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EEG Sensorimotor Correlates of Speed During
Forearm Passive Movements

Fumiaki Iwane , Giuseppe Lisi, and Jun Morimoto

Abstract— Althoughpassive movement therapy has been
widely adopted to recover lost motor functions of impaired
body parts, the underlying neural mechanisms are still
unclear. In this context, fully understanding how the pro-
prioceptive input modulates the brain activity may provide
valuable insights. Specifically, it has not been investigated
how the speed of motions, passively guided by a haptic
device, affects the sensorimotor rhythms (SMR). On the
grounds that faster passive motions elicit larger quantity
of afferent input, we hypothesize a proportional relation-
ship between localized SMR features and passive move-
ment speed. To address this hypothesis, we conducted
an experiment where healthy subjects received passive
forearm oscillations at different speed levels while their
electroencephalogramwas recorded. The mu and beta event
related desynchronization (ERD) and beta rebound of both
left and right sensorimotor areas are analyzed by linear
mixed-effects models. Results indicate that passive move-
ment speed is correlated with the contralateral beta rebound
and ipsilateral mu ERD. The former has been previously
linked with the processing of proprioceptive afferent input
quantity, while the latter with speed-dependent inhibitory
processes. This suggests the existence of functionally-
distinct frequency-specific neuronal populations associ-
ated with passive movements. In future, our findings may
guide the design of novel rehabilitation paradigms.

Index Terms— Electroencephalography (EEG), senso-
rimotor rhythms (SMR), event-related desynchronization
(ERD), beta rebound, passive movement speed.

I. INTRODUCTION

IN motor rehabilitation, passive movements are typically
provided by either a therapist or an assistive device [1],
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[2]. A growing literature suggests that proprioceptive feedback
given to impaired body parts upon the detection of sensori-
motor activity promotes plasticity during motor rehabilitation
[3]–[6]. The assisted movement produces sensory and propri-
oceptive afferent input that is hypothesized to induce central
nervous system plasticity during Brain Computer Interface
rehabilitation, leading to the restoration of normal motor con-
trol [7], [8]. Investigating how proprioceptive input is encoded
and elaborated by the central nervous system is important
for understanding both the physiology of motor control, and
the neural mechanisms of motor rehabilitation. Especially,
elucidating how sensorimotor rhythms (SMR) are modulated
by passive movements may provide additional insights for
more effective therapies. Fig. 1 shows our experimental setup
for this investigation.

Mechanoreceptors in muscles and joints convey information
about posture and movements of the body and thereby play an
important role in proprioception and motor control [9]. One of
the important receptors for proprioceptive input is the muscle
spindle located within skeletal muscles. It plays a crucial role
in encoding the effects of the amplitude and speed of body
parts as they fire trains of action potentials during muscle
stretch that vary as a function of muscle length and velocity
[10], [11]. Sensory input captured by the muscle spindle enters
the central nervous system through the dorsal root ganglion
cells. The somatosensory information flows through the medial
lemniscus afferent pathways, leading to the excitation of the
somatosensory cortex [9].

Studies on monkeys and cats demonstrate that the pri-
mary motor cortex receives proprioceptive afferent input via
direct thalamocortical connections [12], [13], via the primary
somatosensory cortex and via the secondary somatosensory
cortex [14]–[16]. In humans, electroencephalography (EEG)
[17]–[19] and magnetoencephalography (MEG) [20]–[22]
studies confirm that the human sensorimotor cortex is active
during passive movements.

Sensorimotor activity is observed in the form of an event-
related (de) synchronization (ERD/ERS). An ERD is a power
decrease of mu (10-18 Hz) and beta (18-30 Hz) rhythms that
occur in the sensorimotor areas during a motor-related task.
A post-movement beta ERS is a power increase following
the end of the motor task, typically called beta rebound.
The beta rebound (beta ERS) after limb movement is a well
known phenomenon; however, the mu ERS is not as widely
reported in literature [23]. Moreover, in our preliminary visual
inspection of the EEG spectrogram we could not observe a
mu ERS (Fig. 2). For all the reasons above, we decided to
omit the mu ERS from further analysis. The ERD and beta
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Fig. 1. Experimental protocol. (A) The subject’s left forearm is fastened
to the robot link while his EEG signal is collected. (B) The experiment
is structured as a two-level nested design. The first level consists of
movement types, i.e. passive movements (PM) and active movements
(AM). The second level represents movement speed, i.e. 0.5 Hz, 1.0 Hz
for both PM and AM, and 1.5 Hz, 2.0 Hz only for PM.

rebound are typically associated with cortical activation and
deactivation, respectively [24], [25]. Accumulating evidence
suggests that the speed of active movements is correlated with
SMR amplitude [26], [27]. Yuan et al. [28] shows that mu
and beta ERD power is bilaterally proportional to active and
imagined hand clenching speed.

Passive movements elicit bilateral mu and beta ERD, and
predominantly contralateral beta rebound [18], [19], [29], [30],
however the relationship between passive movement speed
(i.e. frequency of periodic limb oscillations) and SMR has
not been investigated yet. In this study, we designed an EEG
experiment to assess whether SMR and the speed of forearm
passive oscillations are correlated. Throughout the manuscript
we will refer to the frequency (Hz) of periodic limb oscillation
as ‘speed’, in order to avoid any confusion that may arise with
the EEG frequency.

Although previous literature has not paid attention to the
relationship between SMR and passive movement speed, sev-
eral studies have shown that SMR power and quantity of
afferent input are correlated. These studies are relevant if we
consider that faster passive movements elicit a larger quantity
of afferent input [22], [31]–[33]. Stancák et al. [33] shows
that the magnitude of SMR is modulated by intensity of
electrical stimuli. Houdayer et al. [32] found that voluntary
movement and mixed-nerve stimulation elicit a stronger beta
rebound than pure tactile stimulation. Parkkonen et al. [22]
shows that passive movements elicit a stronger and more

robust beta rebound than tactile stimulation. This suggests
that proprioceptive afferent input elicits a stronger activity
than tactile one, and that such activity depends on the type
and quantity of the afferent input. Indeed, tactile stimula-
tion activates mainly exteroceptive afferents, whereas passive
movements activate primarily proprioceptors and to a lesser
extent exteroceptors [22]. Moreover, even though the bilateral
beta rebound amplitude correlates with the type and quantity
of the afferent input, the ERD is constantly strong bilaterally,
across conditions [22], [26], [27]. Therefore, it is hypothesized
that the ERD and beta rebound represent frequency-specific
anatomically and functionally distinct neural populations.

Based on the cited literature, we hypothesize a proportional
relationship between passive movement speed and SMR, only
within localized spectral (i.e. mu, beta bands), temporal (i.e.
during or post movement) and spatial (i.e. left or right hemi-
sphere) features of the EEG signal.

In order to validate our hypothesis, we designed an exper-
iment where subjects’ left forearm was passively moved at
four different speed levels. Moreover, since the literature on
EEG signals associated with passive movements is somewhat
limited compared to that of active movements, we decided
to add the active movement condition (at two different speed
levels). The active condition would serve as a reference point
regarding the excitability induced by active movements of each
subject’s SMR. As a result, the experiment has a two-level
nested design, where the first level is the movement type (i.e.
active or passive) and the second level is the movement speed.

II. MATERIALS AND METHODS

The objective of this work is to investigate the relationship
between the magnitude of SMR and speed during forearm
passive movement. To this end, we conducted an experiment
which is structured as a two-level nested design (i.e. 1st: move-
ment type, 2nd: movement speed), with a forearm exoskeleton
robot. In this section, after describing the data acquisition
procedure, we explain the data processing to extract SMR
features, followed by the statistical analysis of the relationship
between SMR and speed.

A. Data Acquisition

To investigate the neural correlates of speed during pas-
sive movements, we carried out an experiment with fifteen
healthy right-handed subjects aged 23-28 years and without
neurological disorders or motor deficits while recording their
EEG signals. Besides passive movements, active movements
were also taken into consideration in order to set a reference
point regarding the excitability induced by active movements
of each subject’s SMR.

During the experiment, each subject was required to sit
on a comfortable chair with the right arm lying relaxed
(Fig. 1A). The left elbow was aligned to the joint of a one-
degree-of-freedom robot [34], and the left forearm (i.e. non-
dominant limb) was fastened to the robot’s link. Thanks to the
backdrivability of the robot joint (i.e. the robot is able to follow
user’s induced movements with the least possible resistance),
either active or passive movements could be executed while
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keeping the forearm fastened to the robot. Indeed, if not
actuated, the joint does not oppose any resistance against the
subject’s motion, except for its gravitational force. During
passive movements, subjects were required to relax their mus-
cles, while a sinusoidal elbow movements of the forearm was
generated by the robot at a given speed. The angle of the robot
joint ranged between −15 to +15 degrees with respect to the
neutral position. During active movements, the robot was not
actuated, and subjects actively performed a similar sinusoidal
motion at a given speed. Throughout the experiment, during
both the active and passive conditions, subjects were aided
with a metronome clicking at 1 Hz. Visual cues were used
to give instructions about the speed to produce in the active
movement condition.

The experiment is structured as a two-level nested design
(Fig. 1B). The first level consists of movement types, i.e. pas-
sive movements (PM) and active movements (AM). The sec-
ond level represents movement speed, i.e. 0.5 Hz, 1.0 Hz
for both PM and AM, and 1.5 Hz, 2.0 Hz only for PM.
Higher speed levels for either AM or PM were not taken into
consideration due to the large muscle and motion artifacts
that they would have produced. Therefore, the total number
of conditions is 6 (i.e. 4 PM and 2 AM). For each subject,
the experiment is composed of 10 sessions interleaved with
rest periods of a few minutes. Each session contained 3 trials
per condition, resulting in a total of 30 (3 × 10) trials per
condition for a subject. Within a session, conditions were
randomized and carried out as follows: an hyphen was shown
on the display for 5 s to indicate that the subject should rest.
After this period, if the hyphen was maintained, subjects’
left forearm was passively moved at either 0.5, 1.0, 1.5 or
2.0 Hz, for the duration of 4 s. Otherwise, if either the cue
“0.5 Hz” or “1.0 Hz” appeared on the screen, the subject
performed a left forearm sinusoidal active elbow movement at
the designated speed for the whole duration of the cue (i.e. 4 s).
The spectral analysis of the data, collected by the encoder of
the robot, confirms that, on average (±SD, standard deviation),
the speed during active movements matched the target speed
with 0.55 ± 0.066 Hz for AM at 0.5 Hz and 0.99 ± 0.08 Hz
for AM at 1.0 Hz. The amplitude of motion during active
movements was 19.8 ± 5.8 degree for AM at 0.5 Hz and
19.6 ± 4.5 degree for AM at 1.0 Hz. When the robot link
is static and parallel to the ground, the gravitational torque
generated is 1.34 Nm. An average human forearm (length:
0.46 m, weight: 1.72 kg) in the same condition would generate
3.88 Nm. This means that the weight of the robot only provides
additional 34 % of torque due to gravity. Moreover, subjects
did not report feeling of resistance due to the additional load.
Therefore, we consider that the weight of the robot only have
a negligible effect on the active movement condition.

The EEG signal was collected at a sampling rate of 500 Hz
by the Quick-20 dry-wireless headset (Cognionics, Inc.),
which is a full 10-20 array with 19 channels (F7, Fp1, Fp2,
F8, F3, Fz, F4, C3, Cz, P8, P7, Pz, P4, T3, P3, O1, O2, C4,
T4) plus reference on A1 and ground on A2 [35]. Moreover,
the electromyographic (EMG) signal was acquired from the
left-arm biceps, at a sampling rate of 250 Hz, in order to
verify that, during passive movements, muscles were not

Fig. 2. Data analysis. (A) Signal processing procedure to extract subject-
specific SMR power. Mu ERS was not observed after mu ERD in the
time-frequency representation (i.e. Time-Frequency ROI for ERD/ERS).
Indeed, we do not observe any power increase (i.e. red blob) to the right
of the mu ERD (i.e. blue blob at low frequencies). (B) Representation
of the linear mixed-effects (LME) nested models used in the statistical
analysis.

active. Participants gave written informed consent for the
experimental procedures, which were approved by the ATR
Human Subject Review Committee (Number 16-730).

B. Data Processing

The processing pipeline is visualized in Fig. 2A and it is
composed of EMG analysis and EMG-based subject removal,
EEG preprocessing, EEG independent component identifica-
tion, EEG time-frequency analysis and the computation of
ERD/ERS amplitudes.

1) EMG Analysis: Before analyzing the EEG signal,
we ensure that subjects contract their left-arm biceps during
the active conditions, but not in the passive conditions. The
root-mean-square (RMS) value of the EMG signal is computed
for each trial, after high-pass zero-phase filtering at 10 Hz
(4th-order Butterworth) to eliminate low-frequency drift in the
signal [36]. The RMS values are computed using the EMG
signal recorded during the whole duration of the movement
(i.e. 5 s of rest and 4 s of PM/AM), which resulted in one
RMS value per trial for a given condition. A one-way ANOVA
is performed to evaluate the effect of the movement condition
(i.e. rest, PM and AM) on the RMS. As expected, for every
subject, we find a significant effect of movement condition
(p < 0.05). In the subsequent post-hoc t-test analysis, we com-
pare the rest condition with AM and PM, respectively. All
subjects exhibit a significant difference (p < 0.05) between
rest and AM, which confirms that the EMG signal measured
the biceps contraction during active movements correctly. Two
subjects exhibit a significant difference between rest and PM,
indicating that they had been contracting their left-arm biceps
during the passive condition. As a result, these two subjects
are removed from the subsequent EEG analysis.

2) EEG Preprocessing: Preprocessing consists of high-pass
zero-phase filtering by a FIR filter with the cut-off frequency
at 1 Hz and the order of 1650 (3.3 × sampling f requency;
default parameters computed by EEGLAB), followed by Arti-
fact Subspace Reconstruction (ASR) to remove non-stationary
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high-variance signals [37]. After reconstructing the EEG signal
from the retained signal subspace, we re-reference it using the
common average reference (CAR). Then the signal is seg-
mented into epochs from -2 s to 8 s with respect to movement
onset (i.e. 0 s), in order to include the time periods associated
with baseline, ERD and post-movement beta rebound.

Subsequently, artifactual epochs are rejected based on
established methods [38]. Specifically, we remove epochs
with extremely large amplitude (i.e. exceeding −500 or
500 µV ), or whose probability of occurrence exceeds a
threshold, i.e. 6 SD locally for each channel, and 2 SD globally
for all channels regrouped [38]. Thresholds for global and local
probability are different because, intuitively, global artifacts
are a symptom that the whole epoch is compromised by noise,
while local artifacts can be fixed by independent component
analysis (i.e. the following step) without throwing the whole
epoch away. The amount of epochs rejected per subject is on
average 10.5 ± 4.2 (SD) over a total of 180 (i.e. 30 trials per
condition).

3) EEG Independent Component Identification: Independent
component identification is done by Adaptive Mixture Inde-
pendent Component Analysis (ICA) [39], in order to decom-
pose different neural and artifactual sources. The input to ICA
is the concatenation of post-onset portions of all the retained
epochs, which is representative of the movement periods, so to
find independent components associated with movement. One
independent component per hemisphere, related to left and
right SMR respectively, was selected based on visual inspec-
tion, using the two criteria described in Wang et al. [40]: the
spatial pattern should be consistent with the scalp projection
of the sensorimotor cortex on each hemisphere; (2) the power
spectrum density (PSD) of the component should match the
typical spectral profile of mu/beta rhythms. In practice these
criteria translate into unilateral spatial distribution (see Fig 2,
ICA box) over the sensorimotor cortex (i.e. channels C3 or
C4) and a mu/beta-band dominant spectral profile. For each
participant, we found exactly two independent components
associated with the left and right sensorimotor cortex, respec-
tively.

4) EEG Time-Frequency Analysis: The time-frequency rep-
resentations of each single-trial EEG independent compo-
nent are calculated by the Morlet Wavelet transform using
EEGLAB with default parameters [41]. The frequency range
is set between 7 and 40 Hz, resulting in a wavelet coefficient
matrix with 48 time points and 34 linearly-spaced frequency
bins. Each of the 48 time windows are composed of 239 sam-
ples (478 ms) overlapped by 119 samples (238 ms); while the
number of cycles ranges from 3 to 8.57, with an increment
of 0.5 from the lowest to the highest frequency. The resulting
coefficients are squared to obtain the spectral power.

In addition to the previous epoch rejection, time-frequency
representations are also examined for muscle artifacts.
Specifically, an epoch is rejected if the power perturbation
in the 20 - 40 Hz band deviates by +25 or -100 dB from
the baseline (i.e. from -2.0 to -0.5 s.) in either the left or the
right independent component [42], [43], which results in the
rejection of 8.3 ± 1.6 epochs per subject. The number of

remaining epochs, after rejection based on raw amplitude,
probability and time-frequency information, is 161.2 ± 3.3.

In order to quantify the magnitude of ERD and beta
rebound, we used the baseline correction method proposed in
[44]. This approach is less sensitive to noisy trials than clas-
sical baseline correction methods, and produces a non-skewed
power distribution. In detail, separately for each subject and
experimental condition, we apply a single-trial full-epoch
baseline correction, before averaging across trials and remov-
ing the trial-averaged pre-stimulus (i.e. from -2.0 to -0.5 s.)
baseline. It should be noted that the baselines are corrected
using the gain model assumption (i.e. divide by the baseline)
as opposed to the additive model (i.e. subtract the baseline)
[44], and that the trial-averaged pre-stimulus corrected time
frequency coefficients are log-transformed (10log10) only for
visualization purposes.

5) Time-Frequency ROI for ERD and Beta Rebound: SMR
patterns are highly subject-specific in frequency and time
[45]. Therefore, we used the heuristic introduced in previous
literature [45] to automatically define subject-specific time-
frequency region of interest (ROI) for mu, beta ERD and
post-movement beta rebound. In summary, the algorithm finds
the frequency and time ranges of an ROI that maximizes the
difference in power between the motor task and baseline. This
is accomplished by selecting the ROI ranges for which the
correlation coefficient across trials between the class labels
(i.e. 0 for baseline and 1 for motor task) and the respective
power is above a given threshold. For this purpose, the single-
trial squared wavelet coefficients are used.

The algorithm starts by optimizing the frequency range
while keeping the default time range (i.e. DTR) fixed: for
mu and beta ERD the time ranges are [-2,-0.5] s for class
0 and [0, 4] s for class 1, while for the beta rebound the time
ranges are [-2.0, -0.5] s for class 0 and [4, 6] s for class 1.
Frequencies with a high correlation coefficient between the
time-averaged power and class labels are iteratively added to
the optimal frequency band: at first, the frequency with the
largest correlation is selected and then the adjacent frequencies
(i.e. above and below) are added if their correlation is at least
60% of the best correlation. This search is constrained within
[10, 18] Hz for the mu ERD, [18, 30] Hz for the beta ERD
and the beta rebound [24], [45].

The same algorithm is executed to optimize the time-domain
during the motor task, while keeping the optimal frequency
bands previously selected: at first, the time bin with the largest
correlation is selected and then the adjacent time bins (i.e.
before and after) are added if their correlation is at least 30% of
the best correlation. In this case, the threshold for the inclusion
of adjacent time bins is lowered (i.e. 30%) because of the
higher temporal variability of the ERD. Indeed, the power also
has to be smoothed in time with a sliding window [-0.75, 0.75]
s, as in the original algorithm [45]. In order to separate the
ERD and the beta rebound ROIs, the initial search for the
time bin with the largest correlation coefficient is constrained
within [0, 4] s for the mu and beta ERD and within [4, 6] s
for the beta rebound.

The following criteria have to be fulfilled before ROIs are
finally adopted: 1) the frequency range must contain more than
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1 frequency bin (i.e. 1 Hz); 2) the ROI duration of mu and beta
ERD has to be at least half of the motor task duration (i.e. 2 s);
3) the ROI of beta rebound has to start after the motor task
offset (i.e. 4 s), and be longer than half of the corresponding
DTR (i.e. 1 s). If an ROI does not meet the aforementioned
criteria for a subject, the ranges of that ROI are replaced with
those computed using the averaged ranges across valid ROIs
of other subjects. If a subject has all invalid ROIs, he/she is
rejected from the subsequent statistical analysis. Based on this
criterion, 2 subjects are removed, leaving a total of 11 subjects
for the following statistical analysis.

In order to compute the mu, beta ERD and beta rebound
powers, we take the trial-averaged baseline-corrected power,
prior to log-transformation, and average it within a given
ROI. Subsequently, this average is log-transformed in order
to obtain the relative change in decibel.

C. Statistical Analysis

The statistical modeling of the relationship between SMR,
movement types and speed, is carried out by a linear mixed-
effects (LME) nested model. For each of the six types of
SMR (i.e. mu, beta ERD, beta rebound in both hemisphere)
a model is fitted. Models were designed a priori based on
the experiment design. According to the Wilkinson notation,
the linear mixed-effects model is specified as:

SMR = MovType + MovType:Speed + (1| Subject)

where the continuous response variable SMR is the power of
either mu, beta ERD or beta rebound at a given hemisphere,
the fixed-effect predictor Speed is nested within the vari-
able MovType. The random-effect (1| Subject) allows
for a different intercept per subject. All variables, except
SMR, are categorical variables. In order to evaluate the effect
of MovType:Speed, a likelihood ratio test is performed
between the previously specified linear mixed model and
simpler ones (Fig. 2B), meaning that the following models
are tested in a pairwise fashion:

LME0: SMR = 1 + (1| Subject)
LME1: SMR = MovType + (1| Subject)
LME2: SMR =

MovType + MovType:Speed
+ (1| Subject)

where LME0 is the null model containing only random effects,
LME1 includes MovType as fixed factor, and LME2 is
the model that we formulated originally, which includes
MovType:Speed (i.e. speed levels of passive movement)
as fixed effect. The likelihood ratio test is done separately
for each type of SMR (i.e. mu, beta ERD or beta rebound)
at a given hemisphere, giving us a total of six p-values for
each pair of models. Therefore, within each pair of models,
we correct for multiple comparisons the six p-values using
the false discovery rate (FDR). The significance level (critical
alpha) in the statistical analysis is 0.05.

Then, only in the hemisphere and type of SMR (i.e. mu,
beta ERD or beta rebound) that exhibits a significant differ-
ence between LME2 and LME1, we compute the pairwise
differences between Least Squares Means [46] across different

TABLE I
P-VALUES OF THE LIKELIHOOD RATIO TESTS

conditions, and we adjust for multiple comparisons by the
FDR method.

For completeness, we evaluate whether, even if some-
where (e.g. contralateral mu ERD) a proportional relationship
between MovType:Speed and the amplitude of SMR was
not found, at least a non-zero constant relationship exists. For
this purpose, we compute the significance of the Least Squares
Means of each MovType:Speed condition against zero [46].

In the following two paragraphs, we describe how to inter-
pret the statistical analysis pipeline, in order to facilitate the
reading of the results section.

The LME0 - LME1 likelihood ratio test tells us whether the
movement type (i.e. passive or active movement) contributes
to model SMR activity better. Which can be interpreted as
having a significantly different level of SMR between the two
movement types. While, the LME1 - LME2 likelihood ratio
test is to evaluate whether the addition of MovType:Speed
improves the model likelihood. This can be interpreted as
having significantly different SMR levels in some of the
MovType:Speed levels. At this point, we still don’t know
specifically which levels are different, therefore we will have
to analyse the pairwise differences between Least Squares
Means. The LME0 - LME2 likelihood ratio test is simply done
to confirm the effect of the combination of the two variables
(i.e. MovType and MovType:Speed) over the null model
(see Table I for the results).

The pairwise differences between Least Squares Means tell
us specifically which pairs of MovType:Speed levels are
significantly different from each other. Then, by looking at
the Estimate column of Table II and at Fig. 3 we can tell
the direction of the differences. Therefore, if we observe that
the Estimate of differences among speed levels are signifi-
cantly negative (i.e. the rightmost element of the difference
is larger) or positive (i.e. the rightmost is smaller), we can
conclude that there is a directly or inversely proportional
relationship, respectively.

III. RESULTS

The boxplots showing both hemispheres’ ERD/ERS mag-
nitudes, across movement types and speeds, are visualized in
Fig. 3. The results of the likelihood ratio test after multiple
comparison correction among the three models LME0, LME1,
LME2 are shown in Table I.

The main finding of this study is that contralateral beta
rebound and ipsilateral mu ERD amplitudes are proportional
to passive movement speed. Indeed, we observe that in
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Fig. 3. Boxplots representing the relationship between experimental conditions and sensorimotor power amplitude for each hemisphere and type
of SMR (i.e. mu, beta ERD and beta rebound). Contralateral beta rebound and ipsilateral mu ERD are highlighted in bold, since they are the ones
exhibiting a significant effect of passive movement speed. Within each boxplot the mean is represented in red, and the median in black. Each dot
represents one subject.

the last column of Table IA and in the first column of
Table IB, LME2 is significantly different from LME1 and
LME0, indicating that MovType:Speed has a main effect
on contralateral beta rebound and ipsilateral mu ERD, respec-
tively. This effect can be observed in Fig. 3, in the panels
titled contralateral beta rebound and ipsilateral mu ERD.
We see that, with respect to the baseline power, contralateral
beta rebound power increases and ipsilateral mu ERD power
decreases proportionally to passive movement speed.

Table II shows the result of subsequent post-hoc multiple
comparisons between speed levels. It was computed only for
those types of SMR and hemispheres that showed a significant
effect of MovType:Speed in the likelihood ratio test (i.e.
contralateral beta rebound and ipsilateral mu ERD). With
respect to the contralateral beta rebound, we observe that
PM0.5 is significantly (p < 0.05) different from PM1.5,
PM2.0, AM0.5. In the ipsilateral mu ERD, the lower pas-
sive speeds (i.e. PM0.5, PM1.0 and PM1.5) are significantly
different from PM2.0 and from the active movements.

Another important finding is that contralateral mu and beta
ERD have a non-zero constant relationship with movement
types and speed. In other words, contralateral mu and beta
ERD are strong during any type of motion, equally across
speed levels and movement types. This is evidenced by
the results of the Least Squares Means analysis of each
MovType:Speed condition against zero. Indeed, in the con-
tralateral mu and beta ERD, all the conditions across speed and
movement types are significantly different (p < 0.05) from
zero (see Fig. 3). Moreover, MovType and MovType:Speed
have no effect on the contralateral mu and beta ERD as
indicated by the likelihood ratio test in Table IA, showing that

the three models LME0, LME1, LME2 are not different from
each other in the first two columns. This non-zero constant
relationship is also visible in Fig. 3, where the contralateral
mu and beta ERD do not vary with respect to movement
type or speed, but lie on a constant level of −0.99 ± 0.11
db and −0.68 ± 0.17 db, respectively.

We also observe that ipsilateral mu and beta ERD levels are
stronger in active than in passive movements. Indeed, in the
first two columns of Table IB, LME1 is significantly different
from LME0, indicating that MovType has a main factor on
ipsilateral mu and beta ERD. However, LME2 and LME1 are
not different from each other in the second column of Table IB,
suggesting that MovType:Speed does not add any benefit to
the modeling of the ipsilateral beta ERD. Moreover, LME1 is
not significantly different from LME0 in the last column of
Table IA, indicating MovType alone is not enough to explain
the contralateral beta rebound.

IV. DISCUSSION

We found that contralateral beta rebound and ipsilateral mu
ERD amplitudes are proportional to passive movement speed;
that contralateral mu and beta ERD are strong during any type
of motion, equally across speed levels and movement types;
and that ipsilateral mu and beta ERD levels are stronger in
active than in passive movements.

Previous literature [24] hypothesized that the contralateral
beta rebound may reflect post-movement inhibition propor-
tional to the preceding activation of the motor area, meaning
that contralateral activity is proportional to speed during
passive movement. However, contralateral mu and beta ERD,
though strong, have a constant relationship with speed. This
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TABLE II
PAIRWISE COMPARISONS OF SPEED LEVELS

is congruent with earlier studies showing that the power of
contralateral beta rebound, but not contralateral ERD, depends
on active movement speed [26], [27]. Parkkonen et al. [22]
found that contralateral beta rebound was stronger in passive
movements than in tactile stimulation. They hypothesized that
the rebound magnitude depends on the type and quantity
of afferent input, and that the larger beta rebound of a
passive movement indicates a stronger interaction with motor
output for proprioceptive afferents than tactile ones. This
is in line with other studies about active movements that
found contralateral beta rebound differences between index
and four-finger flexion [47], brief ballistic wrist movement
and sustained isometric wrist extension [18], different types
of ballistic movements [48] and different levels of activated
muscle mass [49]. Moreover, voluntary movement and mixed-
nerve stimulation elicit a stronger rebound than pure tactile
stimulation [32]. Interestingly, only one study found a pro-
portional relationship between contralateral ERD and active
hand clenching speed [28]. All in all, our results suggest that
faster passive movements produce a larger amount of afferent
input, which is reflected in the proportional contralateral beta
rebound.

With respect to ipsilateral mu ERD, its amplitude increases
with speed. This finding is consistent with the hypothesis that
ipsilateral activity is proportional to active movement speed,
and that it represents speed-dependent inhibitory processes:
increased ipsilateral inhibitory activity is associated with the

neural processes of stopping faster movements [50]. Moreover,
transcallosal inhibitory signals contribute to the suppression of
unintended movements [50]–[52]. Based on the cited literature,
we speculate that a faster passive movement elicits a stronger
ipsilateral activation, associated with the inhibitory signals
triggered by an involuntary movement.

The active movement condition was included in the experi-
ment to serve as a control with respect to the excitability dur-
ing the active condition of each subject’s SMR. We found that
the ERD power during active movements is significantly larger
than that of passive movements in ipsilateral mu and beta
ERD. Moreover, the post-hoc pairwise comparison shows that
active movements have a stronger contralateral beta rebound
compared to the slowest passive movement (i.e. PM0.5). These
results are in agreement with previous studies showing that
ipsilateral ERD [53] and contralateral beta rebound [17] are
weaker in passive movements than in active ones, especially
when the speed of the movement is equivalent [21].

As opposed to the results of [28], no significant difference
was found between the SMR amplitude of the two active
movement speed conditions. This may be due to the limited
levels of active movment speed that were investigated, or to
the fact that forearm oscillations have different SMR patterns
compared to hand clenching [49].

Seeber et al. [54] found two types of spatially overlapping
large-scale networks in an rhythmic active finger tapping EEG
experiment: a sustained ERD that represents finger movement,
and superimposed phase-related amplitudes that resemble the
flexion and extension sequence of the fingers. In our data,
we could not find such time-dependent modulation in the
time-frequency representation of the sensorimotor independent
components, neither in the active nor in the passive movement
conditions. Indeed, in our data we observe a typical ERD and
post-movement rebound (i.e. discrete activation), rather than
continuously modulated sensorimotor rhythms such as the one
found in Seeber et al. [54]. This may be due to the fact that
the duration of our motor task was too short or to the different
pathways associated with attention and control of gross elbow
movements.

By comparing the biceps muscle activity (i.e. EMG) across
conditions, we confirmed that subjects did not inadver-
tently produce voluntary muscle contractions during passive
movements. Moreover, it is unlikely that the results are
caused by muscle or mechanical artifacts, considering that
only specific hemispheres, frequency bands and time periods
are proportional to speed, while others display a constant
relationship.

In the present study, the motor task was executed on the
non-dominant hand of right handed subjects. This was done
to consider a larger population while minimizing experimental
conditions. Therefore, the generality of our findings should be
confirmed in future works. Previously, an EEG study of finger
movement handedness has shown that only pre-movement
SMR are affected by handedness [55]. However, fine motor
control of finger movements uses different pathways than
gross motor control of elbow movements. Therefore, in future,
the effect of hand dominance on the sensorimotor rhythms
during passive movements should be investigated.
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It should be noted that the linear mixed effects model
LME2 includes speed only as a nested variable within move-
ment type. As a result, the model does not allow to evaluate
the full interaction between speed and movement type.

The findings of our study could be relevant for the proprio-
ceptive neurofeedback and motor rehabilitation communities.
Indeed, it has been suggested that beta rebound correlates with
motor recovery after stroke [56]. The beta rebound could be
monitored under several speed levels, in order to assess cortical
excitability after stroke [22]. Moreover, novel rehabilitation
procedures may be introduced, where the intensity of pro-
prioceptive input is programmed to switch between different
levels, and the brain activity is fed back visually to the subjects
with the goal of achieving a proportional SMR power.

V. CONCLUSION

Our results revealed three functionally distinct frequency-
specific neuronal populations with respect to passive move-
ments. Contralateral mu and beta ERD have a strong but
constant relationship with passive movement speed, which
reveals an all-or-nothing type of activation in the motor cortex.
In the same hemisphere (i.e. contralateral), the proportional
relationship between passive speed and beta rebound may be
associated with the modulatory effect of afferent input quantity
on motor cortex activity. In the ipsilateral hemisphere we
found yet another frequency specific activity (i.e. mu ERD),
proportional to speed, that has been previously related to
speed-dependent inhibitory processes.
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