
Vol.:(0123456789)1 3

Artif Life Robotics (2018) 23:1–9
https://doi.org/10.1007/s10015-017-0401-2

ORIGINAL ARTICLE

Robustness of linearly solvable Markov games employing
inaccurate dynamics model

Ken Kinjo1 · Eiji Uchibe2 · Kenji Doya1

Received: 30 June 2017 / Accepted: 12 October 2017 / Published online: 31 October 2017
© The Author(s) 2017. This article is an open access publication

1 Introduction

In model-based reinforcement learning, an optimal control-
ler is derived from an optimal value (cost-to-go) function
by solving the Bellman equation, which is often intractable
due to its nonlinearity. Linearly solvable Markov decision
process (LMDP) is a computational framework to effi-
ciently solve the Bellman equation by an exponential trans-
formation of the value function under some constraints on
action-dependent cost [11]. The LMDP framework has been
applied in domains such as character control for animation
[3], optimal assignment of communication resources in cel-
lular telephone systems [8] and real-robot control [7, 12].
The major drawback of the LMDP framework is, however,
that an environmental model is given in advance. Model
learning is integrated with LMDP in discrete problems [2]
and in continuous problems [7], but the performance of the
obtained controllers is critically affected by the accuracy of
the environmental model [7].

One possible way to overcome this problem is to adopt
concepts from the robust control theory [9], which considers
the worst adversary and derives an optimal controller using a
game theoretic solution. Recently, the framework of the lin-
early solvable Markov game (LMG) is proposed as an exten-
sion of LMDP [4, 5], in which the optimal value function is
obtained as a solution of the Hamilton–Jacobi–Isaacs (HJI)
equation. Since LMG also linearizes the nonlinear HJI equa-
tion under similar assumptions of LMDP, an optimal policy
can be computed efficiently. While the LMG framework has
been shown to promote robustness against disturbances [4],
its advantage over the LMDP framework in the face of mod-
eling errors has not been fully investigated.

In this study, we compare the performances of the LMDP-
and LMG-based controllers in the tasks of grid-world with
risky states and swing-up pole. We investigate the robustness

Abstract As a model-based reinforcement learning tech-
nique, linearly solvable Markov decision process (LMDP)
gives an efficient way to find an optimal policy by making
the Bellman equation linear under some assumptions. Since
LMDP is regarded as model-based reinforcement learn-
ing, the performance of LMDP is sensitive to the accuracy
of the environmental model. To overcome the problem of
the sensitivity, linearly solvable Markov game (LMG) has
been proposed, which is an extension of LMDP based on
the game theory. This paper investigates the robustness of
LMDP- and LMG-based controllers against modeling errors
in both discrete and continuous state-action problems. When
there is a discrepancy between the model used for building
the control policy and dynamics of the tested environment,
the LMG-based control policy maintained good performance
while that of the LMDP-based control policy deteriorated
drastically. Experimental results support the usefulness of
LMG framework when acquiring an accurate model of the
environment is difficult.

Keywords Model-based reinforcement learning ·
Linearly solvable Markov game · Linearly solvable Markov
decision process · Robust control

This work was presented in part at the 19th International
Symposium on Artificial Life and Robotics, Beppu, Oita,
January 22–24, 2014.

 * Eiji Uchibe
 uchibe@atr.jp

1 Okinawa Institute of Science and Technology Graduate
University, Okinawa, Japan

2 ATR Computational Neuroscience Laboratories, Kyoto,
Japan

http://crossmark.crossref.org/dialog/?doi=10.1007/s10015-017-0401-2&domain=pdf

2 Artif Life Robotics (2018) 23:1–9

1 3

of the controllers under variable gaps between the state tran-
sition model used for controller design and that of the actual
environment. Experimental results in the discrete problem
show that the LMG-based policy works well by setting the
robustness parameter of LMG to the maximum value while
the LMDP-based policy is very sensitive to the accuracy of
the modeling error. On the contrary, experimental results in
the continuous problem show that the robustness parameter
should be tuned to obtain the best performance in the LMG-
based policy.

2 Linearly solvable Markov game (LMG)

2.1 Markov games

Since LMDP is a special case of LMG, we provide a brief
explanation of the LMG framework according to [4]. Let
x ∈  be a state of an agent, and let uc, ua ∈  denote the
control by the agent and disturbance by the adversary, respec-
tively. In the Markov game, the state transition is affected
by both of the agent and the adversary as x� ∼ p(x�∣x, uc, ua).
When x and u are continuous, p(x�∣x, uc, ua) is given by the
Gaussian distribution  (x�∣�(x, uc, ua),�), where � and �
denote the mean and the covariance matrix, respectively. In
particular, � is assumed to be:

The agent receives immediate cost �(x, uc, ua) in each step.
For instance, in the first-exit case, the objective function is
the expected cumulative cost [1],

where  denotes the time when the agent arrives an absorb-
ing state x ∈  ⊆ . An optimal policy, which is required
to minimize the objective function while the adversary acts
to maximize the objective function, is satisfied by the fol-
lowing HJI equation:

where v(x) denotes the value function. Since Eq. (2) is a
nonlinear equation due to the min and max operators, it is
not trivial to find an optimal value function.

2.2 Linearization

The key trick of LMDP and LMG is to optimize the state
transition probability directly instead of optimizing the pol-
icy. In other words, control and disturbance are allowed to
influence the state transition probability directly. At first, a

�(x, uc, ua) = a(x) + B(x)(uc + ua).

(1) � = �p(xt+1∣xt ,u
c
t ,u

a
t)

[∑

t=0

�(xt, u
c
t
, ua

t
)

]
,

(2)v(x) = min
uc

max
ua

{�(x, uc, ua) + �p(x�∣x,uc,ua)[v(x
�)]},

baseline state transition probability called the uncontrolled
probability is introduced by

where �0(u∣x) denotes a baseline policy. In LMG, a learning
agent modifies a state transition probability puc(x�∣x) while
a disturber modifies p{uc,ua}(x�∣x) and they are defined by:

where guc(x�∣x) and gua(x�∣x, uc) denote the effect of control
and disturbance in the state transition, respectively.

The HJI equation (2) is intractable due to its nonlinearity.
However, the HJI equation is simplified by introducing the
following immediate cost:

where q(x) is a state-dependent cost function. �(p
0 ∥ pu

c

)
denotes the Rényi divergence between two probability dis-
tributions defined by:

where � is called the robustness parameter (0 ≤ � ≤ 1). The
second term measures a discrepancy between the uncon-
trolled probability, p0(x�∣x), and the controlled probability
with only the control, puc(x�∣x), which corresponds to con-
trol cost. The third term KL represents the Kullback–Leibler
divergence between the controlled probability with only the
control, puc(x�∣x), and the controlled probability with the
control and the disturbance, p{uc,ua}(x�∣x). It corresponds to
the cost reduction caused by the disturbance.

Under the above assumptions, the HJI equation (2) is
transformed to the linear equation. If 0 ≤ 𝛼 < 1, substitut-
ing Eq. (5) into Eq. (2) yields:

where z(x;�) = exp((� − 1)v(x)) is called the desirability
function. When � = 0, Eq. 6 is identical to the Bellman
equation linearized by LMDP [11]. If � = 1, we obtain:

In addition, the value and desirability functions are con-
strained at the absorbing state, v(x) = q(x). In both cases,
the control- and the disturbance-dependent cost are elimi-
nated during the linearization. Equations (6) and (7) are
linear with respect to the desirability and value functions,

p0(x�∣x) = ∫ p(x�∣x, u)�0(u∣x)du,

(3)pu
c

(x�∣x) ∝gu
c

(x�∣x)p0(x�∣x)

(4)p{u
c,ua}(x�∣x) ∝gu

a

(x�∣x, uc)pu
c

(x�∣x),

(5)
�(x, uc, ua) = q(x) +

1

�
�

(
p0(x�∣x) ∥ pu

c

(x�∣x)
)

−
1

�
KL

(
p{u

c,ua}(x�∣x) ∥ pu
c

(x�∣x)
)
,

�(p1(x)‖p2(x)) =
�

� − 1
log

�

� p1(x)
�p2(x)

1−�dx

�
,

(6)z(x;�) = exp((� − 1)q(x))�p0(x�∣x)[z(x;�)],

(7)v(x) = q(x) + �p0(x�∣x)

[
v(x�)

]
.

3Artif Life Robotics (2018) 23:1–9

1 3

respectively. According to the result of linearization, the
optimal controlled probabilities are:

Thus, both the desirability function and its optimal controller
of LMG and LMDP become equivalent when � = 0.

2.3 Computing optimal policies

2.3.1 Discrete case

Equation (6) is linear with respect to the desirability func-
tion. Since it can be considered as a general eigenvalue prob-
lem, the desirability function is calculated by using a standard
matrix computation package. On the other hand, Eq. (7) is
linear with respect to the value function and it is regarded as
a standard Bellman equation under the uncontrolled probabil-
ity. The value function can be obtained by the value iteration
algorithm [10].

Note that the optimal policy is not explicitly computed for
the discrete setup in the LMG framework. The control policy
to realize the optimal state transition probability (8) is obtained
by solving the following constrained least-squares problem in
each state:

To solve this problem, we use the function lsqlin() in
the Matlab Optimization toolbox®.

2.3.2 Continuous case

To solve the resulting HJI equation (6) for continuous space
problems, we should employ a function approximation
method. According to the previous study [6, 7], the following
linear function approximator is introduced:

where w = (w1,… ,wNz
) is the weight vector to be optimized

and f (x,mi, Si) is a basis function defined by:

where mi and Si denote a center position and a precision
matrix of the ith basis function, respectively. wi is a learning

(8)p∗u
c

(x�∣x) ∝ exp(−v(x�))p0(x�∣x),

(9)p∗{u
a,uc}(x�∣x) ∝ exp((� − 1)v(x�))p0(x�∣x).

(10)
min
�(u∣x)

(
∑

u∈
�(u∣x)p(x�∣x, u) − p∗u

c

(x�∣x)

)2

s.t.
∑

u∈
�(u∣x) = 1, 0 ≤ �(u∣x) ≤ 1, ∀ u ∈  .

(11)z(x;w,�) =

Nz∑

i=1

wif (x,mi, Si), � = {(mi, Si)}
Nz

i=1
,

f (x;mi, Si) = exp
(
−
1

2
(x −mi)

T
Si(x −mi)

)
,

weight to be optimized. In the case of � = 1, it is appropriate
to approximate the value function v(x) rather than the desir-
ability function. To optimize the parameters w, the least-
squares method is applied for the set of collocation states
{xi}

Ns

i=1
, in which the objective function is constructed by:

See [6, 7] for more details.
Once the desirability or value function is computed, the

corresponding optimal control policy u∗(x) can be derived
by the following equations:

where B(x) denotes the Jacobian matrix of the system. Then,
LMG for continuous problems needs B(x) and p0(x�∣x) as the
environmental model explicitly. Note that the optimal action
u can be computed directly in continuous problems while we
need to solve the constrained least-squares problem (10) in
discrete problems.

3 Discrete state‑action problem

3.1 Grid‑world with risky states

As an example of discrete state-action problems, we select
a simple grid-world navigation problem shown in Fig. 1.
When the agent steps into a risky state, it receives a high
cost (q(x) = 200). The agent receives a small cost (q(x) = 1)
in all other states except the goal state, where it receives zero
cost and the episode is terminated. The goal of the agent is to
find the shortest path to the goal state while avoiding falling
off the risky states.

The state transition probability is characterized by the
certainty parameter c (0.5 ≤ c ≤ 1), as illustrated in Fig. 1b.
The agent moves in the desired direction with probability c
but moves down with probability 1 − c due to a north wind.
If the agent moves to the boundary, the agent remains in
the same state. A random policy �0(u∣x) is constructed by a
discrete uniform distribution and it is used for producing the
uncontrolled state transition probability p0(x�∣x).

3.2 Result

Figure 2a shows the experimental results in which the optimal
policy was computed in the deterministic training environ-
ment (c = 1). The left columns of Fig. 2a show the value func-
tions with four different settings of the robustness parameter
� ∈ {0, 0.95, 0.99, 1}. The middle and right panels show the

J =

Ns∑

i=1

‖‖‖z(xi;�) − e(�−1)q(xi)�p0(x�∣xi)

[
z(x�;�)

]‖‖‖
2

.

(12)u∗(x) = −�2
B(x)T

1

(� − 1)z(x;�)

�z(x;�)

�x
,

4 Artif Life Robotics (2018) 23:1–9

1 3

Fig. 1 Grid arrangement and
state transition: a the start and
goal states are marked with
“S” and “G”, respectively. The
risky states exist between the
start and goal states and they are
colored dark-gray. b The agent
can choose four actions: up,
down, right, and left. The prob-
ability of next state depends
upon certainty

selected action

realized state transition

risky states

risky states
S G

c

1-c

(a) Narrow bridge environment (b) State transition

c = 1

0 0.11

c = 0.7

0 0.05

V(x)

LM
D

P
 (
α

=
 0

)

(a)

0 200

0 0.07 0 0.05

LM
G

 (
α

=
 0

.9
5)

0 400

0 0.05 0 0.05

LM
G

 (
α

=
 0

.9
9)

0 800

0 0.04 0 0.05

LM
G

 (
α

=
 1

)

0 10^4

c = 1

0 0.11

c = 0.7

0 0.05

V(x)

LM
D

P
 (
α

=
 0

)

(b)

0 250

0 0.07 0 0.05

LM
G

 (
α

=
 0

.9
5)

0 400

0 0.06 0 0.05

LM
G

 (
α

=
 0

.9
9)

0 900

0 0.05 0 0.06

LM
G

 (
α

=
 1

)

0 10^4

Fig. 2 Value functions and state visitation frequencies. a Results
when the training environment is deterministic (c = 1). The left pan-
els show the value functions with several setting of �. The middle and

right panels show the state visitation frequencies when the test envi-
ronment is deterministic (c = 1) and stochastic (c = 0.7), respectively.
b Results when the training environment is stochastic (c = 0.9)

5Artif Life Robotics (2018) 23:1–9

1 3

state visitation frequency which was evaluated by executing
the policy in the two test environments (c = 1 and 0.7, respec-
tively). The value at the entrance of the narrow path became
higher as � increased, and it suggests that the agent chose the
shortest path if � = 0 while it avoided the risky states if �
approached to 1, as shown in the middle panels. The right
panels show that the state visitation frequency was disturbed
by the north wind in the stochastic test environment. Con-
sequently, the cumulative cost increased drastically when �
was set to 0 while the most robust controller by setting � = 1
generated similar behaviors.

Figure 2 b shows the experimental results in which the
optimal policy was computed in the stochastic environment
(c = 0.9). As compared with Fig. 2 b, the value functions were
skewed due to the north wind when � ≠ 0 while the value
function trained with c = 0.9 was the same as that with c = 1.0
in the case of LMDP. As a result, the LMDP-based policy
preferred the shortest path even though it was computed in the
stochastic environment. The reason why the stochasticity did
not affect the LMDP-based policy is because p0(x�∣x) is invari-
ant with respect to c when �0(u∣x) is uniform. In addition, the
controlled probability (8) does not always satisfy the following
inequality condition:

In fact, we found that p∗uc(x�∣x) for an optimal state transition
(x, x�) approached to 1 according to the value function. The
upper panels of Fig. 2b were similar to those of Fig. 2a and
it means that the stochasticity of the environment was not
considered appropriately if � = 0. On the contrary, conserva-
tive behaviors are obtained if � ≥ 0.99.

p∗u
c

(x�∣x) ≤ max
u

p(x�∣x, u).

Figure 3 compares the average cumulative costs using
the policies derived with five different settings of the robust-
ness parameter � and the certainty parameter c ∈ {1, 0.9} in
the training environment. The performances of the policies
obtained by LMDP (� = 0) and LMG with � = 0.5 were opti-
mal in the deterministic environment (c = 1), but they dete-
riorated rapidly as c decreased. with the increase in the windi-
ness, even if they were derived with an uncontrolled transition
model taking into account the wind (c = 0.9, left panel). In
contrast, the policies obtained by larger � show relatively low
performance in the deterministic environment, but they per-
formed robustly in the windier environment, even when they
were derived with a windless transition model (c = 1, right
panel).

4 Continuous state‑action problem

4.1 Swing‑up pole

Next, we conduct a simulation of a pole swing-up task as an
example as continuous state-action problems. In the simula-
tion, the one side of the pole was fixed and the pole could
rotate in plane around the fixed point. The objective of the
task is to lead the pole to an upward position and stop at this
position. The continuous action u is the torque applied to the
pole while the state is represented by a two-dimensional vec-
tor x = [�,�], where � and � denote the angle and the angular
velocity, respectively. The equation of motion in discrete time
is modeled by:

(13)
Δx = (a(x) + B(u + 𝜎𝜉))Δt

a(x) =
[
�̇�, m

g

l
sin(𝜃) − 𝜅�̇�

]T
, B = [0, 1]T,

0.50.550.60.650.70.750.80.850.90.951
0

50

100

150

200

250

300

350

400
(a) deterministic model

certainty parameter c

cu
m

u
la

ti
ve

 c
o

st

0.50.550.60.650.70.750.80.850.90.951
0

50

100

150

200

250

300

350

400
(b) stochastic (windy) model

certainty parameter c

0.90.951
0

100

200

0.90.951
0

100

200 α = 0
α = 0.5
α = 0.95
α = 0.99
α = 1

α = 0
α = 0.5
α = 0.95
α = 0.99
α = 1

Fig. 3 Performances of different certainty. Left and right figures rep-
resent performance of the policy derived by the deterministic setting
(c = 1) and the windy setting (c = 0.9), respectively. The small win-

dows on the figures focus on the lower-left framed region. The perfor-
mances are the averages over 1000 steps

6 Artif Life Robotics (2018) 23:1–9

1 3

where l, m, g and � denote the length of the pole, mass,
gravitational acceleration and coefficient of friction, respec-
tively. � is a Gaussian noise with mean 0 and variance 1.
Note that the passive dynamics a(x) is a nonlinear vector
function of x while B is a constant vector. In this simulation,
the physical parameters were l = 1 m, g = 9.8 m/s2, � = 0.05
kg m2∕s and Δt = 10 ms. The noise scale was set to � = 4.
The mass of the pendulum was used as a parameter to
change the dynamics.

The state cost was defined so that it was zero at the goal
state, using the following unnormalized Gaussian function:

where k and diag
(
�cost

)
 denote scale of state-dependent cost

and covariance matrix of Gaussian function. They are set as
k = 2.5 and diag(�cost) = [�∕4, 4�∕4]2.

The set of collocation states was uniformly distributed
in the state space (Ns = 1806). In the simulation, only
the weight parameters w are optimized. The centers mi of
the basis functions were set so as to distribute them uni-
formly in the state space (Nf = 441). On the other hand, the
covariance matrix Si was determined empirically and set to
diag([�∕20, �∕20])−2.

4.2 Experimental results when the training model
was different from the test model

We evaluate the robustness of the control policies obtained
by the LMG framework when the test model is different
from the training model. The mass of the pole was set to
1 kg in the training model while it was determined in the
range (1, 2.5 kg) with the step 0.1 in the test model. For
� ∈ {0, 0.5, 0.75, 0.9, 0.95, 0.99, 1}, the desirability functions
and corresponding control policies were obtained by solving
the linearized HJI equation. We conducted the simulations
using the obtained control policies in these test conditions.
We tested 50 episodes, and each episode started from the

(14)q(x) = k(1 − exp(xT�−1
cost

x)),

bottom position of the pendulum and was terminated when
the controller leaded to the goal position or the trial is over
100 (s) (10000 step). These results are summarized in Fig. 4.

As the mass of the pole increased, the time for swing-up
increased and the success rate decreased using the control
policy obtained by any value of �. In other words, the perfor-
mance of all obtained control policies deteriorated. However,
the deterioration rate of the control performance depended
on the value of �. In the LMDP setting, � = 0, in which
the problem setting is equivalent to the LMDP framework,
the performance by the obtained control policy deteriorated
rapidly as the mass of the pole increased. As expected, the
obtained control policy could not adapt to the change of the
dynamics. On the other hand, LMG with � = 1 could not find
the robust controller as opposed to our expectations. When
� = 0.75, LMG found the most robust controller against the
change of the mass of the pole in this simulation. Note that
the performance was the best when � = 0.75 even though
the mass of the pole was 1 kg. As opposed to the results
of the discrete problem as discussed in Sect. 3.2, the per-
formance of the optimal controller obtained by LMDP was
worse than that of the LMG-based robust controller. The
reason why the LMDP-based controller failed was that the
error in function approximation of the desirability and value
functions was not considered. In addition, numerical errors
become dominant when � is close to 1 for the continuous
problems. Although the log-sum-exp technique can be used
for discrete problems, it is difficult to evaluate the expecta-
tion in Eq. (1) for continuous problems. The other is because
the same parameter � of function approximator (11) was
used although the HJI equation (7) for � = 1 is different from
Eq. (6) for 0 ≤ 𝛼 < 1.

4.3 Integration with model learning

Next, we investigate how the modeling error of the state
transition probability affects the performance. The

1 1.5 2 2.5
0

20

40

60

80

100

120

mass of the pole [kg]

ar
riv

al
 ti

m
e

[s
]

(a)

1 1.5 2 2.5
0

20

40

60

80

100

mass of the pole [kg]

su
cc

es
s

ra
te

 [%
]

(b)
α = 0.00
α = 0.50
α = 0.75
α = 0.95
α = 0.99
α = 1.00

Fig. 4 a Arrival time to the desired state. b Success rate of swing-up. In each plot, each line corresponds to the mean of the trials using certain
value of � and the horizontal axis is the mass of the pole in test condition

7Artif Life Robotics (2018) 23:1–9

1 3

simple least-squares-based method is adopted for the
method for the model learning, in which Δx in Eq. (13)

are approximated by Δx ≈ ��(x, u), where W is a weight
matrix to be optimized and �(x, u) is a vector consisting
of basis functions. Two types of basis functions were pre-
pared. The first was a simple linear model with respect to
x and u, where �(x, u) = [xT, u, 1]T. The other is a linear-
NRBF (normalized radial basis function) model defined by
�(x, u) = [xT,�1(x),… ,�M(x), u, 1]

T, where �i(x, u) is given
by:

where �i and ��i
 denote the center and the covariance

matrix, respectively. {�i} were determined by K-means clus-
tering of the training data  while {��i

} were tuned manu-
ally. The training data  were extracted from the sample
data, which were acquired under the random control policy.

Figure 5 shows the MSE of the angle and angular velocity
component. The angle component was approximated quite

�i(x) =
exp

�
−

1

2
(x − �i)

T�
−1
�i
(x − �i)

�

∑
k exp

�
−

1

2
(x − �k)

T�
−1
�k
(x − �k)

� ,
Angle [rad] Angular velocity [rad/s]

0

0.5

1

1.5

2

M
S

E
×10-3

Linear model
Linear-NRBF model

Fig. 5 The modeling error in each component: we extracted N = 500
samples randomly as a test data set and then calculated the approxi-
mated state transition Δx when two models were applied, respec-
tively. After that, we computed the mean squared error (MSE) of each
component

Fig. 6 a Solution of the linearized HJI equation. The obtained value
function v(x) is shown when � = 1 and the desirability function z(x;�)
when 0 ≤ 𝛼 < 1. b Control policy derived by Eq. (12) and plotted
line on the panels are the trajectory using the resulting control policy

from the bottom of pendulum. Left, middle, and right panels show the
result using the true model, linear model, and linear-NRBF model,
respectively

8 Artif Life Robotics (2018) 23:1–9

1 3

accurately in both approximators because it includes only
linear state transition. On the other hand, the approximation
of the angular velocity component of the linear model was
less accurate than that of the Liner-NRBF model because
the linear model was not able to represent the nonlinear state
transition.

The optimal policies derived from the models discussed
above were compared with those with the true model under
different levels of � ∈ {0, 0.75, 0.95, 1} as we did in Sect. 4.2.
Figure 6a compares the estimated desirability functions of
three models for 0 ≤ 𝛼 < 1 and the estimated value functions
for � = 1. As � became close to 1, the obtained desirability
functions became flatter. This was due to the fact that the
coefficient of the state cost function in Eq. (6) became small
as � becomes close to 1. Since the linear-NRBF model was
sufficiently accurately shown in Fig. 5, there were no sig-
nificant differences in the desirability and the value function
between the true and the linear-NRBF model for all �. On
the other hand, the linear model produced a slightly differ-
ent function. Figure 6b shows the optimal policy and typi-
cal trajectories. For the cases of true and the linear-NRBF
models, the number of swinging gradually increased as �
approached to 1 while the controller from the linear model
showed different behaviors.

To evaluate the relationship between the control perfor-
mance and the level of � in more detail, we conducted the
simulations using the obtained control policies. In the simu-
lation, we tested 50 episodes, the episodes started from the
bottom position of the pendulum and were terminated when
the controller leads to the goal position or the trial is over
200 (s) (20,000 steps).

The experimental results are summarized in Fig. 7. In
the LMDP setting, � = 0, the control policy obtained by the
linear model which had a large approximation error took a
much longer time to swing-up as compared with the other
control policies. Surprisingly, the performance of the true
model was slightly worse than that of the linear-NRBF
model. As we discussed in Sect. 4.2, the error in function
approximation should be considered even if the true model
was used, the obtained control policy with � = 0 deteriorated
due to the approximation error. Nevertheless, this gap in the
control performance became small as the value of � became
large. Consequently, the time for swing-up was almost same
among the all obtained control policies when � = 0.75, 0.9.
However, the gap became large again when � was more
than 0.9. When � = 1, the linear model showed the worse
performance.

5 Conclusion

We evaluated the robustness of the control policies
obtained by LMDP and LMG using the discrete and con-
tinuous state-action tasks. Our simulation results suggest
that LMDP was useful only if the environment is regarded
as deterministic and discrete, while LMG was efficient
even if the training environment was different from the
test environment. Furthermore, according to the results
of the swing-up task, the performance of the LMG-based
controller was improved by choosing � appropriately when
the inaccurate linear model was used to approximate the
environmental dynamics.

As we discussed, the error in function approximation
was important in the continuous problems while the desir-
ability function can be computed precisely for the discrete
problems. In the case of the discrete problems, the desir-
ability function can be exactly represented by a tabular
representation, and it is computed by solving a general-
ized eigenvalue decomposition that is numerically stable.
Therefore, it was appropriate to choose the largest value,
� = 1, to obtain the control policy, which is robust for the
modeling error. On the other hand, in the case of the con-
tinuous problems, we should consider the effect of approxi-
mation and estimation errors of the desirability function,
and therefore, the value of � should be determined care-
fully to obtain the robust control policy. There remains the
problem of how to choose the appropriate value of � as a
future work.

Acknowledgements This work was supported by JSPS/MEXT KAK-
ENHI Grants: 17H06042 and 16K1250.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

0 0.2 0.4 0.6 0.8 1
−50

0

50

100

150

robustness parameter α

ar
riv

al
 ti

m
e

[s
]

True Dynamics

Linear model

Linear−NRBF model

Fig. 7 The figure shows the elapsed time steps need for the swing-
up. Each line corresponds to the mean of the trials using the models
to solving the HJI equation and deriving the control value

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

9Artif Life Robotics (2018) 23:1–9

1 3

distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

References

 1. Başar T, Bernhard P (1995) H∞-optimal control and related mini-
max design problems. A dynamic game approach. Birkhäuser,
Basel

 2. Burdelis MAP, Ikeda K (2014) Estimating passive dynamics dis-
tributions in linearly solvable markov decision processes from
measured immediate costs in reinforcement learning problems.
SICE J Control Meas Syst Integr 7(1):48–54

 3. da Silva M, Durand F, Popović J (2009) Linear Bellman com-
bination for control of character animation. ACM Trans Graph
28(3):82:1–82:10

 4. Dvijotham K, Todorov E (2011) A unifying framework for linearly
solvable control. In: Proceedings of the 27th annual conference
on uncertainty in artificial intelligence. AUAI Press, Arlington,
pp 179–186.

 5. Dvijotham K, Todorov E (2012) Linearly solvable Markov games.
In: Proceedings of American Control conference, pp 1845–1850

 6. Todorov E (2009) Eigenfunction approximation methods for
linearly-solvable optimal control problems. In Proceedings of the
2nd IEEE symposium on adaptive dynamic programming and
reinforcement learning, Nashville, TN, USA, pp 161–168

 7. Kinjo K, Uchibe E, Doya K (2013) Evaluation of linearly solvable
Markov decision process with dynamic model learning in a mobile
robot navigation task. Front Neurorobot 7(7)

 8. Li A, Schrater P (2013) Efficient learning in linearly solvable
MDP models. In: Proceedings of the 23rd international joint con-
ference on artificial intelligence, pp 248–253

 9. Morimoto J, Doya K (2005) Robust reinforcement learning. Neu-
ral Comput 17(2):335–359

 10. Sutton RS, Barto AG (1998) Reinforcement learning: an introduc-
tion. The MIT Press, Cambridge, MA

 11. Todorov E (2009) Efficient computation of optimal actions. Proc
Natl Acad Sci 106(28):11478–11483

 12. Uchibe E, Doya K (2014) Combining learned controllers to
achieve new goals based on linearly solvable MDPs. In: Proceed-
ings of IEEE international conference on robotics and automation

	Robustness of linearly solvable Markov games employing inaccurate dynamics model
	Abstract
	1 Introduction
	2 Linearly solvable Markov game (LMG)
	2.1 Markov games
	2.2 Linearization
	2.3 Computing optimal policies
	2.3.1 Discrete case
	2.3.2 Continuous case

	3 Discrete state-action problem
	3.1 Grid-world with risky states
	3.2 Result

	4 Continuous state-action problem
	4.1 Swing-up pole
	4.2 Experimental results when the training model was different from the test model
	4.3 Integration with model learning

	5 Conclusion
	Acknowledgements
	References

