construct the locomotive movements

f a bipedal robot [38] . By exploiting both the user’s and the

obot’s synergies, we might be able to extend our framework to

pply our lower-limb exoskeleton robot with multiple DoFs [10,39] .

nother future work will extend our framework to learn an assis-

ive strategy that reduces fatigue in long-term runs by designing

 fatigue-based cost function using a fatigue estimation method

40–42] . 
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