
SofRobotics

The International Journal of

Robotics Research

1–14

� The Author(s) 2019

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0278364919853618

journals.sagepub.com/home/ijr

Design of physical user–robot interactions
for model identification of soft actuators
on exoskeleton robots

Masashi Hamaya1,2 , Takamitsu Matsubara1,3, Tatsuya Teramae1,

Tomoyuki Noda1 and Jun Morimoto1

Abstract

Recent breakthroughs in wearable robots, such as exoskeleton robots with soft actuators and soft exosuits, have enabled

the use of safe and comfortable movement assistance. However, modeling and identification methods for soft actuators

used in wearable robots have yet to be sufficiently explored. In this study, we propose a novel approach for obtaining

accurate soft actuator models through the design of physical user–robot interactions for wearable robots, in which the

user applies external forces to the robot. To obtain an accurate soft actuator model from the limited amount of data

acquired through an interaction, we leverage an active learning framework based on Gaussian process regression. We

conducted experiments using a two-degree-of-freedom upper-limb exoskeleton robot with four pneumatic artificial mus-

cles (PAMs). Experimental results showed that physical interactions between the exoskeleton robot and the user were suc-

cessfully designed to allow PAM models to be identified. Furthermore, we found that data acquired through an

interaction could result in more accurate soft actuator models for the exoskeleton robots than data acquired without a

physical interaction between the exoskeleton robot and the user.
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1. Introduction

Wearable robots can be used in various situations, including

assistance with daily life or with rehabilitation (Dollar and

Herr, 2008; Gopura et al., 2016; Yan et al., 2015). Recent

studies have developed exoskeleton robots with soft actua-

tors and soft exosuits. These soft actuators, which include

series elastic actuators (SEAs) (Wang et al., 2015; Yu et al.,

2015), variable stiffness actuators (VSAs) (Mghames et al.,

2017) or pneumatic artificial muscles (PAMs) (Cao et al.,

2018; Ferris et al., 2005; Liu et al., 2017), have attracted

significant attention owing to their safe and compliant

physical properties suitable for wearable robots. The soft

exosuits (Asbeck et al., 2015; Ding et al., 2018) are com-

posed of soft and lightweight textiles, and can thus easily

fit to the shape of the user’s body.

However, modeling and identification methods for soft

actuators used in wearable robots have yet to be sufficiently

explored. In these actuators or suits composed of soft mate-

rials, force transmission mechanisms tend to introduce

highly nonlinear dynamics (Asbeck et al., 2015; Lagoda

et al., 2010; Liu et al., 2017; Mghames et al., 2017).

Moreover, they are stretched by external forces because of

the compliance. Therefore, rich datasets generated using

various external forces are required to identify such models

that include nonlinearity and compliance. The standard

approach is to apply a load to an actuator by placing vari-

ous weights (Merola et al., 2018), or to employ antagonistic

muscles (Teramae et al., 2013) to generate external forces.

However, such approaches do not necessarily take into

account actual situations in which the robot is worn by a

human user.

In our approach, the external forces applied to soft actua-

tors are generated through user–robot physical interactions
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to tackle this model identification problem. In other words,

we developed a user–robot interaction design strategy to

efficiently generate external forces for identifying soft

actuator models from a limited number of data collection

trials. Accordingly, we collected data under versatile cir-

cumstances close to those in practical use for the model

identification, and avoided collecting unnecessary data

through unnecessary experimental trials.

Figure 1 shows a schematic diagram of our proposed

method. We designed the user–robot interactions by pro-

viding a human user with a way to generate an external

force based on the current status (e.g., model uncertainty)

of the learned model. Our proposed system designs action

patterns for the human user and robot based on the current

soft actuator model, and then asks the user to execute the

actions by physically moving the wearable robot. Because

the action patterns for the human user and robot are differ-

ent, the user ends up applying external forces to the soft

actuators equipped in the wearable robot. The data gener-

ated through physical user–robot interaction are used to

update the soft actuator model.

In this study, we used PAMs as the soft actuators. To

design the user–robot interaction and acquire a soft actua-

tor model, we leveraged a Gaussian process (GP) regres-

sion and GP active learning framework. GP can express the

model uncertainty as the predictive variance and nonlinear-

ity of a PAM. GP active learning sequentially selects a

data point, which reduces the model uncertainty. It can be

used to accelerate the PAM model identification as well as

avoid overfitting. In our learning framework, the reference

trajectories that maximize the information gain are

provided to the human user and robot. The user then tries

to follow the provided trajectory to generate external forces

used to update the GP-based PAM (GP-PAM) model

efficiently.

In our preliminary study (Hamaya et al., 2017b), we

explored how the GP active learning framework can be

useful for soft actuator identification using a simple one-

degree-of-freedom (one-DoF) elbow-joint assistive robot

(Noda et al., 2013). Although the GP active learning frame-

work was successfully applied, the applicability of our pre-

vious method was limited to identifying only one PAM

model attached to the one-DoF assistive robot, owing to

the necessity of manually tuning GP the hyperparameters

that determine the shape of the approximated function.

In this study, we newly propose a GP active learning

framework that can be applicable to further practical situa-

tions in which a multi-DoF robot and multiple actuators are

involved. The contributions of this study are as follows.

1. We developed a systematic procedure to simultane-

ously identify multiple soft actuator models on a wear-

able robot through a physical human–robot interaction.

2. We newly adopted an active learning method that can

learn the hyperparameters of the GP-PAM models such

that the shape of the approximated function can be

adaptively learned through the learning process.

3. We conducted model identification experiments using

a 2-DoF upper-limb exoskeleton robot with four

PAMs. The results demonstrate that our method out-

performs standard model identification approaches that

do not take the user–robot interactions into account.

Our proposed method is composed of two components: the

human-in-the-loop optimization and GP active learning.

However, they are not independent contributions; rather, its

combination is essentially important because our human-

in-the-loop data collection process requires the criterion of

model uncertainty, and it requires the GP-PAM model

owing its capability for evaluating the model uncertainty.

Fig. 1. Schematic diagram of our proposed method. We designed user–robot interactions by providing the human user with a way to

generate external force based on the current status (e.g., model uncertainty) of the learned model. Our proposed system designs action

patterns for the human user and robot based on the current soft actuator model, and then asks the user to execute actions by physically

moving the wearable robot. Because action patterns for the human user and robot are different, the user ends up applying external

forces to soft actuators equipped in the wearable robot. Data generated through physical user–robot interaction are used to update the

soft actuator model.
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The remainder of the paper is organized as follows.

Section 2 describes related studies regarding physical user–

robot interaction designs and PAM-driven exoskeleton

robots. Section 3 introduces our proposed method. Section

4 describes our experimental setup. Section 5 provides the

experimental results. Section 6 discusses an additional off-

line analysis. Finally, Section 7 provides some concluding

remarks regarding this research.

2. Related work

In this section, we describe recent physical user–robot

interaction and user-in-the-loop optimization methods for

wearable robots. We also present PAM-driven exoskeleton

robots and discuss the model identification methods

developed.

2.1. Physical user–robot interaction design

Physical user–robot interactions have been investigated in

collaborative manipulation tasks. Ghadirzadeh et al. (2016)

proposed the modeling of physical user–robot collabora-

tions, and the use of such modeling to select the control

output through Bayesian optimization. Rozo et al. (2016)

developed a task-parameterized interaction model and a

stiffness estimation method for a transport task. Peternel

et al. (2016b) utilized human user’s electromyography

(EMG) to modulate the joint stiffness of a robot for a colla-

borative cut-sawing task. Bajcsy et al. (2017) proposed esti-

mating the objective function of a manipulation task by

observing how a user physically guides a robot to generate

hand trajectories. Maeda et al. (2017) estimated the user’s

movement intentions and generate robot joint trajectories

through the use of dynamic movement primitives in hand-

over tasks. Khoramshahi and Billard (2018) employed task-

parameterized dynamical systems and switched the dyna-

mical systems according to the user’s movement intentions.

The above methods designed interactions for completing

collaborative tasks. The robots optimize their behavioral

strategies according to the users’ movement intentions. In

contrast, in our study, human users provide necessary data

to identify a soft actuator model according to the uncer-

tainty of the actuator model learned using the robots.

A way for designing physical user–robot interactions to

enhance the user’s motor performance has also been

recently explored. User-in-the-loop frameworks have been

proposed to optimize the assistive strategies through physi-

cal user–robot interactions. These user-profiling assistive

strategies have successfully been used to reduce metabolic

costs when walking (Ding et al., 2018; Koller et al., 2016;

Zhang et al., 2017), reduce muscle activities (Hamaya

et al., 2017a), or generate preferred walking movements on

an active prosthesis (Thatte et al., 2017).

In this study, we utilized a user-in-the-loop framework

for the actuator model identification, rather than for opti-

mizing assistive strategies. The user-in-the-loop framework

can be extremely useful in acquiring model identification

data because the identified model needs to represent the

actuator behaviors when a user is wearing a robot.

However, difficulties are encountered when using the user-

in-the-loop framework for the model identification,

because we need to ask human users to conduct many

movement trials to provide a sufficient amount of data. In

addition, it is not clear what data collection methods of

user–robot physical interaction data are required to improve

the actuator models.

To solve these problems, we propose an active-learning

based approach using GP models (Garnett et al., 2014) to

efficiently design a physical user–robot interaction and pro-

vide concrete instructions to the users regarding how to

generate data for model identification such that the human

users do not need to conduct too many movement trials.

2.2. PAM-driven exoskeleton robots

PAMs have attracted significant attention as an actuator for

a wearable robot owing to their compliance and safety with

a high power-to-weight ratio. Ferris et al. (2005) proposed

controlling the PAMs in proportion to the amplitude of the

user’s EMG signals without conducting model identifica-

tion. Liu et al. (2017) used a static PAM model under the

assumption that the muscle tension linearly changes with

respect to the input pressure at the same muscle length. The

parameters of the model were identified through modula-

tion of the muscle length, contraction force, and pressure.

The antagonistic muscle was used to provide external forces

for the identification process.

Cao et al. (2018); Merola et al. (2018); Park et al.

(2014) used linear dynamical models. Teramae et al. (2018)

used a static PAM model proposed for position control and

employed a PAM model identification method proposed by

Teramae et al. (2013). Ugurlu et al. (2015) proposed the

use of nonlinear dynamical PAM models and applied them

to the control of a lower-limb exoskeleton robot Ugurlu

et al. (2016). Koller et al. (2016), Peternel et al. (2016a),

and Hamaya et al. (2017a) developed black-box optimiza-

tion methods for the control of PAM-driven exoskeleton

robots without conducting PAM model identification.

As introduced above, most of the previously proposed

PAM-driven exoskeleton robot control methods have used

parametric PAM models to determine the pressure com-

mand to generate the desired contraction force. Otherwise,

PAM controllers are directly derived through learning trials

to accomplish the given tasks without identifying the PAM

model. These parametric PAM models, which are typically

derived through a consideration of the physical property of

the PAM mechanisms, cannot fully capture the behavior of

the PAMs owing to the occurrence of modeling errors

between the real PAMs and the method used to parameter-

ize them. Therefore, in our study, we introduced a GP-based

PAM model to represent the mechanical and dynamical

properties of PAMs using data sampled from a real system.

In contrast, we were able to apply direct PAM controller

learning approaches for PAM-driven exoskeleton robot
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control. However, when we use this approach, the PAM

controllers need to be learned for each target task.

Therefore, this approach is not practical if we need to use

an exoskeleton robot for a wide variety of different tasks. In

our study, we identified a GP-PAM model through physical

user–robot interactions such that the PAM-driven exoskele-

ton robot can generate the desired force according to the

target problems.

3. Proposed framework

We introduce the interaction design strategy for the colla-

borative soft actuator model identification with the exoske-

leton robot. The schematic diagram of our implementation

is depicted in Figure 2: (1) identifying GP models of the

soft actuators from collected data; (2) selecting an interac-

tion strategy by the GP active learning algorithm from a

pre-constructed user–robot trajectory bank, and (3) the user

is asked to track the proposed reference joint trajectory and

the robot generates joint torques using the selected pressure

command to collect the data of the soft actuators. We repeat

the procedure above to improve the soft actuator model.

3.1. GP soft actuator model identification

The soft actuator model is assumed as

yt = f (xt)+ et, et;N (0,s2
n) ð1Þ

where x and y are inputs (e.g., actuator’s length, velocity,

input commands) and outputs (e.g., contraction force) of

the soft actuator, and e is an additive Gaussian noise. We

applied GP regression (Rasmussen and Williams, 2006) to

model the soft actuator dynamics. The GP can represent the

model uncertainty with the predictive variance; thus, we

can derive the entropy of the acquired model distribution

analytically. With a input X= ½x1, . . . , xn� (x 2 Rd) and

output y= ½y1, . . . , yn�> (y 2 R) dataset, a predictive distri-

bution of f (x�) for the new input x� can be represented as

follows:

p(f (x�)jX, y, u)=N f (x�)jmf ju(x�),s2
f ju(x�)

� �
ð2Þ

where u is a hyperparameter vector and the mean and the

variance can be derived as (Murphy, 2013)

mf ju(x�)= kT� (K+ s2
nI)
�1y ð3Þ

s2
f ju(x�)= k�� � kT� (K+ s2

nI)
�1k� ð4Þ

Here, k( � ) is a kernel function (k� :¼ k(X, x�),
k�� :¼ k(x�, x�)), K is a kernel matrix, each of whose ele-

ment follows Kij = k(xi, xj). In this study, we used a

squared exponential kernel:

k(xp, xq)= s2
k exp �

1

2
(xp � xq)

TL(xp � xq)

� �
ð5Þ

where L = diag½a�1
1 , . . . , a�1

d � is a precision matrix and

controls the horizontal scale over which the function

changes and sk controls the vertical scale of the function

(Murphy, 2013). We define the hyperparameter vector as

u = ½a1, . . . , ad ,sk ,sn�T.

Fig. 2. Overview of our implementation for physical user–robot interactions to identify soft actuator models: (1) we learn GP models

of actuators; (2) select optimal interaction strategy that maximizes mutual information from pre-constructed user–robot trajectory bank

by GP active learning; and (3) user and robot execute interactions to collect the soft actuator’s data.
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3.2. User–robot interaction strategy

3.2.1. Defining reference trajectories as candidate data

sampling points. Before we collect the user–robot interac-

tion data, we define a set of reference trajectories as candi-

date data sampling points for the active learning

framework. These reference trajectories for the human user

and the robot must include the ranges where the actuators

operate for the target tasks. In our previous work (Hamaya

et al., 2017b), we simply designed the reference trajectories

based on the mechanically reachable area of a single-DoF

robot. However, for multi-DoF robots, this simple reference

design strategy would generate many unnecessary trajec-

tories that include irrelevant movement ranges for the target

tasks. Thus, in this study, we came up another approach:

we prepared the reference trajectories by moving a human

experimenter’s arm while he was wearing an arm exoskele-

ton robot given different pressures. The resulting reference

trajectories naturally represented the range of the human

experimenter’s movements that are close to practical

situations.

Here, the set of reference trajectories is represented as

X ref = X
(1, 1)
ref , � � � ,X(J ,M)

ref

n o
, where each trajectory is

defined as X
(j,m)
ref = x

(j,m)
1 , . . . , x(j,m)

t , . . . , x(j,m)
T

h i
.

j = 1, . . . , J is an index of a trajectory, and m = 1, . . . ,M

is an index of an actuator.

3.2.2. GP active learning for designing user–robot

interactions. We applied a GP active learning method to

select the reference trajectory for designing physical inter-

actions. Kapoor et al. (2007) and Tanaka et al. (2014)

demonstrated that efficient object categorizations could be

achieved by GP active learning methods. However, most of

the GP active learning methods have been implemented

with fixed GP hyperparameters while these hyperpara-

meters were manually designed based on the experts’

knowledge. If these predetermined hyperparameters are

inappropriate for the learning procedure, they can result in

the overfitting of the model to the training dataset.

Therefore, we leveraged an active learning of GP hyper-

parameters (Garnett et al., 2014). Based on uncertainty of

the hyperparameters, the algorithm actively selects the ref-

erence trajectory to update the hyperparameters.

To select a new data point, the mutual information

between the hyperparameter u and mean output of the

model f (x) was used as the objective function:

I(f (x); u)= H(f (x))� H(f (x)ju) ð6Þ

where H( � ) is the entropy. We can derive the entropy

H(f (x)ju) because p(f (x)jX, y, u) is a Gaussian distribu-

tion as in (2). Meanwhile, the entropy H(f (x)) cannot be

easily obtained because the marginal distribution

p(f (x)jX, y) =
R

p(f (x)jX, y, u)p(ujX, y)du cannot be

analytically derived. We then calculate the approximated

marginal distribution q(f (x)jX, y) from integrating an

approximated linear Gaussian model of p(f (x)jX, y, u)
with respect to u and an approximated posterior of the

hyperparameter q(ujX, y). Finally, we can obtain the

approximated form of (6) as follows Garnett et al. (2014):

I(x) ’ ln
s2

f (x)

s2
f ju(x)

, ð7Þ

where I(f (x); u) is denoted as I(x) for simplicity. Here

s2
f ju(x) is the predictive variance given the hyperparameters

u. We utilized u = û to evaluate the predictive variance,

where û was estimated by the maximum a posteriori as in

Appendix A. s2
f (x) is the predictive variance of the mar-

ginalized distribution and can be derived as presented in

Appendix B. We applied the nearest Semi Positive Definite

(SPD) algorithm
1

that approximates the covariance matrix

to the nearest positive define matrix to avoid numerical

problems pertaining to optimization of the hyperparameter

u. The algorithm subsequently selects reference trajectories

to conduct user–robot interactions as follows:

LI X(j, �)
ref

� �
=
XM
m = 1

XT

t = 1

I x(j,m)
t

� �
ð8Þ

j�= argmax
j

LI X(j, �)
ref

� �
ð9Þ

We summarize the algorithm of our proposed method in

Algorithm 1. First, we prepare the priors of the hyperpara-

meters for M actuators, initial dataset, and reference trajec-

tories. The hyperparameters of the GP models were

estimated by the maximum a posteriori with using the data-

set and priors p(u) as described in Appendix A (line 2). We

compute the mutual information Garnett et al. (2014)

between the function f (x) and the hyperparameters u at

each sample point for each actuator (line 3). Then, the

index of reference trajectory j� is selected to design user–

robot interaction that maximizes the mutual information as

in (9) (line 4). Subsequently, the user and robot generate

movements by following the reference trajectories. Then,

input Xs and output ys data are sampled (line 5). The newly

sampled data is merged to the input X and output y dataset

(line 6). When we merge the newly acquired data, we

Algorithm 1 User–robot collaborative model identification

Require: Input X and output y dataset; Hyperprior p(u);
Reference trajectories X ref

1: for physical interaction trials do
2: û LearnGPmodels(p(u),X, y)
3: I(x) MutualInformation(p(f (x)jX, y,u), p(ujX, y), û)
4: j�  SelectInteraction(I(x),X ref )
5: Xs, ys  DataSampling ðX(j�, �)

ref Þ
6: Add the pair of newly sampled input Xs and output ys data

to the dataset X and y after a data subsampling procedure.
7: end for
8: return û
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applied a data subsampling procedure as explained in

Appendix C.

4. Experiments

To evaluate our proposed method, we conducted PAM

model identification experiments and an offline analysis.

We utilized two joints out of our four-DoF upper-limb

exoskeleton robot driven by PAMs. Two healthy adults par-

ticipated in the experiments. All participants were provided

written informed consent before participation. Wearing the

exoskeleton robot, the participants were asked to track the

reference trajectories selected by the active GP algorithm

while the robot also used the selected desired pressure pro-

files to collect data for the identification (Figure 3(a)). For

comparison, the standard PAM identification procedure

that does not consider the user–robot interaction was

employed. We further conducted an offline analysis to

investigate how the tracking errors affected the model iden-

tification performances.

4.1. Experimental setup

We used our upper-limb exoskeleton robot (Furukawa

et al., 2017; Noda et al., 2014), as shown in Figure 3(b).

Our exoskeleton robot contains four DoFs: shoulder abduc-

tion/adduction (SAA), shoulder flexion/extension (SFE),

elbow flexion/extension (EFE), and wrist flexion/extension

(WFE). In this study, we utilized two DoFs, SFE and EFE,

out of the four joints. To move these two joints, we acti-

vated four PAMs, and two sets of agonist and antagonist

PAMs. The agonist muscles used 40 mm PAMs (Festo

MAS-40) and the antagonist muscles used 10 mm PAMs

(Festo MAS-10). The servo valves are equipped with each

muscle. The contraction force of each PAM is transmitted

to a robot joint via Bowden cables. Encoders are mounted

on each joint to measure the joint angles. Load cells are

attached to the tips of the PAMs to measure the contraction

force. The PAM states were defined as x= ½L, _L,P�>,

where L is the muscle length and _L is the change rate of

the length. Here P is the pressure command to the servo

valve. The output of the PAM model y is the contraction

force.

We provided visual feedback to the participants. The

reference joint angles and the current posture of the robot

were displayed using the Open GL library. The red link in

Figure 3(a) shows the reference joint angles and the green

one shows the current robot posture.

4.2. Defining a set of reference trajectories

In this experiment, we defined the reference trajectories by

moving a human experimenter’s arm while he was wearing

the arm exoskeleton robot. Simultaneously, the robot was

activated by generating the pressure command to the

PAMs. The rth reference pressure profile

Pr = ½Pr(0), . . . ,Pr(t), . . . ,Pr(T )� was represented with a

sinusoidal function Pr(t)= A sin (2pat)+ B, where the

duration for one movement trial T was 4.0 s. We designed

the parameters of the sinusoidal function as

A = ½�5=3, 5=3�, B = ½8=3, 13=3�, and a = 0 (t\1:0),
0:5 (1:0 ł t\2:0), 0:25 (2:0 ł t ł 4:0) Hz such that these

parameter ranges encompass the region where the robot

operates. This yields four sinusoidal input pressure patterns

for each PAM. Because we used four PAMs, we had to pre-

pare 256 (= 44) pressure command profiles. The sampling

frequency was 250 Hz. In a later section, we show the

actual profile of the reference joint angle trajectories and

the pressure command profiles in Figure 5.

When we collected the data for the PAM model identifi-

cation, we also measured the force applied to the PAMs.

However, the force data were only used for evaluating the

PAM model learning process in the offline analysis. In

other words, activating the PAMs is not necessary for pre-

paring the reference joint trajectories and pressure com-

mand profiles.

(a) (b)

Fig. 3. Experimental setup. (a) Experimental platform composed of exoskeleton robot and visual feedback system. (b) Upper-limb

exoskeleton robot. Our exoskeleton robot contains four DoFs: shoulder abduction/adduction (SAA), shoulder flexion/extension (SFE),

elbow flexion/extension (EFE), and wrist flexion/extension (WFE). In this study, we utilized two DoFs, SFE and EFE, out of four. To

move these two joints, we activated four PAMs.

6 The International Journal of Robotics Research 00(0)



4.3. Designing user–robot interaction for PAM

model identification

In this study, we adopted a Matlab software package for the

GP hyperparameter active learning (Garnett et al., 2014).
2

The duration for one trial was 4.0 s. The participants con-

ducted 10 trials to generate the physical user–robot interac-

tion data.

For comparison, we employed a standard PAM model

identification procedure that does not consider the user–

robot interaction. We adopted a linear parametric PAM

model and utilized an automatic PAM identification tech-

nique (Teramae et al., 2013) in which antagonist PAMs

were used for generating the external forces. The details of

the model and the identification process are presented in

Appendix D. We evaluated the force output estimation error

of the learned PAM models on a test dataset. As the test

dataset, we utilized all of the data points that were collected

when we prepared the reference trajectories, as described in

Section 4.2.

5. Results

5.1. PAM model identification through user–robot

interactions

The participants observed the current desired posture dis-

played on the monitor that follows the reference trajectories

selected by the GP active learning method (Figure 4).

Simultaneously, the participants were asked to track the dis-

played posture by moving their arm with the exoskeleton

robot through a physical user–robot interaction. Figure 5

shows an example of a sequence of selected reference tra-

jectories of the shoulder joint, and the pressure command

Fig. 4. Snapshots of the user–robot interactive PAM model identification experiment. Wearing an exoskeleton robot, participants were

asked to track reference trajectories selected by an active GP algorithm while the robot used selected desired pressure profiles to

collect data for identification. We provided visual feedback to the participants. Reference joint angles and the current posture of the

robot were displayed using Open GL library. Red links show reference joint angles and green links show the current robot posture.

Fig. 5. Example sequence of selected reference trajectories of shoulder joint and pressure command profiles of PAM1 by our active

GP learning method for one experimental sequence. (Top) Selected reference trajectories. (Bottom) Pressure command profiles.
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profiles of the PAM1 by our active GP learning method for

one experimental sequence.

Figure 6 shows the learning curves of our proposed

approach and that of the standard PAM procedure. The

total number of the data points to the represent GP-PAM

model was 30. The vertical axis shows the force prediction

error rate. The error rates were derived by normalizing the

error with the maximum contraction force of the test data.

The error bars show the standard deviations of the pre-

dicted errors on eight experiments. The red lines show the

learning performances of our proposed method. The gray

lines show that of the standard identification method that

does not consider the user–robot interaction. Our proposed

method successfully learned the PAM model through the

physical user–robot interactions. Although the error rates

were reduced even with the standard identification process,

The progresses of model learning were significantly worse

than with our proposed approach. This result indicates that

user–robot interactions successfully enhanced the progress

of actuator model identification.

5.2. Comparisons of actuator model

identification performances

Figure 7 shows the comparisons of the actuator model

identification performances. The red bar shows the contrac-

tion force prediction performance of our proposed method

with the two participants. The dark gray bar shows that of

the standard linear PAM model without user–robot

Fig. 6. Learning curves of our proposed approach and that of the standard PAM procedure. The vertical axis shows the force

prediction error rate. Error rates were derived by normalizing the error with the maximum contraction force of test data. Error bars

show standard deviations of predicted errors on eight experiments. Red lines show learning performances of our proposed method.

Gray lines show that of the standard identification method, which does not consider user–robot interactions. Our proposed method

successfully learned the PAM model through physical user–robot interactions. Although error rates were reduced even with the

standard identification process, progresses of model learning were significantly worse than with our proposed approach. This result

indicates that user–robot interaction successfully enhanced progress of actuator model identification.

Fig. 7. Comparisons of actuator model identification

performances. The red bar shows contraction force prediction

performance of our proposed method with two participants. The

dark gray bar shows that of the standard linear PAM model

without user–robot interactions. The light gray bar shows that of

the GP-PAM model without user–robot interactions. An ordinal

GP-PAM model with non-interactive batch training cannot be

applied for whole training data due to its heavy computational

burden since it does not include any subsampling methods unlike

our proposed method. To cope with this problem, we adopted

SPGP model for this comparison. Our proposed method

outperformed two other standard non-interactive identification

procedures. This result indicates importance of user–robot

physical interactions to acquire better actuator models for

wearable robots.
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interactions. The light gray bar shows that of the GP–PAM

model without user–robot interactions. Because ordinal GP

model non-interactive batch learning with many data points

cannot be used because of heavy computational burden, we

adopted the sparse GP (SPGP) model (Snelson and

Ghahramani, 2006) for this comparison. A detailed expla-

nation is provided in Appendix E. Our proposed method

outperformed two other standard non-interactive identifica-

tion procedures. This result indicates the importance of

physical user–robot interactions to acquire better actuator

models for wearable robots.

In addition, to validate how our proposed actuator model

identification procedure with physical user–robot interac-

tions can be used to operate properly on different partici-

pants, we individually evaluated the contraction force

prediction performances of the acquired model through the

interaction of the two different participants. We used the

same set of reference trajectories and the pressure command

profiles for the experiments with these two participants.

Figure 8 shows the model identification performances

with different participants for eight experiments. The error

bar shows the standard deviation. We applied Welch’s t-test

(5% significance level) and did not find any statistically

significant difference between the prediction performances

of the models acquired through the interactions with the

two different participants. This result indicates that the per-

formances are comparable between these two users in the

experiment.

5.3. Investigation of how tracking errors affect

model identification performances

In our user–robot interaction experiment, the human parti-

cipant was asked to track the reference trajectories that

were selected by our active GP learning method. However,

precisely following the displayed reference movements is

difficult for a participant. Therefore, we conducted an off-

line analysis to investigate how the tracking error affects

the PAM identification performance. For the PAM model

identification, our method exploits the most informative

data point that maximizes the approximated mutual infor-

mation. To simulate the tracking error, we randomly shifted

the recorded data that has the maximum mutual informa-

tion. The amount of the data time shifts D were sampled

from a uniform distribution with the range of ½�250, 250�
corresponding to 1.0 second ahead and delay. We selected

the data points xtI
1
+ D and ytI

1
+ D. We set this value so that

the subjects would show the tracking error within this

range. The specified range represents the possible deviation

of human subject movements. We used the same number

of the collected data and hyperpriors as the actual online

experiment introduced in Section 5.1. Figure 9 shows the

learning curves of the force prediction errors with the

shifted and without-shifted data. In both conditions, the

force prediction errors were decreased successfully through

the simulated learning process. The results indicate the

robustness of our model identification procedure against

the tracking error of a subject to the reference trajectories.

Meanwhile, the learning curve without the data shift indi-

cates better learning performance. This result indicates that

the selected reference trajectory by our active learning

method contains more information for PAM model identifi-

cation than other data points.

6. Discussion

In this section, we further discuss how the hyperprior distri-

bution p(u) affects the model identification performance

through offline analyses. In addition, we investigate the

learned GP-PAM model in this experiment.

6.1. Effects of the hyperpriors

The hyperprior settings of each actuator for the GP hyper-

parameter learning in our experiments are summarized in

Table 1. Even though we manually selected these hyperpriors,

the settings of the hyperpriors are not highly sensitive.

Using the dataset we collected for the offline analysis in

Section 5.3, we investigated how the model identification

performance can be affected by the different settings of the

hyperpriors. First, we modulated the hyperpriors for the

mean value of the hyperparameters. Instead of using the

specific mean values in Table 1, to validate the sensitivity

of the value for the performance, we additionally evaluated

other parameters locally and randomly sampled at around

mh = 2:0 from N (2, 1) at each experiment. In this offline

analysis, we used K = 30 points of the subsampled data to

update the hyperparameters at each trial (see Appendix C).

We conducted the comparison between the contraction

force prediction performances of the fixed hyperprior used

in our experiments and that of the stochastically sampled

Fig. 8. Model identification performances with different

participants. Error bar shows standard deviation. We applied

Welch’s t-test and did not find any statistically significant

difference between the prediction performances of the models

acquired through interactions with two different participants.

This result indicates that the performances are comparable

between these two users in the experiment.
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hyperpriors. We did not find any statistically significant

difference between these two performances (Wilcoxon’s

signed-rank test, 5% significance level). The result sug-

gests that the performance of our method is not very sensi-

tive to the choice in mh.

Next, we tested much smaller hyperpriors for the var-

iance compared with the settings used in the online experi-

ments. In the online experiments, to avoid overfitting, we

used large hyperpriors for the variance. Here, we used

smaller hyperpriors to assess the robustness of our pro-

posed method. We conducted the comparison between the

contraction force prediction performances of the large

hyperpriors for the variance used in our experiments and

the newly tested small hyperpriors. We did not find any sta-

tistically significant difference between these two perfor-

mances (Wilcoxon’s signed-rank test, 5% significance

level). The results indicate that our proposed method is not

highly sensitive to the settings of hyperpriors for the

variances.

6.2. Learning GP-PAM models

Here, we first investigated which reference trajectory was

frequently chosen by our active learning framework.

Figure 10 shows the top three most frequently selected ref-

erence trajectories. A common tendency can be observed

among these trajectory profiles, cf., Figure 5. This result

indicates the consistency of the learning process of our pro-

posed approach.

Figure 11 shows the learned GP-PAM model for PAM1.

We plotted the function in Figure 11(a) by taking the PAM

pressure P and the PAM velocity _L as the inputs and the

contraction force F as the output with the fixed PAM length

of L = 240:0 mm that is around the intermediate value of

the operated range. The learned function clearly depends on

the velocity _L especially in the high-pressure input region

while the static PAM model (see Appendix D) cannot repre-

sent velocity-dependent variation of the contraction force.

To further investigate the acquired function from a different

Fig. 9. Robustness of the model-learning process. The vertical axis shows force prediction error. To simulate tracking error, we

randomly shifted recorded data that has maximum mutual information. The amplitude of data shifts were sampled from a uniform

distribution. The cyan line shows learning performance with data shift. The blue line shows learning performance without data shift.

Results indicate robustness of our model identification procedure against tracking error of participants to reference trajectories.

Results also indicate that the reference trajectory selected by our active learning method contains more information for PAM model

identification than other data points.

Table 1. Hyperprior settings.

p(u)=N (mh,s
2
h) PAM1 PAM2 PAM3 PAM4

mh sh mh sh mh sh mh sh

a1 1.5 10.0 1.8 8.0 2.3 8.0 2.5 8.0
a2 2.3 10.0 1.0 8.0 2.6 8.0 2.9 8.0
a3 2.2 10.0 2.1 8.0 2.7 8.0 2.0 8.0
sk 1.8 10.0 0.7 8.0 2.9 8.0 1.6 8.0
sn 5.0 1.4 5.0 1.0 5.0 1.0 5.0 1.0
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view, we also plotted the function in Figure 11(b) by taking

the PAM velocity _L and the PAM length L as the inputs and

the contraction force F as the output with the fixed PAM

pressure of P = 4:0 bar, which is around the intermediate

value of the operated range. Figure 11(a) and (b) indicate

that the GP-PAM model successfully captured the nonlinear

characteristics of the PAM through our proposed model

identification strategy.

7. Conclusion

In this study, we have proposed a design for physical user–

robot interactions for modeling soft actuators equipped with

wearable robots. We have applied our approach to a user–

robot collaborative PAM model identification. We have

adopted a GP active learning method for an efficient model

identification. We have conducted interactive model identi-

fication experiments with two participants using a two-DoF

exoskeleton robot containing four PAMs. These experimen-

tal results indicate that our proposed GP active learning

method with the interactive identification process is more

suitable for soft actuator modeling than the standard PAM

modeling procedure that did not consider physical user–

robot interactions.

We have further investigated how the user’s tracking per-

formances based on the presented reference trajectories

affected the model identification process through offline

analysis. We found that the proposed approach is robust

against the user’s tracking error. However, if no tracking

error is present, the learning performance is better than that

of the simulated tracking errors. This indicated that our

active learning approach successfully selected informative

reference trajectories for model identification to the user.

Currently, we are using the ordinal GP model for our

active learning framework. However, we cannot directly

use a large number of samples to train the ordinal GP

model because of the heavy computational burden. For

future work, we will derive an active learning algorithm for

a sparse GP model such that we can utilize information

extracted from all the collected data, but can simultane-

ously reduce the effective number of samples to concisely

represent the actuator models for practical implementation.

Recently, novel soft actuators have been developed

(Koizumi et al., 2018; Li et al., 2017; Marchese et al.,

2015; Robertson and Paik, 2017). They have soft materials

and are driven by fluid; our approach could be applied to

model identification for wearable robots with soft actuators.

In addition, our approach could be employed in model

identification for soft manipulators that physically interact

with users (Bicchi and Tonietti, 2004; Ohta et al., 2018).

Recently, wearable sensing devices that can measure human

movements (Mengücx et al., 2014; Michael and Howard,

Fig. 10. Top three most frequently selected reference

trajectories. A common tendency can be observed among the top

three trajectory profiles, cf., Figure 5.

Fig. 11. Learned GP-PAM model (PAM1): (a) taking PAM

pressure P and PAM velocity _L as inputs and contraction force F

as output with fixed PAM length of L = 240:0 mm, and (b)

taking PAM velocity _L and PAM length L as inputs and

contraction force F as output with fixed PAM pressure of P = 4:0
bar. The GP-PAM model successfully captured the nonlinear

characteristics of PAM through our proposed model

identification strategy.
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2018) and stiffness (Yagi et al., 2018) have also been devel-

oped. We could combine these kinds of devices and our

proposed method in future work.
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Appendix A. MAP estimation of the GP

hyperparameter

The hyperparameter can be obtained from the maximum a

posteriori of p(ujX, y)}p(yjX, u)p(u). The hyperprior

model p(u) is provided in Table 1. We consider minimizing

the negative log likelihood:

log (p(ujX, y))= 1

2
yT(K+ s2

nI)
�1y+

1

2
log jK+ s2

nIj

+
n

2
log 2p � log p(u)

ð10Þ

û = argmin
u
� log (p(ujX, y))f g ð11Þ

The gradient of log (p(ujX, y)) can be calculated analyti-

cally. We used the conjugate gradient method to update û.

Appendix B. Approximated marginal

predictive variance

The marginalization s2
f can be given as

s2
f (x)=

4

3
s2

f ju(x)+
∂mf ju(x)

∂u

T

S
∂mf ju(x)

∂u

+
1

3s2
f ju(x)

∂s2
f ju(x)

∂u

T

S
∂s2

f ju(x)

∂u

ð12Þ

where mf ju(x) and s2
f ju(x) are the predictive mean and var-

iance of the distribution p(f (x)jX, y, u). Partial derivatives

with respect to the hyperparameters u are derived around

u = û. Here S is the covariance matrix of p(ujX, y) that is

obtained by Laplace approximation:

S
�1 = �rrT log (p(ujX, y))ju = û ð13Þ

Appendix C. Data subsampling

As the computational complexity of GP active learning is

O(n2), the computational cost increases significantly with
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a large number of training data points. To cope with this

issue, we subsampled data points from the pair of the

acquired input Xs and output ys data with considering the

mutual information between the function f and the hyper-

parameters u. Concretely, we first extract the most informa-

tive data point in terms of the mutual information:

tI1 = argmax
t
fI(xs

t )g ð14Þ

where Xs = ½xs
1, . . . , xs

T �. We then additionally subsampled

data points by randomly selected data indexes tI2, . . . , tIK
� �

.

The number of subsampled data points were K = 3 for our

online experiments. As the pair of the input Xs and output

ys data are acquired through the informative reference tra-

jectory as explained in Algorithm 1, here we assume that

data points in Xs and ys are equivalently informative to esti-

mate the hyperparameter u except for the most informative

data point tI1. By using the above subsampling strategy, we

have a reduced number of data points xtI
1
, . . . , xtI

K

n o
and

ytI
1
, . . . , ytI

K

n o
. We add these subsampled data points to the

input X and output y dataset.

Appendix D. Parametric models

We developed our pneumatic actuators based on FESTO

PAMs (see https://www.festo.com). FESTO provided a data

sheet that shows the relationship between the contraction

rate C and force output F. From Chou and Hannaford

(1996) and the data sheet provided by FESTO, we modeled

the relationship between the contraction rate and the force

output by a quadratic function f = a1C2 + a2C + a3 (see

Figure 12). We identified the two sets of parameters for the

quadratic models fal
1,a

l
2,a

l
3g and fau

1,a
u
2,au

3g under two

different pressure inputs to PAM. Then, force outputs were

estimated by using a linear approximation of the data sheet

profiles Teramae et al. (2013) as

F =
(fu � fl)P + Pufl � Plfu

Pu � Pl

ð15Þ

fl = al
1C2 + al

2C + al
3 ð16Þ

fu = au
1C2 + au

2C + au
3 ð17Þ

where fu and fl are the contraction force at the upper and

lower pressures, respectively. In this study, we designed

Pu = 6:0 bar and Pl = 2:0 bar, but these upper and lower

pressure value can be arbitrarily selected as long as these

two values are not very close and within a reasonable range

for the target PAMs.

Appendix E. Sparse GP

Snelson and Ghahramani (2006) proposed the SPGP that is

parameterized by the pseudo-inputs l (l� n). The SPGP

can reduce the computational cost (O(ln2) for training and

O(l2) for prediction) compared with the normal GP (O(n3)
for training and O(n2) for prediction). Given pseudo-inputs
�X= ½�x1, . . . , �xl�, the predictive distribution of the SPGP

can be expressed as follows:

p(y�jx�,D, �X)=N (y�jm�,s2
�) ð18Þ

where

m�=E½y��= kT�Q
�1
ln (Kln + s2

nI)
�1y ð19Þ

s2
�=Var½y��= k�� � kT� (Kl �Q�1

l )k� ð20Þ

Ql =Kl +Kln(L + s2
nI) ð21Þ

The marginal likelihood can be maximized with respect to

hyperparameters (L and sn) and pseudo-inputs �X by a gra-

dient method.

Fig. 12. Static relations between the contraction rate and

maximum contraction force. We used the data sheet provided by

FESTO as a reference.
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