
Vol.:(0123456789)1 3

Artif Life Robotics (2018) 23:1–9 
https://doi.org/10.1007/s10015-017-0401-2

ORIGINAL ARTICLE

Robustness of linearly solvable Markov games employing 
inaccurate dynamics model

Ken Kinjo1 · Eiji Uchibe2 · Kenji Doya1 

Received: 30 June 2017 / Accepted: 12 October 2017 / Published online: 31 October 2017 
© The Author(s) 2017. This article is an open access publication

1 Introduction

In model-based reinforcement learning, an optimal control-
ler is derived from an optimal value (cost-to-go) function 
by solving the Bellman equation, which is often intractable 
due to its nonlinearity. Linearly solvable Markov decision 
process (LMDP) is a computational framework to effi-
ciently solve the Bellman equation by an exponential trans-
formation of the value function under some constraints on 
action-dependent cost [11]. The LMDP framework has been 
applied in domains such as character control for animation 
[3], optimal assignment of communication resources in cel-
lular telephone systems [8] and real-robot control [7, 12]. 
The major drawback of the LMDP framework is, however, 
that an environmental model is given in advance. Model 
learning is integrated with LMDP in discrete problems [2] 
and in continuous problems [7], but the performance of the 
obtained controllers is critically affected by the accuracy of 
the environmental model [7].

One possible way to overcome this problem is to adopt 
concepts from the robust control theory [9], which considers 
the worst adversary and derives an optimal controller using a 
game theoretic solution. Recently, the framework of the lin-
early solvable Markov game (LMG) is proposed as an exten-
sion of LMDP [4, 5], in which the optimal value function is 
obtained as a solution of the Hamilton–Jacobi–Isaacs (HJI) 
equation. Since LMG also linearizes the nonlinear HJI equa-
tion under similar assumptions of LMDP, an optimal policy 
can be computed efficiently. While the LMG framework has 
been shown to promote robustness against disturbances [4], 
its advantage over the LMDP framework in the face of mod-
eling errors has not been fully investigated.

In this study, we compare the performances of the LMDP- 
and LMG-based controllers in the tasks of grid-world with 
risky states and swing-up pole. We investigate the robustness 
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of the controllers under variable gaps between the state tran-
sition model used for controller design and that of the actual 
environment. Experimental results in the discrete problem 
show that the LMG-based policy works well by setting the 
robustness parameter of LMG to the maximum value while 
the LMDP-based policy is very sensitive to the accuracy of 
the modeling error. On the contrary, experimental results in 
the continuous problem show that the robustness parameter 
should be tuned to obtain the best performance in the LMG-
based policy.

2  Linearly solvable Markov game (LMG)

2.1  Markov games

Since LMDP is a special case of LMG, we provide a brief 
explanation of the LMG framework according to [4]. Let 
x ∈  be a state of an agent, and let uc, ua ∈   denote the 
control by the agent and disturbance by the adversary, respec-
tively. In the Markov game, the state transition is affected 
by both of the agent and the adversary as x� ∼ p(x�∣x, uc, ua).  
When x and u are continuous, p(x�∣x, uc, ua) is given by the 
Gaussian distribution  (x�∣�(x, uc, ua),�), where � and � 
denote the mean and the covariance matrix, respectively. In 
particular, � is assumed to be:

The agent receives immediate cost �(x, uc, ua) in each step. 
For instance, in the first-exit case, the objective function is 
the expected cumulative cost [1],

where  denotes the time when the agent arrives an absorb-
ing state x ∈  ⊆ . An optimal policy, which is required 
to minimize the objective function while the adversary acts 
to maximize the objective function, is satisfied by the fol-
lowing HJI equation:

where v(x) denotes the value function. Since Eq. (2) is a 
nonlinear equation due to the min and max operators, it is 
not trivial to find an optimal value function.

2.2  Linearization

The key trick of LMDP and LMG is to optimize the state 
transition probability directly instead of optimizing the pol-
icy. In other words, control and disturbance are allowed to 
influence the state transition probability directly. At first, a 

�(x, uc, ua) = a(x) + B(x)(uc + ua).

(1) � = �p(xt+1∣xt ,u
c
t ,u

a
t )

[ ∑

t=0

�(xt, u
c
t
, ua

t
)

]
,

(2)v(x) = min
uc

max
ua

{�(x, uc, ua) + �p(x�∣x,uc,ua)[v(x
�)]},

baseline state transition probability called the uncontrolled 
probability is introduced by

where �0(u∣x) denotes a baseline policy. In LMG, a learning 
agent modifies a state transition probability puc(x�∣x) while 
a disturber modifies p{uc,ua}(x�∣x) and they are defined by:

where guc(x�∣x) and gua(x�∣x, uc) denote the effect of control 
and disturbance in the state transition, respectively.

The HJI equation (2) is intractable due to its nonlinearity. 
However, the HJI equation is simplified by introducing the 
following immediate cost:

where q(x) is a state-dependent cost function. �(p
0 ∥ pu

c

) 
denotes the Rényi divergence between two probability dis-
tributions defined by:

where � is called the robustness parameter (0 ≤ � ≤ 1). The 
second term measures a discrepancy between the uncon-
trolled probability, p0(x�∣x), and the controlled probability 
with only the control, puc(x�∣x), which corresponds to con-
trol cost. The third term KL represents the Kullback–Leibler 
divergence between the controlled probability with only the 
control, puc(x�∣x), and the controlled probability with the 
control and the disturbance, p{uc,ua}(x�∣x). It corresponds to 
the cost reduction caused by the disturbance.

Under the above assumptions, the HJI equation (2) is 
transformed to the linear equation. If 0 ≤ 𝛼 < 1, substitut-
ing Eq. (5) into Eq. (2) yields:

where z(x;�) = exp((� − 1)v(x)) is called the desirability 
function. When � = 0, Eq. 6 is identical to the Bellman 
equation linearized by LMDP [11]. If � = 1, we obtain:

In addition, the value and desirability functions are con-
strained at the absorbing state, v(x) = q(x). In both cases, 
the control- and the disturbance-dependent cost are elimi-
nated during the linearization. Equations (6) and (7) are 
linear with respect to the desirability and value functions, 

p0(x�∣x) = ∫ p(x�∣x, u)�0(u∣x)du,
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(6)z(x;�) = exp((� − 1)q(x))�p0(x�∣x)[z(x;�)],

(7)v(x) = q(x) + �p0(x�∣x)

[
v(x�)

]
.
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respectively. According to the result of linearization, the 
optimal controlled probabilities are:

Thus, both the desirability function and its optimal controller 
of LMG and LMDP become equivalent when � = 0.

2.3  Computing optimal policies

2.3.1  Discrete case

Equation (6) is linear with respect to the desirability func-
tion. Since it can be considered as a general eigenvalue prob-
lem, the desirability function is calculated by using a standard 
matrix computation package. On the other hand, Eq. (7) is 
linear with respect to the value function and it is regarded as 
a standard Bellman equation under the uncontrolled probabil-
ity. The value function can be obtained by the value iteration 
algorithm [10].

Note that the optimal policy is not explicitly computed for 
the discrete setup in the LMG framework. The control policy 
to realize the optimal state transition probability (8) is obtained 
by solving the following constrained least-squares problem in 
each state:

To solve this problem, we use the function lsqlin() in 
the Matlab Optimization  toolbox®.

2.3.2  Continuous case

To solve the resulting HJI equation (6) for continuous space 
problems, we should employ a function approximation 
method. According to the previous study [6, 7], the following 
linear function approximator is introduced:

where w = (w1,… ,wNz
) is the weight vector to be optimized 

and f (x,mi, Si) is a basis function defined by:

where mi and Si denote a center position and a precision 
matrix of the ith basis function, respectively. wi is a learning 

(8)p∗u
c

(x�∣x) ∝ exp(−v(x�))p0(x�∣x),

(9)p∗{u
a,uc}(x�∣x) ∝ exp((� − 1)v(x�))p0(x�∣x).

(10)
min
�(u∣x)

(
∑

u∈
�(u∣x)p(x�∣x, u) − p∗u

c

(x�∣x)

)2

s.t.
∑

u∈
�(u∣x) = 1, 0 ≤ �(u∣x) ≤ 1, ∀ u ∈  .

(11)z(x;w,�) =

Nz∑

i=1

wif (x,mi, Si), � = {(mi, Si)}
Nz

i=1
,

f (x;mi, Si) = exp
(
−
1

2
(x −mi)

T
Si(x −mi)

)
,

weight to be optimized. In the case of � = 1, it is appropriate 
to approximate the value function v(x) rather than the desir-
ability function. To optimize the parameters w, the least-
squares method is applied for the set of collocation states 
{xi}

Ns

i=1
, in which the objective function is constructed by:

See [6, 7] for more details.
Once the desirability or value function is computed, the 

corresponding optimal control policy u∗(x) can be derived 
by the following equations:

where B(x) denotes the Jacobian matrix of the system. Then, 
LMG for continuous problems needs B(x) and p0(x�∣x) as the 
environmental model explicitly. Note that the optimal action 
u can be computed directly in continuous problems while we 
need to solve the constrained least-squares problem (10) in 
discrete problems.

3  Discrete state‑action problem

3.1  Grid‑world with risky states

As an example of discrete state-action problems, we select 
a simple grid-world navigation problem shown in Fig. 1. 
When the agent steps into a risky state, it receives a high 
cost (q(x) = 200). The agent receives a small cost (q(x) = 1)  
in all other states except the goal state, where it receives zero 
cost and the episode is terminated. The goal of the agent is to 
find the shortest path to the goal state while avoiding falling 
off the risky states.

The state transition probability is characterized by the 
certainty parameter c (0.5 ≤ c ≤ 1), as illustrated in Fig. 1b. 
The agent moves in the desired direction with probability c 
but moves down with probability 1 − c due to a north wind. 
If the agent moves to the boundary, the agent remains in 
the same state. A random policy �0(u∣x) is constructed by a 
discrete uniform distribution and it is used for producing the 
uncontrolled state transition probability p0(x�∣x).

3.2  Result

Figure 2a shows the experimental results in which the optimal 
policy was computed in the deterministic training environ-
ment (c = 1). The left columns of Fig. 2a show the value func-
tions with four different settings of the robustness parameter 
� ∈ {0, 0.95, 0.99, 1}. The middle and right panels show the 

J =

Ns∑

i=1

‖‖‖z(xi;�) − e(�−1)q(xi)�p0(x�∣xi)

[
z(x�;�)

]‖‖‖
2

.

(12)u∗(x) = −�2
B(x)T

1

(� − 1)z(x;�)

�z(x;�)

�x
,
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Fig. 1  Grid arrangement and 
state transition: a the start and 
goal states are marked with 
“S” and “G”, respectively. The 
risky states exist between the 
start and goal states and they are 
colored dark-gray. b The agent 
can choose four actions: up, 
down, right, and left. The prob-
ability of next state depends 
upon certainty

selected action

realized state transition

risky states

risky states
S G
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(a)   Narrow bridge environment (b) State transition
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Fig. 2  Value functions and state visitation frequencies. a Results 
when the training environment is deterministic (c = 1). The left pan-
els show the value functions with several setting of �. The middle and 

right panels show the state visitation frequencies when the test envi-
ronment is deterministic (c = 1) and stochastic (c = 0.7), respectively. 
b Results when the training environment is stochastic (c = 0.9)
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state visitation frequency which was evaluated by executing 
the policy in the two test environments (c = 1 and 0.7, respec-
tively). The value at the entrance of the narrow path became 
higher as � increased, and it suggests that the agent chose the 
shortest path if � = 0 while it avoided the risky states if � 
approached to 1, as shown in the middle panels. The right 
panels show that the state visitation frequency was disturbed 
by the north wind in the stochastic test environment. Con-
sequently, the cumulative cost increased drastically when � 
was set to 0 while the most robust controller by setting � = 1 
generated similar behaviors.

Figure 2 b shows the experimental results in which the 
optimal policy was computed in the stochastic environment 
(c = 0.9). As compared with Fig. 2 b, the value functions were 
skewed due to the north wind when � ≠ 0 while the value 
function trained with c = 0.9 was the same as that with c = 1.0 
in the case of LMDP. As a result, the LMDP-based policy 
preferred the shortest path even though it was computed in the 
stochastic environment. The reason why the stochasticity did 
not affect the LMDP-based policy is because p0(x�∣x) is invari-
ant with respect to c when �0(u∣x) is uniform. In addition, the 
controlled probability (8) does not always satisfy the following 
inequality condition:

In fact, we found that p∗uc(x�∣x) for an optimal state transition 
(x, x�) approached to 1 according to the value function. The 
upper panels of Fig. 2b were similar to those of Fig. 2a and 
it means that the stochasticity of the environment was not 
considered appropriately if � = 0. On the contrary, conserva-
tive behaviors are obtained if � ≥ 0.99.

p∗u
c

(x�∣x) ≤ max
u

p(x�∣x, u).

Figure 3 compares the average cumulative costs using 
the policies derived with five different settings of the robust-
ness parameter � and the certainty parameter c ∈ {1, 0.9} in 
the training environment. The performances of the policies 
obtained by LMDP (� = 0) and LMG with � = 0.5 were opti-
mal in the deterministic environment (c = 1), but they dete-
riorated rapidly as c decreased. with the increase in the windi-
ness, even if they were derived with an uncontrolled transition 
model taking into account the wind (c = 0.9, left panel). In 
contrast, the policies obtained by larger � show relatively low 
performance in the deterministic environment, but they per-
formed robustly in the windier environment, even when they 
were derived with a windless transition model (c = 1, right 
panel).

4  Continuous state‑action problem

4.1  Swing‑up pole

Next, we conduct a simulation of a pole swing-up task as an 
example as continuous state-action problems. In the simula-
tion, the one side of the pole was fixed and the pole could 
rotate in plane around the fixed point. The objective of the 
task is to lead the pole to an upward position and stop at this 
position. The continuous action u is the torque applied to the 
pole while the state is represented by a two-dimensional vec-
tor x = [�,�], where � and � denote the angle and the angular 
velocity, respectively. The equation of motion in discrete time 
is modeled by:

(13)
Δx = (a(x) + B(u + 𝜎𝜉))Δt

a(x) =
[
�̇�, m

g

l
sin(𝜃) − 𝜅�̇�

]T
, B = [0, 1]T,
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Fig. 3  Performances of different certainty. Left and right figures rep-
resent performance of the policy derived by the deterministic setting 
(c = 1) and the windy setting (c = 0.9), respectively. The small win-

dows on the figures focus on the lower-left framed region. The perfor-
mances are the averages over 1000 steps
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where l, m, g and � denote the length of the pole, mass, 
gravitational acceleration and coefficient of friction, respec-
tively. � is a Gaussian noise with mean 0 and variance 1. 
Note that the passive dynamics a(x) is a nonlinear vector 
function of x while B is a constant vector. In this simulation, 
the physical parameters were l = 1 m, g = 9.8 m/s2, � = 0.05 
kg m2∕s and Δt = 10 ms. The noise scale was set to � = 4.  
The mass of the pendulum was used as a parameter to 
change the dynamics.

The state cost was defined so that it was zero at the goal 
state, using the following unnormalized Gaussian function:

where k and diag
(
�cost

)
 denote scale of state-dependent cost 

and covariance matrix of Gaussian function. They are set as 
k = 2.5 and diag(�cost) = [�∕4, 4�∕4]2.

The set of collocation states was uniformly distributed 
in the state space (Ns = 1806). In the simulation, only 
the weight parameters w are optimized. The centers mi of 
the basis functions were set so as to distribute them uni-
formly in the state space (Nf = 441). On the other hand, the 
covariance matrix Si was determined empirically and set to 
diag([�∕20, �∕20])−2.

4.2  Experimental results when the training model 
was different from the test model

We evaluate the robustness of the control policies obtained 
by the LMG framework when the test model is different 
from the training model. The mass of the pole was set to 
1 kg in the training model while it was determined in the 
range (1, 2.5 kg) with the step 0.1 in the test model. For 
� ∈ {0, 0.5, 0.75, 0.9, 0.95, 0.99, 1}, the desirability functions 
and corresponding control policies were obtained by solving 
the linearized HJI equation. We conducted the simulations 
using the obtained control policies in these test conditions. 
We tested 50 episodes, and each episode started from the 

(14)q(x) = k(1 − exp(xT�−1
cost

x)),

bottom position of the pendulum and was terminated when 
the controller leaded to the goal position or the trial is over 
100 (s) (10000 step). These results are summarized in Fig. 4.

As the mass of the pole increased, the time for swing-up 
increased and the success rate decreased using the control 
policy obtained by any value of �. In other words, the perfor-
mance of all obtained control policies deteriorated. However, 
the deterioration rate of the control performance depended 
on the value of �. In the LMDP setting, � = 0, in which 
the problem setting is equivalent to the LMDP framework, 
the performance by the obtained control policy deteriorated 
rapidly as the mass of the pole increased. As expected, the 
obtained control policy could not adapt to the change of the 
dynamics. On the other hand, LMG with � = 1 could not find 
the robust controller as opposed to our expectations. When 
� = 0.75, LMG found the most robust controller against the 
change of the mass of the pole in this simulation. Note that 
the performance was the best when � = 0.75 even though 
the mass of the pole was 1 kg. As opposed to the results 
of the discrete problem as discussed in Sect. 3.2, the per-
formance of the optimal controller obtained by LMDP was 
worse than that of the LMG-based robust controller. The 
reason why the LMDP-based controller failed was that the 
error in function approximation of the desirability and value 
functions was not considered. In addition, numerical errors 
become dominant when � is close to 1 for the continuous 
problems. Although the log-sum-exp technique can be used 
for discrete problems, it is difficult to evaluate the expecta-
tion in Eq. (1) for continuous problems. The other is because 
the same parameter � of function approximator (11) was 
used although the HJI equation (7) for � = 1 is different from 
Eq. (6) for 0 ≤ 𝛼 < 1.

4.3  Integration with model learning

Next, we investigate how the modeling error of the state 
transition probability affects the performance. The 

1 1.5 2 2.5
0

20

40

60

80

100

120

mass of the pole [kg]

ar
riv

al
 ti

m
e 

[s
]

(a)

1 1.5 2 2.5
0

20

40

60

80

100

mass of the pole [kg]

su
cc

es
s 

ra
te

 [%
]

(b)
α = 0.00
α = 0.50
α = 0.75
α = 0.95
α = 0.99
α = 1.00

Fig. 4  a Arrival time to the desired state. b Success rate of swing-up. In each plot, each line corresponds to the mean of the trials using certain 
value of � and the horizontal axis is the mass of the pole in test condition
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simple least-squares-based method is adopted for the 
method for the model learning, in which Δx in Eq. (13) 

are approximated by Δx ≈ ��(x, u), where W is a weight 
matrix to be optimized and �(x, u) is a vector consisting 
of basis functions. Two types of basis functions were pre-
pared. The first was a simple linear model with respect to 
x and u, where �(x, u) = [xT, u, 1]T. The other is a linear-
NRBF (normalized radial basis function) model defined by 
�(x, u) = [xT,�1(x),… ,�M(x), u, 1]

T, where �i(x, u) is given 
by:

where �i and ��i
 denote the center and the covariance 

matrix, respectively. {�i} were determined by K-means clus-
tering of the training data  while {��i

} were tuned manu-
ally. The training data  were extracted from the sample 
data, which were acquired under the random control policy.

Figure 5 shows the MSE of the angle and angular velocity 
component. The angle component was approximated quite 

�i(x) =
exp

�
−

1

2
(x − �i)

T�
−1
�i
(x − �i)

�

∑
k exp

�
−

1

2
(x − �k)
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�k
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� ,
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Fig. 5  The modeling error in each component: we extracted N = 500 
samples randomly as a test data set and then calculated the approxi-
mated state transition Δx when two models were applied, respec-
tively. After that, we computed the mean squared error (MSE) of each 
component

Fig. 6  a Solution of the linearized HJI equation. The obtained value 
function v(x) is shown when � = 1 and the desirability function z(x;�) 
when 0 ≤ 𝛼 < 1. b Control policy derived by Eq.  (12) and plotted 
line on the panels are the trajectory using the resulting control policy 

from the bottom of pendulum. Left, middle, and right panels show the 
result using the true model, linear model, and linear-NRBF model, 
respectively
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accurately in both approximators because it includes only 
linear state transition. On the other hand, the approximation 
of the angular velocity component of the linear model was 
less accurate than that of the Liner-NRBF model because 
the linear model was not able to represent the nonlinear state 
transition.

The optimal policies derived from the models discussed 
above were compared with those with the true model under 
different levels of � ∈ {0, 0.75, 0.95, 1} as we did in Sect. 4.2. 
Figure 6a compares the estimated desirability functions of 
three models for 0 ≤ 𝛼 < 1 and the estimated value functions 
for � = 1. As � became close to 1, the obtained desirability 
functions became flatter. This was due to the fact that the 
coefficient of the state cost function in Eq. (6) became small 
as � becomes close to 1. Since the linear-NRBF model was 
sufficiently accurately shown in Fig. 5, there were no sig-
nificant differences in the desirability and the value function 
between the true and the linear-NRBF model for all �. On 
the other hand, the linear model produced a slightly differ-
ent function. Figure 6b shows the optimal policy and typi-
cal trajectories. For the cases of true and the linear-NRBF 
models, the number of swinging gradually increased as � 
approached to 1 while the controller from the linear model 
showed different behaviors.

To evaluate the relationship between the control perfor-
mance and the level of � in more detail, we conducted the 
simulations using the obtained control policies. In the simu-
lation, we tested 50 episodes, the episodes started from the 
bottom position of the pendulum and were terminated when 
the controller leads to the goal position or the trial is over 
200 (s) (20,000 steps).

The experimental results are summarized in Fig. 7. In 
the LMDP setting, � = 0, the control policy obtained by the 
linear model which had a large approximation error took a 
much longer time to swing-up as compared with the other 
control policies. Surprisingly, the performance of the true 
model was slightly worse than that of the linear-NRBF 
model. As we discussed in Sect. 4.2, the error in function 
approximation should be considered even if the true model 
was used, the obtained control policy with � = 0 deteriorated 
due to the approximation error. Nevertheless, this gap in the 
control performance became small as the value of � became 
large. Consequently, the time for swing-up was almost same 
among the all obtained control policies when � = 0.75, 0.9.  
However, the gap became large again when � was more 
than 0.9. When � = 1, the linear model showed the worse 
performance.

5  Conclusion

We evaluated the robustness of the control policies 
obtained by LMDP and LMG using the discrete and con-
tinuous state-action tasks. Our simulation results suggest 
that LMDP was useful only if the environment is regarded 
as deterministic and discrete, while LMG was efficient 
even if the training environment was different from the 
test environment. Furthermore, according to the results 
of the swing-up task, the performance of the LMG-based 
controller was improved by choosing � appropriately when 
the inaccurate linear model was used to approximate the 
environmental dynamics.

As we discussed, the error in function approximation 
was important in the continuous problems while the desir-
ability function can be computed precisely for the discrete 
problems. In the case of the discrete problems, the desir-
ability function can be exactly represented by a tabular 
representation, and it is computed by solving a general-
ized eigenvalue decomposition that is numerically stable. 
Therefore, it was appropriate to choose the largest value, 
� = 1, to obtain the control policy, which is robust for the 
modeling error. On the other hand, in the case of the con-
tinuous problems, we should consider the effect of approxi-
mation and estimation errors of the desirability function, 
and therefore, the value of � should be determined care-
fully to obtain the robust control policy. There remains the 
problem of how to choose the appropriate value of � as a 
future work.
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