
Robotics and Autonomous Systems 112 (2019) 72–83

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Deep reinforcement learning with smooth policy update: Application
to robotic cloth manipulation
Yoshihisa Tsurumine a,∗, Yunduan Cui a, Eiji Uchibe b, Takamitsu Matsubara a

a Graduate School of Science and Technology, Division of Information Science, Nara Institute of Science and Technology, 8916-5 Takayamacho, Ikoma,
Nara, Japan
b Department of Brain Robot Interface, ATR Computational Neuroscience Laboratories, 2-2-2 Hikaridai, Seikacho, Soraku-gun, Kyoto, Japan

h i g h l i g h t s

• Learning of cloth manipulation by Deep Reinforcement Learning by a dual-arm robot.
• Combine smooth policy update with feature extraction in deep neural networks.
• Propose new Deep Reinforcement Learning based on Dynamic Policy Programming.
• Achieved better sample efficiency than comparisons by smooth policy update.

a r t i c l e i n f o

Article history:
Available online 19 November 2018

MSC:
00-01
99-00

Keywords:
Deep reinforcement learning
Robotic cloth manipulation
Dynamic policy programming

a b s t r a c t

Deep Reinforcement Learning (DRL), which can learn complex policies with high-dimensional observa-
tions as inputs, e.g., images, has been successfully applied to various tasks. Therefore, it may be suitable to
apply them for robots to learn and perform daily activities like washing and folding clothes, cooking, and
cleaning since such tasks are difficult for non-DRL methods that often require either (1) direct access to
state variables or (2) well-designed hand-engineered features extracted from sensory inputs. However,
applying DRL to real robots remains very challenging because conventional DRL algorithms require a huge
number of training samples for learning, which is arduous in real robots. To alleviate this dilemma, in
this paper, we propose two sample efficient DRL algorithms: Deep P-Network (DPN) and Dueling Deep
P-Network (DDPN). The core idea is to combine the nature of smooth policy update with the capability
of automatic feature extraction in deep neural networks to enhance the sample efficiency and learning
stability with fewer samples. The proposed methods were first investigated by a robot-arm reaching task
in the simulation that compared previousDRLmethods and applied to two real robotic clothmanipulation
tasks: (1) flipping a handkerchief and (2) folding a t-shirt with a limited number of samples. All the results
suggest that our method outperformed the previous DRL methods.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

With the capability of learning optimal policies by interacting
with an unknown environment, Reinforcement Learning (RL) [1]
has been applied to a broad range of platforms in robot control,
such as autonomous helicopter/vehicle [2,3], a robot dog [4], and
humanoid robots [5–7]. Most of the RL algorithms in the above
studies require either (1) direct access to state variables or (2)well-
designed hand-engineered features extracted from sensory inputs.
However, they become difficult in general when considering more
complex and practical tasks/situations. For example, in household

∗ Corresponding author.
E-mail addresses: tsurumine.yoshihisa.tm6@is.naist.jp (Y. Tsurumine),

cuiyunduan@gmail.com (Y. Cui), uchibe@atr.jp (E. Uchibe), takam-m@is.naist.jp
(T. Matsubara).

robots, such as humans’ daily activities as washing and folding
clothes, cooking and cleaning are desirable to be learned and per-
formed by RL, but it is not easy to achieve either (1) or (2) (e.g., [8]).

The recent advance of Deep Neural Networks (DNNs) [9] en-
ables automatic extraction of high-level features to outperform
traditional hand-engineered features extracted from high-
dimensional observations as input like raw images [10–12] and au-
dio signals [13,14]. Deep Reinforcement Learning (DRL), e.g., Deep
Q-Network (DQN) [15] and Trust Region Policy Optimization
(TRPO) [16], have been proposed by exploiting such DNN capa-
bilities for automatic feature extraction in RL. By automatically
abstracting good high-level features from raw images, DQN can
learn a complex policy with human-level performances on various
Atari video games. On the other hand, the application of DQN-
like algorithms to real robot control problems remains limited due
to insufficient samples. To learn suitable features, DRL generally

https://doi.org/10.1016/j.robot.2018.11.004
0921-8890/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.robot.2018.11.004
http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2018.11.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:tsurumine.yoshihisa.tm6@is.naist.jp
mailto:cuiyunduan@gmail.com
mailto:uchibe@atr.jp
mailto:takam-m@is.naist.jp
https://doi.org/10.1016/j.robot.2018.11.004
http://creativecommons.org/licenses/by/4.0/

Y. Tsurumine, Y. Cui, E. Uchibe et al. / Robotics and Autonomous Systems 112 (2019) 72–83 73

requires a huge number of training samples; unfortunately, gen-
erating these samples in a real robot system is arduous because
of the high sampling cost. Such a dilemma between the difficulty
of feature extraction and high sampling cost is one of the most
crucial issues for making the RL approach more practical in real
robot control.

In this paper, we propose two sample efficient DRL algorithms:
Deep P-Network (DPN) and Dueling Deep P-Network (DDPN).
The core idea shared by these algorithms is to combine the na-
ture of smooth policy update in value function-based reinforce-
ment learning with the automatic feature extraction from high-
dimensional observations in deep neural networks to enhance the
sample efficiency and the learning stability with fewer samples.
The smoothness of policy update is promoted by limiting the
relative entropy or the Kullback–Leibler divergence between the
current and new policies in the learning process. Even though
several RL algorithms with such smooth policy update have been
proposed [17,18], we focus on Dynamic Policy Programming (DPP)
[19] for the following reasons: (1) its asymptotic convergence
nature to the optimal policy (for discrete state–action cases); (2) a
discrete action space that can easily use high-level actions; and (3)
success in high-dimensional robot control tasks with direct access
to state variables [20].

We first present DPN as a novel deep reinforcement learning
based on DPP. It automatically abstracts the features from raw
images by exploiting the nature of smooth policy update by intro-
ducing the Kullback–Leibler divergence between current and new
policies as a regularization term into the reward function for better
sample efficiency. Then an extension of DPN with a particularly
suitable network structure of DNN, Dueling DPN, is proposed for
better generalization capability inspired by the dueling network
structure for DQN [21]. DPN and Dueling DPN are first applied
to a n DOF simulated manipulator reaching task to evaluate their
learning performances and compare the effect of different network
structures and parameter settings with previous DRL methods.
Then Dueling DPN was applied to real robotic cloth manipulation
tasks to control a dual-arm humanoid robot NEXTAGE (Fig. 1a) to
learn (1) the flipping of a handkerchief (Fig. 1b) and (2) folding a t-
shirt (Fig. 1c) with a limited number of samples. We chose robotic
cloth manipulation because it requires both a complicated and a
high-dimensional state definition and a huge number of training
samples to recognize and model the flexible cloth or to learn a
suitable manipulation policy. Although several studies have been
conducted in similar tasks [22,23], their approaches were based
on learning from demonstration scheme, where a huge number of
manually generated samples and a relatively long training period
are requiredwithout self-improvement in the learning loop. To the
best of our knowledge, this is the first successful application of
deep reinforcement learning for robotic cloth manipulation with a
small number of demonstration data for initializing the networks
and raw images as observations. Our methods employ a discrete
action space for grasping and dropping points on cloth following
a previous work [22] so that the RL agent learns high-level and
general policies that are independent on a robot platform.

Our preliminaryworkwas published as a conference paper [24].
This article extends our preliminary work as follows:

1. provides an initialization scheme of DPNswith (non-expert)
demonstration data for accelerating learning;

2. validates the effectiveness of our methods by thorough sim-
ulations;

3. investigates the effect of the degree of promotion of the
smoothness in policy update into reward functions;

4. further analyzes the average Bellman error in value function
approximations to demonstrate the superiority of the pro-
posed algorithm;

5. conducts real robot experiments on a t-shirt folding task
with complex action space and reward functions.

The remainder of this paper is organized as follows. Section 2
introduces previous research on deep reinforcement learning and
robotic cloth manipulation are introduced. The preparations are
introduced in Section 3. The details of the proposed method are
explained in Section 4. Sections 5 and 6 present the experimental
results in simulations and real robot experiments on clothmanipu-
lation tasks, respectively. Discussion and conclusion are described
in Sections 7 and 8, respectively.

2. Related work

2.1. Deep reinforcement learning

DRL methods, which are very popular solutions to deal with
high-dimensional observations in RL, apply DNNs to automatically
extract features from high-dimensional observations. As the basics
of a value function based DRL that learns with a global state–
action value function and discrete action space, DQN [15] is the
first successful integration of deep learning with Q-learning. As
further improvements, double deep Q-networks [25] and duel-
ing architecture DQN [21] were proposed to increase robustness
against the overestimating value function and easier convergence,
respectively. The policy search based DRL, e.g., [16], focuses on uti-
lizing DNN to locally learn a policy thatmaximizes the total reward
during the task. DRL can learn complex policies with human-level
performances in both simulation tasks and video games through
trial and error. On the other hand, DRL applications to real robot
control problems remain challenging due to the requirement of a
huge number of training samples generated by operating robots to
be interactive with the environment. One solution is to simultane-
ously obtain many samples from multiple sampling robots [26] or
simulations [27]. Another solution is to achieve better sample effi-
ciency during learning, e.g., by setting suitable initial policies [28].

2.2. RL with smooth policy update

To improve the sample efficiency and learning stability with
fewer samples in RL, smooth policy update is exploited to limit the
information that is lost during learning [29]. The main idea is to
introduce the Kullback–Leibler divergence to limit the differences
between the current andnewpolicies into the reward function. The
related approaches include both value function-based, e.g., [19],
and policy search, e.g., relative entropy policy search [17] and
guided policy search [30]. In the robot control domain, the smooth
policy update was applied to learn hierarchical policies [31] and
achieve sample efficiency and learning stability with kernel trick
in robot hand control with a 32-dimensional state space [20].
The current combination of smooth policy update and DRL [32]
focuses on learning end-to-end motor policies represented by lin-
ear Gaussian controllers in continuous action space. On the other
hand, combining the value function based DRL with smooth policy
update has not been intensively studied.

2.3. Robotic cloth manipulation

Studies in robotic cloth manipulation can be divided into two
directions: task-oriented and knowledge-based approaches [22].
The former focuses on cloth recognition based on manually se-
lected features, depth sensor and cloth model, e.g., the hem [33],
the corners andwrinkles [34,35], the geometric cloth polygon [36],
the 2.5D depth sensor point cloud [37], a 3D range camera [38], and
models and simulations [39–41] for subsequentmanipulation. One
complete pipeline of autonomously folding clothes based on vision
features is described in [42]. The latter learns the relationship

74 Y. Tsurumine, Y. Cui, E. Uchibe et al. / Robotics and Autonomous Systems 112 (2019) 72–83

Fig. 1. Real robot setting: Our targets are two robotic cloth manipulation tasks with a dual-arm humanoid robot NEXTAGE (a) (1) flipping of a handkerchief (b) and (2)
folding a t-shirt (c) with a limited number of samples.

between the robot manipulation and the clothing shape. Matsub-
ara et al. [43] proposed an RL approach to learn motor skills to
handle a t-shirt based on the topological relationship between the
robot configuration and the non-rigid material. Another friction
model based RL approach was proposed to search robot motion
trajectories to place a scarf around the mannequin’s neck in [44].
Lee et al. [45] presented force-based demonstration learning for
deformable object manipulation. The convolutional neural net-
work is applied to classify different types of clothes and control
a robot to handle the clothes’ pose by selecting grasping points
in [46]. Other recent works [22,23] employed a deep convolutional
autoencoder to learn high-level features from cloth images and
implicitly generated a clothmodelwithmanipulation. Corona et al.
[47] propose an algorithm using DNN detect grasping points that
bring the garment to a known pose. Theseworks demonstrated the
potential of DNN in robotic cloth manipulation, even thoughmany
samples and a relatively long training time were required.

3. Preparation

3.1. Reinforcement learning

RL [1,48] solves the Markov decision process (MDP) defined
by a 5-tuple (S,A, T ,R, γ). S = {s1, s2, . . . , sn} is a finite set of
states. A = {a1, a2, . . . , am} is a finite set of actions. T a

ss′ is the
probability of transitioning from state s to state s′ under action a.
The corresponding reward is defined as rass′ with reward functionR.
γ ∈ (0, 1) is the discount parameter. Policy π (a|s) represents the
probability of action a being taken under state s. The value function
is defined as the expected discounted total reward in state s:

V (s) = Eπ,T

[∞∑
t=0

γ t rst

⏐⏐⏐⏐s0 = s
]
, (1)

where rst =
∑

a∈A
s′∈S

π (a|st)T a
st s′

rast s′ is the expected reward from
state st .

The objective of RL is to find optimal policy π∗ that maximizes
the value function to satisfy the following Bellman equation:

V ∗(s) = max
π

∑
a∈A
s′∈S

π (a|s)T a
ss′
(
rass′ + γV ∗(s′)

)
, (2)

or a Q function for state–action pairs (s, a):

Q ∗(s, a) = max
π

∑
s′∈S

T a
ss′
(
rass′ + γ

∑
a′∈A

π (a′|s′)Q ∗(s′, a′)
)
. (3)

Value function based RL algorithms, e.g., Q-learning [49], SARSA
[50], and LSPI [51], approximate the value/Q function using the
Temporal Difference (TD) error. For example, the TD update rule in
Q-learning follows Q (st , at)← Q (st , at)+ α[ratst st+1 + γ maxat+1 Q
(st+1, at+1)− Q (st , at)], where α is the learning rate.

3.2. Deep Q-network

As a combination of Q-learning and DNN, DQN [15] successfully
approximates the Q function by DNN. Since the direct approxi-
mation of a dynamically changing Q function by DNN is difficult,
DQN stabilizes the learning by several tricks, like target network,
error clip, and experience replay. When Q function approximated
by DNN parameter θ is represented by Q̂ (s, a; θ), a target network
is defined as Q̂ (s, a; θ−). θ− is updated every C steps following
θ− = θ, and θ is updated every step with sample (sj, aj, r

aj
sjsj+1 , sj+1)

from a global memory that stores all the generated samples by
performing a gradient descent with the TD error:

J(θ, θ−) ≜
∑

(sj,aj,r
aj
sjsj+1 ,sj+1)∈D

(r
aj
sjsj+1 + γ max

a′
Q̂ (sj+1, a′; θ−)

− Q̂ (sj, aj; θ))2, (4)

where D denotes the experience replay buffer. The gradient de-
scent step on θ needs to be sufficiently small to make the learning
slow and reduce the sample efficiency to avoid excessively chang-
ing the target function in the function approximation with DNN.
One serious concern of DQN is that the smoothness in the policy
update is not explicitly considered during learning. Such a lack of
smoothness can drastically deteriorate the learning performance
when the new policy is radically different from the previous one.
In the subsequent section, we give a short summary of Dynamic
Policy Programming [52,19], which is a value function based RL
algorithm that employs a smooth policy update.

Y. Tsurumine, Y. Cui, E. Uchibe et al. / Robotics and Autonomous Systems 112 (2019) 72–83 75

3.3. Dynamic policy programming

To exploit the nature of smooth policy update, DPP [52,19]
considers the Kullback–Leibler divergence between current policy
π and baseline policy π̄ into the reward function to minimize the
difference between the current and baseline policywhilemaximiz-
ing the expected reward:

DKL =
∑
a∈A

π (a|s) log
π (a|s)
π̄ (a|s)

. (5)

Thus, the Bellman optimality equation Eq. (2) is modified as:

V ∗π̄ (s) = max
π

∑
a∈A
s′∈S

π (a|s)
[
T a
ss′
(
rass′ + γV ∗π̄ (s

′)
)
−

1
η
log
(π (a|s)

π̄ (a|s)

)]
.

(6)

The effect of the Kullback–Leibler divergence is controlled by in-
verse temperature η. Following [52,53], we let η be a positive
constant. Optimal value function V ∗π̄ (s) for all s ∈ S and Optimal
policy π̄∗(a|s) for all (s, a) satisfy double-loop fixed-point iterations
as follows:

V t+1
π̄ (s) =

1
η
log
∑
a∈A

π̄ t (a|s) exp
[
η
∑
s′∈S

T a
ss′
(
rass′ + γV t

π̄ (s
′)
)]

(7)

π̄ t+1(a|s) =
π̄ t (a|s) exp

[
η
∑

s′∈S T a
ss′
(
rass′ + γV t

π̄ (s
′)
)]

exp
(
ηV t+1

π̄ (s)
) . (8)

Action preferences function [1] at the (t + 1)-iteration for all
state–action pairs (s, a) is defined following [19] to obtain the
optimal policy that maximizes the above value function:

Pt+1(s, a) =
1
η
log π̄ t (a|s)+

∑
s′∈S

T a
ss′
(
rass′ + γV t

π̄ (s
′)
)
. (9)

Combining Eq. (9) with Eqs. (7) and (8), a simple form is obtained:

V t
π̄ (s) =

1
η
log

∑
a∈A

exp
(
ηPt (s, a)

)
(10)

π̄ t (a|s) =
exp

(
ηPt (s, a)

)∑
a′∈A exp

(
ηPt (s, a′)

) . (11)

The update rule of action preference function Pt+1(s, a) = OPt (s, a)
is derived by plugging Eqs. (10) and (11) into Eq. (9):

OPt (s, a) = Pt (s, a)− LηPt (s)+
∑
s′∈S

T a
ss′
(
rass′ + γLηPt (s′)

)
, (12)

where LηP(s) ≜ 1
η
log
∑

a∈A exp(ηP(s, a)) = Vπ̄ (s). The difference

between Pt+1(s, a) andOPt (s, a) is used to calculate the error signal
to train the action preference function.

The original DPP is only applicable to problems with a modest
number of discrete states and prior knowledge about the underly-
ingmodel. Sampling-basedApproximateDynamic Policy Program-
ming (SADPP) [52] extends it to model-free learning with large-
scale (continuous) states. For N training samples, [sn, an]n=1:N ,
SADPP approximates P(s, a) by Linear Function Approximation
(LFA): P̂(sn, an; θ) = φ(xn)Tθ , where φ(xn) denotes the output
vector of the basis functions and θ is the corresponding weight
vector. The weight vector is updated by minimizing empirical loss
function J(θ; P̂) ≜ ∥Φθ−OP̂∥22, whereOP̂ is an N×1matrix with
elements OP̂(s, a; θ) following Eq. (12), where LηP(s) is translated
into a Boltzmann softmax operator for more analytically tractable
recursion.

Although such an extension to DPP can be applied to toy prob-
lems as mountain-car control [52], its scalability is still limited

Fig. 2. Network architectures of Deep P-Network.

due to the exponentially growing size of the basis functions with
increasing input dimensionality and corresponding intractability.
More scalable function approximators, such as non-parametric
regression, have been employed and successfully applied for real
robot control tasks [54,20]. However, their applications to such
very high-dimensional and redundant state like sensor data and
raw image data remain infeasible.

4. Proposed method

In this section, we first present a novel deep reinforcement
learning algorithm, Deep P-Network (DPN), that exploits the ad-
vantages of both DRL for high-dimensional state space and DPP
for smooth policy update. Next we consider a more suitable neural
network architecture for DPN as inspired by the Dueling DQN [21]
that has a new neural network architecture with two parts to
automatically produce separate estimates of value function V (s)
and advantage function A(s, a) that fulfills A(s, a) = Q (s, a)− V (s)
without any extra supervision. Finally, we present how we can
initialize both DPN and Dueling DPN with demonstration data for
accelerating learning.

4.1. Deep P-network

In this subsection, we propose DPN, which approximates the
action preferences function P(s, a; θ) in Eq. (9) by DNN. Its net-
work structure is defined in Fig. 2. Initial input state s is a raw
RGB/grayscale image that usually has very high dimensionality. A
Convolutional Neural Network (CNN) abstracts the raw image to
a lower-dimensional high-level feature set. These features are in
turn processed by a Fully Connected Network (FCN) and the final
layer has m nodes, where m is the number of actions in A and the
ith node’s output is approximated value P̂(s, ai; θ).

The training algorithm for DPN is given by Algorithm 1. In DPN,
I is the number of iterations of DPN, and each iteration has M
episodes with M × T samples. Local memory D is maintained to
store the current E iteration samples for experience feedback. The
updating of networks is operated in every episode. The current
parameters as θ− are saved to build target network P̂(s, a; θ−). The
update is divided into N sub-problems. In each one, the agent re-
peatedly collects mini-batches of samples (sj, aj, r

aj
sjsj+1 , sj+1) from

D and calculates teaching signal yj following Eq. (12):

yj(θ−) = P̂(sj, aj; θ−)− LηP̂(sj; θ−)+ r
aj
sjsj+1 + γLηP̂(sj+1; θ−).

(13)

The network parameters are updated by applying gradient descent
algorithms to minimize the loss function:

J(θ, θ−) ≜ (yj(θ−)− P̂(sj, aj; θ))2. (14)

76 Y. Tsurumine, Y. Cui, E. Uchibe et al. / Robotics and Autonomous Systems 112 (2019) 72–83

Algorithm 1: Deep P-Network
Initialize local memory D and its size E
Initialize network weights θ
Initialize target network weights θ− = θ
Function UpdatePNetwork(θ, θ−, D, N):

Initialize target network update number N
Initialize epoch number U
Initialize number of mini-batches B = E/(minibatch size)
for n = 1, 2, ...,N do

for i = 1, 2, ...,U do
Shuffle local memory D index
for j = 1, 2, ..., B do

Sample minibatch of transition (sj, aj, r
aj
sjsj+1 , sj+1) in

D
Calculate the teaching signal:
yj =
P̂(sj, aj; θ−)− LηP̂(sj; θ−)+ r

aj
sjsj+1 + γLηP̂(sj+1; θ−)

Get loss and update θ by performing a gradient
descent step on (yj − P̂(sj, aj; θ))2

Update target network θ− = θ

Initialize DPP parameters I,M, T
for i = 1, 2, ..., I do

for episode = 1, 2, ...,M do
for t = 1, 2, ..., T do

Take action at with softmax policy based on π̄ t (at |st)
following P̂(st , at; θ) and Eq. (11)
Receive new state st+1 and reward ratst st+1
Store transition (st , at , r

at
st st+1 , st+1) in D

UpdatePNetwork(θ, θ−, D, N)
if i > (E − 1) then

Update D to store the current (E − 1) iterations’ samples

The loss of the gradient descent is added to the average loss. When
the average loss is less than a threshold, the current sub-update is
terminated and the target networks are updated after processing
N mini-batch by θ− = θ. In summary, the following are the main
differences between DQN and DPN:

1. Local memory D with the current E iteration samples is
applied to store fewer samples and focuses more on new
samples. As the value function is updated using only the data
sampled from the new policy of updating, the improvement
of the policy is fast.

2. Update θ every episode with T steps rather than every step.
The DPN updates in the same process as the DPP updating
the value function.

3. Parameter θ of DNN is updated with the number of epochs
U using memory D. Switch the target network and update
θ N times. By switching the target network while updating
the value function, update the iteration of the value function
without new samples.

4.2. Dueling network architecture for DPN

In this subsection, Dueling DPN (DDPN) is proposed as a natural
extension of DPN toward a dueling network [21].

Plugging Vπ̄ (s) = LηP(s) ≜ 1
η
log
∑

a∈A exp(ηP(s, a)) into
Eq. (12), we obtain:

Pt+1(s, a) = Pt (s, a)− V t
π̄ (s)+

∑
s′∈S

T a
ss′
(
rass′ + γV t

π̄ (s)
)
. (15)

Fig. 3. Network architecture of Dueling Deep P-Network.

Combining it with Eq. (9), the action preference function can be
represented as:

Pt (s, a) =
1
η
log π̄ t (a|s)+ V t

π̄ (s), (16)

You can directly derive Eq. (16) from Eqs. (10) and (11) because
the denominator of Eq. (11) is given by exp(ηV t

π̄ (s)). which can
be naturally divided into two parts: value function V t

π̄ (s) and ad-
vantage function A(s, a) ≜ 1

η
log π̄ t (a|s). Fig. 3 shows the archi-

tecture of the Dueling DPN that consists of two streams of V (s)
and A(s, a) while sharing one convolutional feature abstraction
module. One regularization term is added to Eq. (16) to fulfill∑

a′∈A exp
(
log π̄t (a|s)

)
= 1:

Pt (s, a) =
1
η
log π̄t (a|s)+ V t

π̄ (s)−
1
∥A∥

×

{(∑
a′∈A

exp (log π̄t (a|s))

)
− 1

}
. (17)

4.3. Prior policy initialization of DPN/Dueling DPN

Based on previous works [55,28], DRL can successfully learn
tasks with a small number of samples by initializing its policy from
demonstrations. DPN andDuelingDPNare expected to fully exploit
the successfully initialized policies based on prior knowledge since
they employ a smooth policy update in the DRL framework. Even
though the given initial policies may not be perfect, they should be
beneficial for accelerating reinforcement learning.

We show an initialization procedure for both DPN and Dueling
DPN using a small number of demonstration samples (generated
by a human operator), summarized in Algorithm 2. By following
Algorithm 2, we store these samples in local memory D and up-
date the P-network before learning the results in the networks
including prior knowledge. Parameter K controls the effect of the
demonstration data on learning. The nature of the smooth policy
update enables the DPN/Dueling DPN to smoothly update the
resulting policies from the initialized ones.

5. Simulation

5.1. n DOF manipulator reaching task

In this section, we investigated the learning performance of
DPN and Dueling DPN in a simulated n DOF manipulator reaching
task (n = 5, 15, 25, 50) by comparing DQN and Dueling DQN. The
state is the entire grayscale 84 × 84 px image where the n DOF
manipulator is drawn, as shown in Fig. 4. The length of each limb
between the adjoining joints is set to 1

n . The environment and the
DPN parameter settings are respectively shown in Table 1a and b.
For the network architecture, the input layer has 84× 84× 1nodes
for each pixel of the state image. The setting of the middle layer

Y. Tsurumine, Y. Cui, E. Uchibe et al. / Robotics and Autonomous Systems 112 (2019) 72–83 77

Algorithm 2: Initialization and learning of DPN policy
Initialize local memory D and its size E
Initialize network weights θ
Initialize target network weights θ− = θ
Load L points initial sample and store in local memory D
Initialize number of initial updates K
UpdatePNetwork(θ, θ−, D, K) # Initialization DPN policy
Initialize DPP parameters I,M, T
for i = 1, 2, ..., I do

for episode = 1, 2, ...,M do
for t = 1, 2, ..., T do

Take action at with softmax policy based on π̄ t (at |st)
following P̂(st , at; θ) and Eq. (11)
Receive new state st+1 and reward ratst st+1
Store transition (st , at , r

at
st st+1 , st+1) in D

UpdatePNetwork(θ, θ−, D, N)
if i > (E − 1) then

Update D to store the current (E − 1) iteration samples

Table 1
Settings and learning parameters of n DOF manipulator reaching task.
(a) Parameter setting of n DOF manipulator reaching task

MDP setting Description

State The entirety of a grayscale 84× 84 px image.

Action Discrete actions [−0.0875,−0.0175, 0, 0.0175, 0.0875] (rad)
to increment the joint with the respective angle for each DOF.
We define an action at each time step as one move per joint to
reduce the number of actions to (N × 5).

Reward Reward function is set as r = −
(
|Xtarget − X | + |Ytarget − Y |

)
where X, Y is the current position of the manipulator’s
end-effector, and Xtarget = 0.6830, Ytarget = 0 is the target
position.

Initial state The first joint is set to position [0, 0]. All angles are initialized
to 0 rad at the start of the simulation.

(b) Parameter setting of DPN algorithm

Parameter Meaning Value

η Parameters controlling the effect of smooth policy update 1
M Number of episodes for one iteration 5
T Number of steps for one episode 30
E Size of memory D to store sample 450
N Number of target network updates in one iteration 2
U Epoch number of DNN updates 80
L Number of samples for policy initialization 300
K Number of P-network updates at policy initialization 20

and the optimizer follows previous works [15,21]. The policies of
DPN and Dueling DPN are calculated by Eq. (11) while DQN uses
a ε-greedy policy. All the results are derived in five repetitions.
Our hardware platform is a PC with an Intel Core i7-5960 CPU, a
Nvidia GTX 1080 GPU, and 64 GB memory. The software platform
was built by Tensorflow [56] and Keras [57].

5.2. Learning results

The learning results with different numbers of DOFs are shown
in Fig. 5. The left side shows the results without the initialization
procedure with demonstration samples. Both DPN and Dueling
DPN clearly performed aswell as expected in the simulations: they
stably improved the performance with only around 2000 samples,
but DQN and Dueling DQN could not. By separately learning the
action preferences and value functions, DuelingDPNoutperformed
DPN. The right side of Fig. 5 shows the result with prior policy ini-
tialization (marked by ‘‘init’’, where the number of demonstration
samples is defined as L in Table 1b, and in this task, we used 300

Fig. 4. Successful behaviors for n (5 and 50) DOF manipulator reaching tasks.
Different colored robots represent manipulator states in different steps.

samples generated by a non-optimal policy). Compared with other
algorithms, Dueling DPN supported the value of initializationmore
and quickly outperformed the performance of the demonstration
samples (purple dashed line). All these results show the sample ef-
ficiency of DPN/Dueling DPN. They used fewer samples to achieve
higher average reward values than the DQN algorithms under
the same DNN setting, and their superiority rose with the DOF
increase.

5.3. Effect of parameter η in DPN and Dueling DPN

We investigated the effect of DPN’s parameter η in a 5-DOF
manipulator reaching task. With an increase of η, the Kullback–
Leibler divergence term in Eq. (6) limits the policy update less.
Since the operator Lη is the log-sum-exp function, it is consid-
ered a soft-max operator and it converge to the max operator as
η → ∞. Therefore, the choice of η determines the smoothness
of the operator. In addition, DPP converges to the optimal policy
for any η, but it changes the rate of convergence significantly.
Both DPN and Dueling DPN were tested in five repetitions where
η = [0.01, 0.1, 0.5, 1.5, 3.0, 10, 20]. Fig. 6a shows the results;
in a suitable range, i.e., [0.01, 0.3], a larger η resulted in faster
learning due to less smoothness in the policy update. On the other
hand, an extremely large η caused divergent learning due to the
numerical instabilities using the exponential function in the action
preferences function [20]. Dueling DPN also has better stability
with various η than DPN, maybe because its architecture divides
the action preferences function into two parts. Thismay contribute
to Dueling DPN’s better learning capability shown in Section 5.2.

5.4. Bellman error in DPN

Next we investigated the effect of smooth policy update in
DPN’s function approximation. We define the Bellman error as:

BE(V̂ t+1(s), rass′ , V̂
t (s)) = ∥V̂ t+1(s)− (rass′ + γ V̂ t (s))∥. (18)

The Bellman error measures the approximation error of the value
function during learning. State value function V̂ t of DPN can be
calculated following Eq. (10), and the calculation in DQN follows

V̂ t (s) = Eπ

[
Q t (s, a)

]
. Fig. 7 shows the average Bellman error in the

first 15 iterations of ten learnings in 5-DOF manipulation reach-
ing tasks. As a result, we achieved more accurate value function
approximation in DPN and Dueling DPN than in DQN and Dueling
DQN due to limiting the overly large updates that result in stable
and efficient learning.

78 Y. Tsurumine, Y. Cui, E. Uchibe et al. / Robotics and Autonomous Systems 112 (2019) 72–83

Fig. 5. Learning curve of n DOF manipulator reaching task.

6. Real robot experiment

In this section, we applied the Dueling DPN to the NEXTAGE
robot, a 15-DOF humanoid robot with sufficient precision for man-
ufacturing, to learn two robotic cloth manipulation tasks. Follow-
ing [22], we focus on learning a policy with high-level discrete
actions, i.e., the grasp and release points on a cloth to solve two
tasks: (1) flipping over a handkerchief and (2) folding a t-shirt.

6.1. Flipping a handkerchief

6.1.1. Setting
The environment and the DPN settings of this task are respec-

tively shown in Table 2a and b. The network architecture, the
optimizer, and the hardware/software mainly follow the setting in
Section 5.1, and the input layer is fixed to 84 × 84 × 3 nodes for
the RGB state image. The software is built on the Robot Operating
System (ROS) [58].

Y. Tsurumine, Y. Cui, E. Uchibe et al. / Robotics and Autonomous Systems 112 (2019) 72–83 79

Fig. 6. Average learning results of DPN/Dueling DPN with different values of η in the 5-DOF manipulator reaching task over ten experiments.

Fig. 7. Average Bellman error in each iteration.

6.1.2. Results
The learning results of three experiments are shown in Fig. 9.

Each experiment took about four hours, including 40 min for
manually initializing the handkerchief (≈ 30 seconds per episode)
to generate 2400 samples (= 16 iterations). The samples used
for the Dueling DPN initialization were generated by a human
operator who selected the actions for several states. Note that
these samples are collected from non-expert demonstrations and
they are insufficient to learn a good policy. The performance of
the policy learned from these samples using supervised learning
is shown as ‘‘Supervised’’ in Fig. 9. It is better than the random
action but cannot be as good as the proposed methods. From the
results, without prior policy initialization, Dueling DPN converged
faster and achieved higher reward than Dueling DQN. With only
300 demonstration samples for initialization, Dueling DPN learned
better policies by exploring with 2400 additional samples. Both
Dueling DPNwith/without prior policy initialization outperformed
the corresponding Dueling DQN algorithms. Fig. 8 shows one ex-
ample of a handkerchief flipping process learned by Dueling DPN,
which turned about 80% of the handkerchief over in about 15 steps.

6.2. Folding a t-shirt

6.2.1. Setting
The next task was to fold a t-shirt. The details of the environ-

ment and the algorithm settings are respectively summarized in
Table 3a and b. The network architecture, the optimizer, and the

Table 2
Settings and learning parameters of flipping handkerchief task.
(a) Parameter setting of flipping handkerchief task

MDP setting Description

State The input state is a 84× 84 px RGB image from NEXTAGE’s
integrated camera.

Action 6× 6 = 36 gripper actions are defined as picking up the
handkerchief from 2× 3 points over its current area and
dropping it down to 2× 3 points over the table.

Reward The reward is defined as the ratio of the red area over the
whole image in the current state.

Initial state The handkerchief is initially placed green side up by a human.

(b) Parameter setting of DPN algorithm

Parameter Meaning Value

η Parameters controlling the effect of smooth policy update 1
M Number of episodes for one iteration 5
T Number of steps for one episode 30
E Size of memory D to store samples 450
N Number of target network updates in one iteration 2
U Epoch number of DNN updates 40
L Number of samples for policy initialization 300
K Number of P-network updates at policy initialization 20

hardware/software settings are the same as in the handkerchief
flipping task. It is a more challenging task than flipping handker-
chief due to (1) a larger action space to deal with various clothing
operations, (2) a more complex reward function that shows the
stepwise folding achievement degree as in Algorithm 3, (3) fewer
steps in one rollout, (4) fewer samples (80) generated by a human
operator for prior policy initialization.

6.2.2. Results
The averaged learning results based on three experiments are

shown in Fig. 11. Dueling DPN successfully learned the task with
only 80 demonstration samples for policy initialization and 112
additional samples generated during reinforcement learning. The

80 Y. Tsurumine, Y. Cui, E. Uchibe et al. / Robotics and Autonomous Systems 112 (2019) 72–83

Fig. 8. Handkerchief folding trajectory generated from policy learned from 2400
samples.

Fig. 9. Learning curve of flipping a handkerchief.

samples for initialization are collected from non-expert demon-
strations. The line ‘‘Supervised’’ in Fig. 11 shows that the policy
learned by these samples using supervised learning could not lead
to a good policy. According to Fig. 11, only Dueling DPN was able
to improve its performance based on the given non-expert demon-
stration while other methods gradually improved their perfor-
mance but never learned sufficient policies for folding the t-shirt.
These results suggest that only our proposedmethod, DuelingDPN,
has the capability to learn tasks with a large action space and a
complex reward function even with very limited samples. Fig. 10
shows one t-shirt folding procedure learned by Dueling DPN and
DQN with prior policy initialization. Dueling DPN init successfully
folded it by appropriately selecting three actions per step, but the
corresponding Dueling DQN could only achieve the first step.

Several examples of high-level features learned by Dueling
DPN are visualized by Grad-CAM [59] in Fig. 12. These heat maps
where the red/blue colors indicate high/low attention of the agent
indicate that our proposed method successfully learned useful
and meaningful features. The t-shirt’s sleeves drew the agent’s
attention following the order of operations in the first two steps.
Then the hem’s corner was concerned more to finish the folding
task.

Table 3
Settings and learning parameters of folding t-shirt task.
(a) Parameter setting of folding t-shirt task

MDP setting Description

State The input state is a 84× 84 px RGB image from the
NEXTAGE’s integrated camera.

Action 10× 20 = 200 gripper actions are defined as picking up the
t-shirt from 10 points over its current area and dropping it
down to 5× 4 points over the table.

Reward The reward function is designed to trigger an action to fold
the hem after folding the sleeve. The processing is shown in
Algorithm 3.

Initial state T-shirt is initialized to a state in which it is spread by a human.

(b) Parameter setting of DPN algorithm

Parameter Meaning Value

η Parameters controlling the effect of smooth policy update 1
M Number of episodes for one iteration 5
T Number of steps for one episode 8
E Size of memory D to store samples 120
N Number of target network updates in one iteration 2
U Epoch number of DNN updates 30
L Number of samples for policy initialization 80
K Number of P-network updates at policy initialization 5

Algorithm 3: Reward function of t-shirt folding task
Initialize InitHemR = [0.675, 0.8], InitHemL = [0.325, 0.8]
Initialize TargetHemR = [0.675, 0.208],
TargetHemL = [0.325, 0.208]
Function HemReward(SleevePoint, CenterHem):

Initialize reward = 0
reward = -Sum(|SleevePoint - CenterHem|)
return reward

Function SleeveReward(HemPoint, InitHem, TargetHem):
Initialize reward = 0
Initalize Distance = |InitHem− TargetHem|
reward = Sum(Distance− |HemPoint − TargetHem|)
return reward

Function ShirtReward():
Initialize reward = 0
Update color marker
Get HemPointR, HemPointL, SleevePointR, SleevePointL
if Detect hem marker then

CenterHem = (HemPointR+ HemPointL)/2
reward = SleeveReward(SleevePointR, CenterHem)+
SleeveReward(SleevePointL, CenterHem)

else
reward = 1

if Detect sleeve marker then
reward = reward+
HemReward(HemPointR, InitHemR, TargetHemR)+
HemReward(HemPointL, InitHemL, TargetHemL)

return reward

Y. Tsurumine, Y. Cui, E. Uchibe et al. / Robotics and Autonomous Systems 112 (2019) 72–83 81

Fig. 10. T-shirt folding trajectory generated from policy learned from 2400 sam-
ples.

Fig. 11. Learning curve of t-shirt folding task.

Fig. 12. Visualization of extracted parts in images for action selection using Grad-
CAM. Heat map shows parts extracted when actions are selected . (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the web
version of this article.)

7. Discussion

As shown in the experimental results, our proposed methods
can learn complex policies with high-dimensional observations

such as raw images as input. By promoting a smooth policy update,
our methods achieved more sample efficient and stable learning
than previous methods with fewer samples.

One future work is to design compact and efficient action space
formore complicated deformable objectmanipulation tasks. In our
current work, the action space was set by all the combinations
of picking and dropping points allocated on the plane in a grid
manner which is not compact or sufficient for more complex tasks.
Several previous works could be applied to improve the actions’
dexterity like defining meaningful predefined patterns [60], and
exploiting synergies [61]. Furthermore, cooperating motion tra-
jectories between two or more robot arms should be considered
as actions for challenging tasks like wrapping clothes in [62]. It is
also interesting to design an action space to efficiently manipulate
the clothes like human beings based on several related works: [34]
detected the wrinkle condition and operate robot to extend neces-
sary wrinkle for better folding performance; [35] gripped the cloth
edge to reduce the wrinkles caused during operation; [36] directly
folded the hem and sleeve of clothes based on a clothing model.

Since the main objective of our experiments is to investigate
the sample efficiency of our DRL methods and their effectiveness
for robotic cloth manipulation tasks, we alleviated the difficulties
in reward function design by using a two-toned handkerchief
and color markers that allow us to intuitively design color-based
reward functions. Although such a reward function design is not
related to the features extracted from states by DRL and therefore
has no conflict to the merit of DRL [63]. Designing suitable reward
functions for more complex cloth manipulation tasks is another
future direction for our work. By applying human feedback [64], it
is possible to learn the optimum strategy without designing and
implementing the reward function ad hoc. Furthermore, several
approaches [65,66] have been proposed to learn the reward func-
tion from limited human knowledge. If the expert demonstration
is available, it is possible to apply the inverse reinforcement learn-
ing [67] to learn a good reward function.

In our robot experiments, initialization required the most time
and labor: returning a cloth to its initial state in every iteration.
Recent work suggests a potentially helpful approach to alleviate
this issue by simultaneously learning a rest policy as a usual pol-
icy [68]. Extending our methods by combining themwith previous
work [68] is also interesting future work.

8. Conclusion

The contribution of this paper is twofold.We proposed two new
deep reinforcement learning algorithms, Deep P-Network (DPN)
and Dueling Deep P-Network (DDPN). The core idea shared by
them is to combine the nature of smooth policy update in value
function based reinforcement learning (Dynamic Policy Program-
ming) with the capability of automatic feature extraction in deep
neural networks to enhance the sample efficiency and the stability
of the learning process with fewer samples. To investigate the
performance of our proposed methods, we compared them with
previous DRL methods in a simulated n DOF manipulator reaching
task. Furthermore, we applied them to two robotic cloth manip-
ulation tasks with a dual arm robot, NEXTAGE: (1) flipping of a
handkerchief and (2) folding a t-shirt with a limited number of
samples. We confirmed in all the experiments that our method
achieved more sample efficiency and stabilized learning than the
previous methods.

Acknowledgment

We gratefully acknowledge the support from the New Energy
and Industrial TechnologyDevelopmentOrganization (NEDO), Japan
for this research.

82 Y. Tsurumine, Y. Cui, E. Uchibe et al. / Robotics and Autonomous Systems 112 (2019) 72–83

References

[1] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT press
Cambridge, 1998.

[2] A. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger, E. Liang,
Autonomous inverted helicopter flight via reinforcement learning, in: Inter-
national Symposium on Experimental Robotics (ISER), 2006, pp. 363–372.

[3] T. Hester, M. Quinlan, P. Stone, RTMBA: A real-time model-based reinforce-
ment learning architecture for robot control, in: IEEE International Confer-
ence on Robotics and Automation (ICRA), 2012, pp. 85–90.

[4] E. Theodorou, J. Buchli, S. Schaal, Reinforcement learning of motor skills in
high dimensions: A path integral approach, in: IEEE International Conference
on Robotics and Automation (ICRA), 2010, pp. 2397–2403.

[5] G. Endo, J.Morimoto, T.Matsubara, J. Nakanishi, G. Cheng, Learning CPG-based
biped locomotion with a policy gradient method: Application to a humanoid
robot, Int. J. Robot. Res. 27 (2) (2008) 213–228.

[6] S. Bitzer, M. Howard, S. Vijayakumar, Using dimensionality reduction to
exploit constraints in reinforcement learning, in: IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 2010, pp. 3219–3225.

[7] H. Durrant-Whyte, N. Roy, P. Abbeel, Learning to control a low-cost manip-
ulator using data-efficient reinforcement learning, in: Robotics: Science and
Systems (RSS), 2012, pp. 57–64.

[8] K. Yamazaki, R. Ueda, S. Nozawa, M. Kojima, K. Okada, K. Matsumoto, M.
Ishikawa, I. Shimoyama, M. Inaba, Home-assistant robot for an aging society,
Proc. IEEE 100 (8) (2012) 2429–2441.

[9] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[10] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classificationwith deep con-

volutional neural networks, in: Advances in Neural Information Processing
Systems (NIPS), 2012, pp. 1097–1105.

[11] V.Mnih,Machine Learning for Aerial Image Labeling, (Ph.D. thesis), University
of Toronto, 2013.

[12] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, A. Rabinovich, Going deeper with convolutions, in: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9.

[13] G.E. Dahl, D. Yu, L. Deng, A. Acero, Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition, IEEE Trans. Audio Speech
Lang. Process. 20 (1) (2012) 30–42.

[14] A. Graves, A. Mohamed, G. Hinton, Speech recognition with deep recurrent
neural networks, in: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2013, pp. 6645–6649.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level control
through deep reinforcement learning, Nature 518 (7540) (2015) 529–533.

[16] J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, Trust region policy
optimization, in: International Conference on Machine Learning (ICML), Vol.
37, 2015, pp. 1889–1897.

[17] J. Peters, K. Mülling, Y. Altun, Relative entropy policy search, in: Association
of the Advancement of Artificial Intelligence (AAAI), 2010, pp. 1607–1612.

[18] S. Levine, N. Wagoner, P. Abbeel, Learning contact-rich manipulation skills
with guided policy search, in: IEEE Conference on Robotics and Automation
(ICRA), 2015.

[19] M.G. Azar, V. Gómez, H.J. Kappen, Dynamic policy programming, J. Mach.
Learn. Res. 13 (1) (2012) 3207–3245.

[20] Y. Cui, T. Matsubara, K. Sugimoto, Kernel dynamic policy programming:
applicable reinforcement learning to robot systems with high dimensional
states, Neural Netw. 94 (2017) 13–23.

[21] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, N. De Freitas, Duel-
ing network architectures for deep reinforcement learning, in: International
Conference on Machine Learning (ICML), 2016, pp. 1995–2003.

[22] D. Tanaka, S. Arnold, K. Yamazaki, EMD Net: An encode-manipulate-decode
network for cloth manipulation, IEEE Robot. Autom. Lett. 3 (3) (2018) 1771–
1778.

[23] P.C. Yang, K. Sasaki, K. Suzuki, K. Kase, S. Sugano, T. Ogata, Repeatable folding
task by humanoid robot worker using deep learning, IEEE Robot. Autom. Lett.
2 (2) (2017) 397–403.

[24] Y. Tsurumine, Y. Cui, E. Uchibe, T. Matsubara, Deep dynamic policy program-
ming for robot control with raw images, in: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2017, pp. 1545–1550.

[25] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learningwith double q-
learning., in: Association of the Advancement of Artificial Intelligence (AAAI),
2016, pp. 2094–2100.

[26] S. Gu, E. Holly, T. Lillicrap, S. Levine, Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates, in: IEEE International
Conference on Robotics and Automation (ICRA), 2017.

[27] A.A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, R. Hadsell, Sim-to-real
robot learning from pixels with progressive nets, in: Conference on Robot
Learning (CoRL), PMLR, 2017, pp. 262–270.

[28] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T.
Rothörl, T. Lampe, M.A. Riedmiller, Leveraging demonstrations for deep re-
inforcement learning on robotics problems with sparse rewards, Computing
Research Repository (CoRR) abs/1707.08817.

[29] H. VanHoof, G. Neumann, J. Peters, Non-parametric policy searchwith limited
information loss, J. Mach. Learn. Res. 18 (1) (2017) 2472–2517.

[30] S. Levine, V. Koltun, Guided policy search, in: International Conference on
Machine Learning (ICML), 2013, pp. 1–9.

[31] C. Daniel, G. Neumann, J. Peters, Hierarchical relative entropy policy search,
in: International Conference on Artificial Intelligence and Statistics (AISTATS),
2012, pp. 273–281.

[32] S. Levine, C. Finn, T. Darrell, P. Abbeel, End-to-end training of deep visuomotor
policies, J. Mach. Learn. Res. 17 (1) (2016) 1334–1373.

[33] K. Yamazaki, Grasping point selection on an item of crumpled clothing based
on relational shape description, in: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2014, pp. 3123–3128.

[34] L. Sun, G. Aragon-Camarasa, S. Rogers, J.P. Siebert, Accurate garment surface
analysis using an active stereo robot head with application to dual-arm
flattening, in: IEEE International Conference on Robotics and Automation
(ICRA), 2015, pp. 185–192.

[35] H. Yuba, S. Arnold, K. Yamazaki, Unfolding of a rectangular cloth from
unarranged starting shapes by a Dual-Armed robot with a mechanism for
managing recognition error and uncertainty, Adv. Robot. 31 (10) (2017) 544–
556.

[36] S. Miller, J. Van-Den-Berg, M. Fritz, T. Darrell, K. Goldberg, P. Abbeel, A
geometric approach to robotic laundry folding, Int. J. Robot. Res. 31 (2) (2012)
249–267.

[37] A. Ramisa, G. Alenyá, F.Moreno-Noguer, C. Torras, Finddd: A fast 3d descriptor
to characterize textiles for robot manipulation, in: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2013, pp. 824–830.

[38] A. Doumanoglou, A. Kargakos, T.-K. Kim, S. Malassiotis, Autonomous active
recognition and unfolding of clothes using random decision forests and
probabilistic planning, in: IEEE International Conference on Robotics and
Automation (ICRA), 2014, pp. 987–993.

[39] J. Stria, D. Prusa, V. Hlavac, L. Wagner, V. Petrik, P. Krsek, V. Smutny, Garment
perception and its folding using a dual-arm robot, in: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2014, pp. 61–67.

[40] Y. Li, Y. Yue, D. Xu, E. Grinspun, P.K. Allen, Folding deformable objects using
predictive simulation and trajectory optimization, in: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2015, pp. 6000–6006.

[41] N. Koganti, T. Tamei, K. Ikeda, T. Shibata, Bayesian nonparametric learning of
cloth models for real-time state estimation, IEEE Trans. Robot. 33 (4) (2017)
916–931.

[42] A. Doumanoglou, J. Stria, G. Peleka, I. Mariolis, V. Petrik, A. Kargakos, L.
Wagner, V. Hlaváč, T.K. Kim, S. Malassiotis, Folding clothes autonomously: A
complete pipeline, IEEE Trans. Robot. 32 (6) (2016) 1461–1478.

[43] T.Matsubara, D. Shinohara,M. Kidode, Reinforcement learning of amotor skill
for wearing a T-shirt using topology coordinates, Adv. Robot. 27 (7) (2013)
513–524.

[44] A. Colomé, A. Planells, C. Torras, A friction-model-based framework for re-
inforcement learning of robotic tasks in non-rigid environments, in: IEEE
International Conference onRobotics andAutomation (ICRA), 2015, pp. 5649–
5654.

[45] A.X. Lee, H. Lu, A. Gupta, S. Levine, P. Abbeel, Learning force-based manipu-
lation of deformable objects from multiple demonstrations, in: IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2015, pp. 177–184.

[46] A. Gabas, E. Corona, G. Alenyá, C. Torras, Robot-aided cloth classification using
depth information and CNNs, in: International Conference on Articulated
Motion and Deformable Objects (ICAMDO), 2016, pp. 16–23.

[47] E. Corona, G. Alenyà, A. Gabas, C. Torras, Active garment recognition and target
grasping point detection using deep learning, Pattern Recogn. 74 (4) (2018)
629–641.

[48] J. Kober, J.A. Bagnell, J. Peters, Reinforcement learning in robotics: A survey,
Int. J. Robot. Res. 32 (11) (2013) 1238–1274.

[49] C.J. Watkins, P. Dayan, Q-learning, Mach. Learn. 8 (3–4) (1992) 279–292.
[50] R.S. Sutton, Generalization in reinforcement learning: Successful examples

using sparse coarse coding, Adv. Neural Inf. Process. Syst. (NIPS) (1996) 1038–
1044.

[51] M.G. Lagoudakis, R. Parr, Least-squares policy iteration, J. Mach. Learn. Res. 4
(44) (2003) 1107–1149.

[52] M.G. Azar, V. Gómez, B. Kappen, Dynamic policy programming with function
approximation, in: International Conference on Artificial Intelligence and
Statistics (AISTATS), 2011, pp. 119–127.

[53] E. Todorov, Linearly-solvable Markov decision problems, in: Advances in
Neural Information Processing Systems (NIPS), 2006, pp. 1369–1376.

[54] Y. Cui, T. Matsubara, K. Sugimoto, Pneumatic artificial muscle-driven robot
control using local update reinforcement learning, Adv. Robot. (2017) 1–16.

http://refhub.elsevier.com/S0921-8890(18)30324-5/sb1
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb1
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb1
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb2
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb2
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb2
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb2
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb2
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb3
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb3
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb3
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb3
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb3
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb4
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb4
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb4
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb4
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb4
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb5
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb5
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb5
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb5
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb5
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb6
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb6
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb6
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb6
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb6
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb7
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb7
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb7
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb7
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb7
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb8
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb8
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb8
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb8
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb8
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb9
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb10
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb10
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb10
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb10
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb10
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb11
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb11
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb11
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb12
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb12
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb12
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb12
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb12
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb13
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb13
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb13
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb13
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb13
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb14
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb14
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb14
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb14
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb14
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb15
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb15
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb15
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb15
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb15
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb16
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb16
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb16
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb16
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb16
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb17
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb17
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb17
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb18
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb18
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb18
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb18
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb18
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb19
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb19
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb19
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb20
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb20
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb20
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb20
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb20
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb21
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb21
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb21
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb21
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb21
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb22
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb22
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb22
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb22
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb22
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb23
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb23
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb23
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb23
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb23
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb24
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb24
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb24
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb24
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb24
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb25
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb25
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb25
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb25
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb25
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb26
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb26
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb26
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb26
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb26
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb27
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb27
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb27
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb27
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb27
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb29
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb29
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb29
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb30
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb30
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb30
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb31
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb31
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb31
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb31
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb31
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb32
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb32
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb32
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb33
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb33
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb33
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb33
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb33
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb34
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb34
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb34
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb34
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb34
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb34
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb34
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb35
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb35
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb35
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb35
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb35
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb35
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb35
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb36
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb36
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb36
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb36
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb36
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb37
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb37
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb37
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb37
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb37
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb38
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb38
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb38
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb38
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb38
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb38
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb38
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb39
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb39
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb39
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb39
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb39
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb40
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb40
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb40
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb40
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb40
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb41
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb41
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb41
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb41
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb41
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb42
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb42
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb42
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb42
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb42
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb43
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb43
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb43
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb43
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb43
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb44
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb44
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb44
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb44
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb44
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb44
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb44
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb45
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb45
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb45
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb45
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb45
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb46
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb46
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb46
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb46
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb46
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb47
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb47
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb47
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb47
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb47
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb48
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb48
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb48
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb49
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb50
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb50
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb50
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb50
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb50
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb51
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb51
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb51
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb52
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb52
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb52
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb52
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb52
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb53
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb53
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb53
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb54
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb54
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb54

Y. Tsurumine, Y. Cui, E. Uchibe et al. / Robotics and Autonomous Systems 112 (2019) 72–83 83

[55] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, A. Sendonaris,
G. Dulac-Arnold, I. Osband, J. Agapiou, J.Z. Leibo, A. Gruslys, Learning from
demonstrations for real world reinforcement learning, Computing Research
Repository (CoRR) abs/1704.03732.

[56] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A.
Davis, J. Dean, M. Devin, et al., Tensorflow: Large-scale machine learning on
heterogeneous distributed systems, arXiv preprint arXiv:1603.04467.

[57] F. Chollet, et al., Keras, 2017. https://github.com/keras-team/keras.
[58] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A.Y. Ng,

ROS: an open-source Robot Operating System, in: ICRA Workshop on Open
Source Software, 2009, p. 5.

[59] R.R. Selvaraju,M. Cogswell, A. Das, R. Vedantam,D. Parikh, D. Batra, Grad-cam:
Visual explanations from deep networks via gradient-based localization, in:
IEEE International Conference on Computer Vision (ICCV), 2018, pp. 618–626.

[60] T. Jung, D. Polani, Kernelizing lspe(λ), in: 2007 IEEE International Symposium
on Approximate Dynamic Programming and Reinforcement Learning, 2007,
pp. 338–345.

[61] C. Alessandro, I. Delis, F. Nori, S. Panzeri, B. Berret, Muscle synergies in neu-
roscience and robotics: from input-space to task-space perspectives, Front.
Comput. Neurosci. 7 (2013) 43.

[62] N. Hayashi, T. Suehiro, S. Kudoh, Planningmethod for a wrapping-with-fabric
task using regrasping, in: IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 1285–1290.

[63] K. Arulkumaran, M.P. Deisenroth, M. Brundage, A.A. Bharath, Deep reinforce-
ment learning: A brief survey, IEEE Signal Process. Mag. 34 (6) (2017) 26–38.

[64] P.M. Pilarski, M.R. Dawson, T. Degris, F. Fahimi, J.P. Carey, R.S. Sutton, On-
line human training of a myoelectric prosthesis controller via actor-critic
reinforcement learning, in: IEEE International Conference on Rehabilitation
Robotics (ICORR), 2011, pp. 1–7.

[65] P.F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, D. Amodei, Deep rein-
forcement learning from human preferences, in: Advances in Neural Infor-
mation Processing Systems (NIPS), 2017, pp. 4299–4307.

[66] C. Daniel, M. Viering, J. Metz, O. Kroemer, J. Peters, Active reward learning, in:
Robotics: Science and Systems (RSS), 2014.

[67] E. Uchibe, Model-free deep inverse reinforcement learning by logistic regres-
sion, Neural Process. Lett. (2017) 1–15.

[68] B. Eysenbach, S. Gu, J. Ibarz, S. Levine, Leave no trace: Learning to reset for
safe and autonomous reinforcement learning, in: International Conference on
Learning Representations (ICLR), 2018.

Yoshihisa Tsurumine received his B.E. in Advanced
Course of Production Systems Engineering from National
Institute of Technology, Ube College, Yamaguci, Japan, in
2016 and his M.E. in information science from the Nara
Institute of Science and Technology, Nara, Japan, in 2018.
His research interests are robot control using machine
learning.

Yunduan Cui was born in China in 1990. He is currently
undertaking a research assistant professor at Nara Insti-
tute of Science and Technology, Japan. He received Ph.D.
in information science from Nara Institute of Science and
Technology, Japan in September 2017, M.E in computer
science from Doshisha University, Japan in September
2014, and the B.E. in Electronic Engineering from Xidian
University, China in 2012. His research interests are ma-
chine learning and control theory of robotics, especially
reinforcement learning in robot control.

Eiji Uchibe received his B.S. in 1994, M.S. in 1996, and
Ph.D. in 1999, at Osaka University. He worked as a re-
search associate of the Japan Society for the Promotion
of Science, in the Research for the Future Program ti-
tled Cooperative Distributed Vision for Dynamic Three-
Dimensional Scene Understanding. Then he joined ATR
as a researcher in 2001. Since 2004 he has been a group
leader of Adaptive Systems Group at the Neural Com-
putation Unit, Okinawa Institute of Science and Tech-
nology Graduate University. He joined Department of
Brain Robot Interface,ATR Computational Neuroscience

Laboratories in 2015 as Principal Researcher. His research interests are in learn-
ing robots, reinforcement learning, evolutionary computation, and computational
neuroscience, and their applications.

Takamitsu Matsubara received his B.E. in electrical and
electronic systems engineering from Osaka Prefecture
University, Osaka, Japan, in 2003, an M.E. in information
science from the Nara Institute of Science and Technol-
ogy, Nara, Japan, in 2005, and a Ph.D. in information
science from the Nara Institute of Science and Technol-
ogy, Nara, Japan, in 2007. From 2005 to 2007, he was a
research fellow (DC1) of the Japan Society for the Pro-
motion of Science. From 2013 to 2014, he is a visiting re-
searcher of the Donders Institute for Brain Cognition and
Behavior, Radboud University Nijmegen, Nijmegen, The

Netherlands. He is currently an associate professor at the Nara Institute of Science
and Technology and a visiting researcher at the ATR Computational Neuroscience
Laboratories, Kyoto, Japan. His research interests are machine learning and control
theory for robotics.

http://arxiv.org/abs/1603.04467
https://github.com/keras-team/keras
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb58
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb58
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb58
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb58
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb58
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb59
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb59
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb59
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb59
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb59
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb60
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb60
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb60
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb60
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb60
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb61
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb61
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb61
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb61
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb61
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb62
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb62
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb62
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb62
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb62
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb63
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb63
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb63
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb64
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb64
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb64
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb64
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb64
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb64
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb64
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb65
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb65
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb65
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb65
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb65
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb66
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb66
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb66
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb67
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb67
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb67
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb68
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb68
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb68
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb68
http://refhub.elsevier.com/S0921-8890(18)30324-5/sb68

	Deep reinforcement learning with smooth policy update: Application to robotic cloth manipulation
	Introduction
	Related work
	Deep reinforcement learning
	RL with smooth policy update
	Robotic cloth manipulation

	Preparation
	Reinforcement learning
	Deep Q-network
	Dynamic policy programming

	Proposed method
	Deep P-network
	Dueling network architecture for DPN
	Prior policy initialization of DPN/Dueling DPN

	Simulation
	n DOF manipulator reaching task
	Learning results
	Effect of parameter η in DPN and Dueling DPN
	Bellman error in DPN

	Real robot experiment
	Flipping a handkerchief
	Setting
	Results

	Folding a t-shirt
	Setting
	Results

	Discussion
	Conclusion
	Acknowledgment
	References

